
Debug Tools for Orchideo
Debugging in an MDSD and Aspect-oriented Development

Environment

Tim Felgentreff
Lysann Kessler
Christina Palm
Stephanie Platz
Frank Schlegel

Philipp Tessenow

Software Architecture Group, Hasso-Plattner-Institut, Universität Potsdam, D-14482
Potsdam, Germany,

{tim.felgentreff, lysann.kessler, christina.palm, stephanie.platz,
frank.schlegel, philipp.tessenow}@student.hpi.uni-potsdam.de

Table of Contents

Debug Tools for Orchideo . 1

Developing an Application with the orchideo Framework 9
Christina Palm

Static Analysis of orchideo Advice Weaving . 39
Stephanie Platz

Debug Support for orchideo . 71
Lysann Kessler

Post-mortem Analysis of Debug Traces . 103
Tim Felgentreff

Exception Visualization . 129
Philipp Tessenow

Continuous Integration For Eclipse Plug-ins . 161
Frank Schlegel

Summary . 183

Erklärungen . 199

Debug Tools for orchideo

Our World is complex, so is our Software Since computers have come into
widespread use, the number and complexitiy of problems that are solved using
software has grown progressively. To deal with the quickening demands for more
and more sophisticated software integrated development environments grow ever
more to supply developers with tools to better meet the demands of consumers.
The Eclipse Platform is designed for building integrated development environ-
ments (IDEs) [1]. Since the release of Eclipse 3 in 2004 the lines of code have
increased twelve-fold1.

0

5

10

15

20

25

v3.0 v3.1 v3.2 v3.3 v3.4 v3.5

Mio LOC

Eclipse Release Lines of Code (LOC) Growth

Fig. 1: Eclipse Releases since 3.0

To manage the growing size and complexity of software, the two software
development approaches aspect-oriented programming (AOP) and model-driven
software development (MDSD) became very popular in the last few years.

orchideo is a framework built on top of Eclipse that unites AOP and MDSD
which we will elaborate on in the first part of this work [?]. We have built tools to
extend the Eclipse SDK with orchideo specific abstractions. Tools to show errors
and support understanding a program at the time of writing, such as source code
analysis, are presented in part [?] of this study.

MDSD and AOP, however, do not relief a developer of the burden of debug-
ging. When programs break, the programming abstraction is lost [2]. Debugging

1 http://www.coderfriendly.com/wp-content/uploads/2009/07/eclipse_
galileo.png

http://www.coderfriendly.com/wp-content/uploads/2009/07/eclipse_galileo.png
http://www.coderfriendly.com/wp-content/uploads/2009/07/eclipse_galileo.png

6 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

on a different level of abstraction costs time as the problem has to be understood
and solved from two different persepectives.

Numerous other techniques for interactive debugging, logging of program
state and analysis and visualization thereof help the programmer regain a certain
abstraction level and solve problems more quickly. We have built tools to apply
these debugging techniques to orchideo which we present in parts [?], [?] and [?].

Different debugging techniques apply to different phases of development. Ini-
tially, new software systems are small and tracing their various execution flows
either statically or dynamically is easily possible. This is also the phase where
static analysis techniques are most useful. However, as software grows, a domain
specific structure or better yet domain specific debugging tools become more
important. As software is deployed and enters the maintenance cycle, logging
and post-mortem crash analysis is used [3].

Finally, during maintenance when patches to the software have to be applied
to deployed systems, the system stability is of utter importance. Continuous
integration systems help to ensure tests in large software systems are run upon
each change in a source code repository. This ensures that new code does not
break old functionality. We present such a system for orchideo and Eclipse in
part [?] of this discourse.

