
Similarity Join on Hadoop
An Evaluation of the Hadoop Map/Reduce Environment

Andrina Mascher, Tim Felgentreff

Map/Reduce Algorithms on Hadoop, Research Group Information Systems,
Hasso-Plattner-Institut, Universität Potsdam, D-14482 Potsdam, Germany,
{andrina.mascher, tim.felgentreff}@student.hpi.uni-potsdam.de

Abstract. In this paper we present our findings for a similarity join
algorithm for use in a Map/Reduce setup on Apache’s Hadoop and the
conclusions we have been able to draw about the Hadoop implementation
of Map/Reduce and Map/Reduce in general. Wikipedia pages were cho-
sen as test input to compare, their similarity measured by co-occurrences
of words with the Jaccard coefficient.

1 Introduction

Efficient processing of large input data is reached through parallelization on a
distributed system. Our cluster is managed by Hadoop which uses the Map/Re-
duce paradigm through which a complex task is divided into many smaller ones.
The project was implemented in Java due to Hadoop.

2 Algorithm

For a large set of pages from Wikipedia we calculate the Jaccard coefficient
and display only those pairs with a coefficient exceeding a given limit. Our Algo-
rithm is influenced by a similar paper on finding co-editors with Map/Reduce [?].
We also did not calculate the Jaccard coefficient for every possible pair of pages,
which would have meant calculating intersection and union for every pair, a very
time consuming task exactly in O(NumberOfPages2 ∗ NumberOfWords2).
We only consider pairs of pages that share at least one word and are there-
fore potentially similar. Furthermore, the coefficient of those pages that dif-
fer greatly is calculated faster than very similar pages. We finally result in
O(2∗NumberOfPages2 ∗NumberOfWords) because some words lead to some
pairs of pages they occur in and some pairs of pages share some words. Eventu-
ally we achieve O(n3) instead of O(n4).

The words themselves are discarded quite early because only the cardinalities
of the intersections and unions are needed. In order to compute similarity we do
not want all words taken into account, but rather filter only relevant words to
achieve higher accuracy when comparing texts.

2

2.1 Supporting Algorithms

Jaccard
The Jaccard coefficient measures the similarity of two sets A and B by calcu-

lating |A ∩ B| ÷ |A ∪ B|. This results in a value between 0 and 1 with 1 meaning
identical. When comparing texts we want to consider multiple occurences of
words and therefore use intersection and union as multiset-operations opposing
to the original context by Paul Jaccard (1868–1944) [?].

Porter Stemmer
To increase findings of possibly similar pages we stem the words and use

lowercase letters only. It is then possible to group words which will result in
higher recall [?]. In order to be able to stem a word we eliminate numbers and
special characters and stem only those words with more than four letters. We
chose the popular Porter Stemming algorithm, because it is very well adjusted
for English texts [?].

2.2 Phase 1 - Pairing

Map Relevant words in a page are found through markups such as headings
and links or preferably through tf/idf. Every relevant word is stemmed with the
Porter Stemmer algorithm and added to a hashtable from which further values
can be calculated. The output value for a relevant word is a class CountTriple
that consists of the given page, the number of occurences of this word in this
page and the count of all relevant words in this page.

Input: page, {word}

Output: relevant word, (page, occurences, wordcount)

Reduce For a given word all corresponding pages are combined in the value-set
as CountTriples. Since all pairs of pages are potentially similar they are added
to the output. Each pair is added only once in a defined order since they will be
used as key later on.

Input: word, {(page, occurences, wordcount)}

Output: (page1, occurences, wordcount), (page2, occurences, wordcount)

2.3 Phase 2 - Jaccard

Map This Map job receives two CountTriples with two different pages that
refer to the same word, although the word itself was discarded before. Their
multiset-intersection is computed by selecting the minimum of the count of this
specific word. The sum of their overall wordcounts will be used to calculate the
multiset-union later on.

3

Input: (page1, occurences, wordcount), (page2, occurences, wordcount)

Output: (page1, page2), (minimum, sum)

Reduce A pair of pages might share several words, whose occurences are repre-
sented in the value-set. All minima sum up to the overall intersection I. The sum
S is the same in all elements. The Jaccard coefficient of both pages is eventually
calculated by I ÷ (S − I). The denominator now resembles the multiset-union.
If the coefficient exceeds a predefined limit the pair of pages will be added to
the output.

Input: (page1, page2), {(minimum, sum)}

Output: (page1, page2), jaccard

2.4 Phase 3 - Output

Map For a given pair of pages there will be two sets of output due to summetry
of similarity.

Input: (page1, page2), jaccard

Output: page1, (page2, jaccard) and page2, (page1, jaccard)

Reduce The last Reduce jobs collect all similar pages for a given page with
their Jaccard coefficients. This step is trivial, only if required the output could
be sorted or visualised.

Input: page1, {(page2, jaccard)}

Output: page1, {(page2, jaccard)}

3 Benchmarking

We benchmarked the results on a heterogeneous cluster of 10 machines with
moderate hardware.