Bachelor Thesis

Developing an Application with
the orchideo Framework

Christina Palm

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Developing an Application with the orchideo
Framework

Christina Palm

Hasso Plattner Institute
Potsdam, Germany

christina.palm@student.hpi.uni-potsdam.de

Abstract. The two software development approaches aspect-oriented
programming and model-driven software development became very pop-
ular in the last few years. orchideo is a framework that provides a combi-
nation of both concepts for developing business applications. This paper
describes how aspect-oriented programming and model-driven software
development are realized in orchideo and how we used the orchideo|suite
to develop TeltowCar, an application for managing a car repair shop.

1 Introduction

The orchideo|suite [4] is a model-driven, aspect-oriented framework which is based
on the Eclipse integrated development environment (IDE) [1], the Eclipse Mod-
eling Framework (EMF) [5], and the Eclipse Graphical Modeling Framework
(GMF) [6]. The orchideo|suite contains a set of different tools for developing
business applications.

The orchideo|engine is the core and aspect-oriented part of the orchideo frame-
work. It coordinates the other components and provides the functionality to de-
velop orchideo aspects. Aspect models can be created with the help of a graphi-
cal editor. The base implementation of orchideo aspects is generated from these
models by the orchideo|engine. The aspects cooperate with the orchideo|engine.
The engine enables a combination and configuration of aspects by letting the
user toggle aspects on and off. In that way aspects should become reusable and
different projects should be able to use different (and individually adjusted) func-
tionality. The orchideo|engine works at runtime and is responsible for weaving
the aspects. Aspects can be used for generating source code from models.

orchideo|objects contains a set of predefined features in form of aspects. The
aspects of orchideo|objects can be used for the management of objects. These
aspects handle for example persistence (PersistenceAspect) and creation and
destruction of objects (ObjectAspect) [7]. Furthermore orchideo|objects provides
a graphical editor for application models. Some of the aspects in orchideo|objects
are responsible for generating source code from the application model. Hence
orchideo|objects provides functionalities for model-driven development of enter-
prise applications.

Besides the orchideo|engine and orchideo|objects the orchideo|suite contains
orchideo|documents, orchideo|ui-designer and orchideo|views. orchideo|documents

mailto:christina.palm@student.hpi.uni-potsdam.de

10 Christina Palm

is a documentation generator, which can generate text documents from any
EMF based model. orchideo|views is a platform independent modular construc-
tion system for creating graphical user interfaces. orchideo|ui-designer is a tool
for creating definitions for graphical user interfaces with the help of a specific
GMF diagram type which can be used as input for orchideo|documents as well.
In the context of this work, only orchideo|engine and orchideo|objects were used
and are examined.

As mentioned before, orchideo provides model-driven and aspect-oriented
functionalities. The approaches of model-driven Software Development (MDSD)
[8], especially in context of the model-driven Architecture (MDA) [9] of the Ob-
ject Management Group (OMG) [10], and aspect-oriented programming (AOP)
[11] are described in Section 2 and Section 3. The realization of MDSD and
AOP in the orchideo|engine and in orchideo|objects is examined in Section 4.
Here the modeling language of orchideo, the role of aspects in orchideo and the
orchideo generator are examined. The application we developed with the help of
the orchideo|suite, TeltowCar, is described in Section 5. TeltowCar is examined
in scope of orchideo, especially the application model, the implemented aspects,
and how the application model and aspects are used in the application to influ-
ence its execution. The problems we found during the development of TeltowCar
are stated in Section 6 and a conclusion is drawn in Section 7.

2 Model-Driven Software Development

2.1 Motivation

Referring to [12] a model has to meet three criteria:

– Mapping: a model has to be based on an original (that not necessarily needs
to exist yet).

– Reduction: a model does not show all properties of the modeled original. It
simplifies it in some way.

– Pragmatic: a model should be useful instead of the original for a specific
purpose.

So a model is something that provides a higher level of abstraction than
the original through leaving out unnecessary information and should make the
original (or a specific part of the original) easier to understand.

During the development of a software system there often exist several models.
There can be models, for example, created on base of requirements or models of
the system architecture. There are even different situations models are created
for. Some examples are communication within the development team and with
domain experts, for documentation and for a better understanding of a problem.
If there is a model of the system architecture, developers have to write source
code based on this model. Doing this, a developer has to do a lot of similar and
easy tasks like creating classes and method skeletons, and properties for classes
and methods modeled for example in a class diagram very often. These tasks
take time and are error-prone.

Developing an Application with the orchideo Framework 11

2.2 Model-Driven Software Development

The goal of model-driven software development is to automate these tasks by
generating source code from models. Not only code skeletons are generated, but
application logic as well.

Another goal is to handle software complexity due to modularization. This
goal builds on the assumption that models are better to understand than source
code because they provide a higher level of abstraction than third generation
languages and support the communication inside the development team and
with domain experts.

In MDSD software is generated partially or completely from models. Data
structures and application logic are specified in models. A model-driven frame-
work has often the following structure: It contains one or more domain specific
languages (DSL) to create different kinds of models, a metamodel for each of
the DSLs and one or more model transformations and/or a generator for gener-
ating source code from models. The structure of a MDSD framework is shown
in Figure 1.

A metamodel can be seen as a model of a model and specifies the abstract
syntax of a language (in case of MDSD this is a domain specific language).
A metamodel defines what can be modeled, for example classes that can have
methods and properties. An example language to define metamodels is the Meta
Object Facility(MOF) [9] of the OMG.

A domain specific language is limited to a certain problem domain in contrast
to a general purpose language. A DSL is based on a metamodel that defines its
abstract syntax. The DSL defines the concrete syntax which can be graphical.
Furthermore it determines how the elements defined in the metamodel can be
modeled.

A model can be transformed into another model with the help of transfor-
mation rules. There are model transformations that have to be done manually.
For example if a model on a high level of abstraction should be transformed into
a lower level model, information has to be added. But if there is a data model, it
can be transformed automatically into java code because only information about
the platform (Java) has to be added. A goal of MDSD is to use automatic trans-
formations. Transformations can be defined as rules that transform elements of
one metamodel into elements of another metamodel.

Code generation means to generate source code from a model. This can be
done with transformation rules by specifying how elements of the model’s meta-
model are transformed into elements of the source code’s metamodel. Another
way to generate source code is to use templates. A template specifies how a
metamodel element should be transformed into source code. The generated code
is completed by developers with manually written code. When the model is ad-
justed, there will be the need to generate code from it again. If the generated
code was adjusted by developers, this would be problematic. Hence there is the
need to somehow distinguish between the generated and the manually written
code and they should be separated from each other. There are different patterns

12 Christina Palm

for separating the generated from the manually written code, for example the
generation gap pattern [13].

The application code which contains the generated source code and the man-
ually written source code runs on a platform. Referring to [9] a "platform is a
set of subsystems and technologies that provide a coherent set of functionality
through interfaces and specified usage patterns, which any application supported
by that platform can use without concern for the details of how the functionality
provided by the platform is implemented".

In Figure 1 the relationships between the terms explained above are shown.
A model is created using a DSL. One or more DSLs can be based on one meta-
model. As a model is an instance of the metamodel, it could have different rep-
resentations using different DSLs all based on the same metamodel. The source
code generator uses templates to generate source code from a model. The gen-
erated code has to be extended with manually written code by developers. The
generated and the manually written code represent the application code. The
application code runs on a platform.

Fig. 1: The Structure of a MDSD Framework (on basis of [14])

2.3 Model-Driven-Architecture

The MDA is a set of standards and concepts created by the Object Management
Group on the basis of MDSD. In context of the MDA there are three kinds of
models:

Developing an Application with the orchideo Framework 13

– Computation Independent Models(CIM): A CIM describes the system from
a viewpoint that focuses on the requirements of the system and its envi-
ronment. It is mainly created in cooperation with domain experts who have
no knowledge about how the system would be realized, but have knowledge
about the specific problem domain. This model shows no technical or struc-
tural details of the system and can be used to communicate with domain
experts.