As we can gather from Fig. 1 the run-time complexity of the algorithm
matches a graph in O(n3), as we had anticipated. However, due to the dis-
tributed nature of Hadoop, running over small data sets is slower than running
a naive implementation locally. The gain comes with the massive parallelization
of Hadoop, and thus is more and more apparent on large inputs.

The reasons we found for this are mainly in the way Hadoop distributes data
between the Map and Reduce phases. Especially for small jobs with low per-node
run-time the overhead of sending, in the worst-case scenario all of our data, over

4

01:00

05:00

10:00

15:00

30:00

45:00

1:00:00

2:00:00

3:00:00

4:00:00

 10 50 100 500 1000 2000

T
im

e
in

 H
H

:M
M

:S
S

Input Size MiB

Similarity Join
Errors

Fig. 1: Run-time development over growing input sizes

TCP/IP three times over outmatches any gain through parallel processing. This
assertion appeared to hold when using larger input-sets. It proved to be correct
when we changed the algorithm from running four Map/Reduce phases to only
running three.

By decreasing the number of phases our running time went down by an almost
constant fraction for each point of measurement, indicating that indeed a large
amount of our input is send over the network in-between jobs.

4 Lessons learned

4.1 Writing to HDFS

During our initial testing, we tried to use a default Jaccard coefficient of 0.5
to declare two pages as similar. On larger data sets, however, this led to huge
amounts of data being written to the HDFS, at one time jobs running on input
sizes of 10GB wrote in the term of execution almost 100GB into the HDFS.

We found, that writing to HDFS was often the bottleneck here, with Maps
going straight to 100% and Reduce jobs hanging at 98/99% waiting for huge
amounts of data to be written to the distributed file-system.

It seems hard-drive speed is a crucial limiting factor in the Hadoop cluster
we used. We worked around the problem to get better benchmarking results
by raising the Jaccard index to 0.8 which, for the last Map/Reduce run, led
to a much smaller amount of data being written. Still remaining was the first
run as unavoidably write-intensive by pairing each page with all its candidates
for similarity. The amount of data written here is very dependent on the input

5

00:10:00

00:30:00

00:45:00

1:00:00

2:00:00

3:00:00

4:00:00

 100 500 1000 2000

T
im

e
in

 H
H

:M
M

:S
S

Input Size MiB

Default
10 Reducers
18 Reducers
25 Reducers

Fig. 2: Processing Speed in Relation to Number of Reducers

data, however, for our Wikipedia articles we found that doubling the input size
increased the size of possible candidates almost tenfold.

4.2 Running more Reducers

It appears that the performance of the cluster is very dependent on the number
of Reducers running (Fig. 2). While the number of Mappers is simply determined
by the block-size in the HDFS and thus simply dependent on the locality of the
data, the Hadoop framework seemed to have a hard time determining the right
amount of Reduce jobs for the cluster. Left to its own devices we observed that
even a growth in input data was only slowly met with a growth in Reduce jobs,
so that with up to 10GB of input only one or sometimes two Reducers were
started.

The heuristics Hadoop uses for this decision might be good for homogeneous
clusters, however, as we had a couple of machines running much faster than
others, advising the framework to employ more Reducers generally led to better
performance. Fine-tuning was still required, though, and we found the best ad-
vice to be roughly equivalent to the number of nodes available. As this is only
advice to the framework the real number of Reducers sometimes went up to 1.5
times that number. This way, if necessary, faster nodes could start additional
jobs while the others were still processing.

With growing input sizes, using even more Reducers (up to a factor of 2.5)
seemed to become even more efficient, as the time impact caused by the network
distribution diminishes compared to pure calculation time.

6

01:00

05:00

10:00

15:00

 100 200 300 400 500 600 700

T
im

e
in

 M
M

:S
S

Input Size MiB

Default
10 Reducers
18 Reducers
25 Reducers

Fig. 3: Overhead when Running more Reducers

4.3 Network Overhead on Data Redistribution with many Reducers

Interesting to note for small datasets is the time penalty that comes with running
more Reducers. Fig. 3 is a close-up in log-scale for the smaller datasets of up
to 700MB. With small datasets, not all nodes run a Map job, however, if we
force the framework to run at least one Reduce job on every machine it needs to
distribute data to the nodes that do not have any output from the Maps at all.

5 Conclusions

These observations lead us to stress the importance of configuring the Hadoop
cluster according to the requirements. Runtime greatly depends on the combi-
nation of Reducers and expected input sizes. At least on heterogeneous clusters
Hadoop is unable to properly determine the optimal configurations by itself.
More homogeneity might mean more versatility here so relying on Hadoop to
breathe some life into a varied bunch of older machines means one has to spend
more time thinking about configuration.

Acknowledgments

We thank Alexander Albrecht for his advice on the algorithm and his help in
finding the optimal way at tackling the problem. We would also like to thank
Professor Neumann for enabling us to attend this seminar.