– Platform Independent Models(PIM): A PIM describes the system from a
viewpoint that hides information which are necessary for a specific platform.
This model contains information that are similar for different platforms. So
a PIM does not contain any implementation details.

– Platform Specific Models(PSM): A PSM combines the PIM with details
about a specific platform. For example source code is a PSM.

Using these three kinds of models in development is useful because they hide
detailed information when it is not needed or when it is not available. Each
of them provides a view on the system on a different level of abstraction. The
transformations from CIM to PIM, from PIM to PSM, and from a PSM to source
code, is illustrated in Figure 2. In the development process these three kinds of
models are supposed to be used as follows.

The first model to be specified is the CIM. It can be created in cooperation
with a domain expert. A software architect transforms the CIM into a PIM. This
transformation has to be done manually because computational information is
added. The transformation from a PIM into a PSM can be done automatically.
In this step only information about a specific platform is added. Source code is a
PSM, so source code can be generated either from a PIM or from a PSM. There
can be more than one model of each kind. For example there can be more than
one CIM, each describing a different part of the system and providing a different
view on the system. The MDA uses the Unified Modeling Language (UML) [15]
to create models.

Fig. 2: An Overview of How CIM, PIM, PSM are Related

14 Christina Palm

3 Aspect-oriented Programming

3.1 Motivation

Referring to the concept of separation of concerns [16] each concern that is rel-
evant to a system should be handled separately. In software systems it is often
not possible to encapsulate all different functionalities in separate modules. The
concept of Object-Oriented Programming (OOP) provides constructs and func-
tionality to encapsulate so called core concerns . In an ideal realization each
object contains the implementation of a single concern. Core concerns are sys-
tem requirements that contain central functionality and can be encapsulated in
a module, e.g. a class in OOP. Functionality like multi-threading and error han-
dling often cannot be encapsulated in one module, but affect a lot of modules
and so are scattered through the whole system (or parts of it). The same code
has to be executed in several modules (using for example OOP), which leads to
duplicated code. There is no possibility to encapsulate crosscutting concerns in
modules only with OOP. AOP provides constructs and functionality to solve this
problem. It should entail better structured and modularized (and so probably
better understandable) software and should support the reusability of crosscut-
ting concerns by modularizing them. While MDSD supports OOP concepts with
an easier way to achieve modularization and structured software, AOP enhances
OOP with more possibilities and new techniques for modularization.

3.2 Concepts of Aspect-Oriented Programming

AOP [11] is a programming approach that provides constructs and functionalities
to encapsulate so called crosscutting concerns. AOP is enhancing OOP with these
constructs and functionalities.

A crosscutting concern is a specific requirement that crosses multiple other
modules of a system that encapsulate the core concerns, for example as objects.
A lot of examples for crosscutting concerns are stated by Ramnivas Laddad in
[17], for example concurrency controls and transaction management. With AOP
crosscutting concerns are encapsulated in aspects and are not scattered through
the other modules. An aspect is the basic unit of AOP. Aspects are constructs
that contain code that would be called in a large number of modules. Within an
aspect it is also specified at which points this code has to be executed. Possible
points in the execution of the system where an aspect can insert code are called
join points. In AspectJ for example any identifiable execution point in a system
is a join point.

A pointcut describes a set of join points [11]. It so defines where the advice
code should be executed. A pointcut can decide whether to select a join point
or not aided by the information in the context of a join point. An advice is the
code that will be executed at a pointcut. There are three kind of advice:

– An before advice will be executed before the join point.
– An after advice will be executed after the join point.

Developing an Application with the orchideo Framework 15

– An around advice will be executed instead of the join point or parallel to the
join point.

Pointcuts and advice are defined within an aspect. The pointcut selects the join
points at which the code defined in the advice will be executed. The process of
combining the aspects with the remaining code of the system is called weaving.

Weaving An aspect weaver is used to control the execution of the code specified
in the aspects. A weaver is responsible for weaving the aspects with the rest of
the systems code. Weaving could be done before compiling, after compiling, or
at runtime.

In [18] weaving is classified in invasive and noninvasive weaving. Invasive
weaving describes the weaving before compiling (source weaving) and after com-
piling (binary weaving). A source code weaver combines the aspect code with
the rest of the source code before compiling, the woven source code is then com-
piled as a whole. A binary weaver weaves the aspect code and the base source
code after compiling. While using invasive weaving it is not possible to consider
dynamically loaded classes with the aspects. Noninvasive weaving means that
the base program is not changed in order to enable aspect functionality. This
kind of weaving is executed at the runtime of a system. The base program is
not changed to enable aspect functionality. In this class of AOP frameworks the
usage of a custom runtime environment is opposed to runtime interception as
another possibility to enable the aspect functionality. When the weaving takes
place at runtime the aspects can influence the systems behavior depending on
runtime parameters and dynamically loaded classes.

4 Realization of MDSD and AOP in orchideo|engine and
orchideo|objects

The orchideo|suite combines the two approaches MDSD and AOP. In the or-
chideo|engine aspects are created as models. Their base implementation is gen-
erated from these models. In orchideo|objects the data model of an application
is created with the help of a DSL. orchideo|objects contains aspects that provide
templates which are responsible for generating source code from these models.
When developing business application with orchideo|objects and orchideo|engine
different aspects implement different aspects of the software, for example: per-
sistence, constraints and object management.

4.1 Aspects in orchideo

In orchideo there are two ways aspects can be used [7]:

– to control runtime behavior of an application
– to generate textual artifacts like source code

16 Christina Palm

An aspect is defined as an aspect model. Two different diagrams provide
views on this model. When developing an application with orchideo, aspects and
their advice have to be configured within a session configuration. Aspects and
advice can be toggled on and off in this configuration. An orchideo|engine session
is created with a session configuration and so knows which aspects and advice
it has to weave.

Aspects at orchideo|engine runtime Different from AspectJ [17], where a join
point is any identifiable execution point in a system, the join points in orchideo
are so called actions. An action is a programming construct which is defined
within an aspect. Actions can be done and undone completely. So actions are
similar to Java methods in some way, but can be, in contrast to Java methods,
undone. In fact, for each orchideo action two Java methods exist in the aspects
class: a doAction() method and an undoAction() method. An action can have in,
out, and return parameters. in and return parameters are similar to method pa-
rameters and return types of Java methods. out parameter are used, for example
for undoing an action. So if an action changes parameters, the old values can be
stored in out parameters and when undoing the action these values can be reset
by accessing the out parameters. An action can be called within applications by
clients.

Besides actions so called services can be defined within an aspect. A service
provides functionality to clients and can, like an action, be called by clients. In
contrast to an action it cannot be undone, must not define any out parameters
and is not a join point. The main functionality of a service is to provide some
aspect specific functionality. Services are mainly used by clients for accessing
information.

Advice differ from AspectJ advice, where the term advice names the code to
be executed at a specific join point that was selected by a pointcut. In orchideo an
advice is a construct that defines its pointcut action and the action or actions to
be woven at a pointcut. The pointcut action has not necessarily to be a pointcut
for the advice. The pointcut can be defined in more detail in the advice’s apply()
method (which is located in the class for the advice generated from the model)
using the context information of the pointcut action. So the real pointcut is
either the sum of all actions of the type of the pointcut actions or a subset of
them.

An orchideo aspect is a construct, that defines actions, services and advice.
It can also define templates, which is examined later. As only actions are join
points, only actions can be woven in orchideo.

There are before, after and around advice:

– Actions woven by a before advice are executed before the join point action
will be executed.

– Actions woven by an after advice are woven after the join point action was
executed.

– In the context of an around advice exact one action is executed instead of the
join point action. If there are more than one actions advised by one advice,

Developing an Application with the orchideo Framework 17

only the first one in the queue of actions will be executed. If there are more
than one around advice, beginning with the first advice every advice has to
call proceed when following advice should also be executed.

An advice can define predecessors and successors. With them it is possible to
define the overall advice precedence. There is a special advice, the any advice, in
orchideo. It can be defined as predecessor or successor of an advice in orchideo.
Defining it as predecessor means, that the advice is executed after any other
advice which has the same pointcut action. Defining the any advice as successor
of an advice means that the advice is executed before any other advice that
has the same pointcut action. There is no defined order in which advice are
called when they have the same pointcut when not defining predecessors and
successors. So the precedence of the advice can vary every time the system is
executed.

Whenever an action is executed (or is about to be executed) the orchideo|engine
checks whether this action is declared as pointcut action of any advice. For ad-
vice, that declare this action as pointcut, the engine weaves the action or actions
declared by the advice.

As there is an any advice, there is also an any action in orchideo. If an advice
declares this action as its pointcut, the advice’s apply() method is executed
every time any action is executed or about to be executed. Using this action as
woven action enables the advice to weave any type of action.

An example of an aspect is shown in Figure 3 with an aspect diagram. We
can see the aspect diagram of the InitializationAspect (5.4) of the application
TeltowCar (5). In the example an after advice, the invokeInitialize advice is
shown. the advice’s pointcut action is the CreateObject action defined by the
ObjectAspect [7] of orchideo|objects. The woven action of the invokeInitialize
advice is defined within the InitializationAspect. The woven action is the
Initialize action. As shown in Figure 3 the actions have parameters. The
CreateObject action has an in parameter classifier of the type Classifier
and cardinality [1] and a return parameter createdObject with cardinality
[0..1] of the type Any (which is java.lang.Object). The InvokeInitialize ad-
vice defines the RegisterCreatedObject after advice as predecessor, which de-
fines the same pointcut action. Every time the CreateObject action will be ex-
ecuted and both, the ObjectAspect and the InitializationAspect are activated
within the active session configuration, the orchideo|engine weaves all advice
that define the CreateObject action as pointcut action. It is guaranteed that the
RegisterCreatedObject advice is executed before the invokeInitialize advice.

Aspect Implementation The orchideo generator generates the following arti-
facts important to the developer:

– an AspectImpl class for each aspect
– a method in this class for each service
– two methods for each action (do and undo)
– an AdviceImpl for each modeled advice

18 Christina Palm

Fig. 3: The InitializationAspect aspect diagram

public InternalAction [] apply (InternalAction action) {
assert action instanceof CreateObjectAction ;
// The newly created object
Object object = action . getReturnValue ();
if (object == null) {

return EMPTY_ACTION_ARRAY ;
} else {

InternalAction initializeEmpty = new
InitializeActionImpl (object);

return new InternalAction [] { initializeEmpty };
}

}

Fig. 4: apply() Method of an Advice

We describe the orchideo generator in 4.5. Because an action can be done and
undone, for each action a do and an undo method have to be implemented in
the AspectImpl class. Services are implemented as methods of the AspectImpl
class. So for each modeled service a method declaration in the AspectImpl will
be generated. For each modeled advice an AdviceImpl class is generated by the
orchideo|engine. An AdviceImpl class has the method apply(). This method has
to return an array of InternalActions. The apply() method of an advice is called
when an action the advice declares as its pointcut action is about to be executed
or actually executed. Within this method the developer can check whether the
action meets the requirements of the advice. In Figure 4 the apply() method
of an advice is shown. It is checked, whether the action, in whichs context the
advices apply() method was called, is an action of the type CreateObject and if
there is an object. The advice returns an InitializeAction with the object that
was currently created by the CreateObjectAction and no action, if there was no
object.

Aspects at Generation Time In orchideo|objects parts of the applications
source code are generated with the help of aspects. Aspects can define templates

Developing an Application with the orchideo Framework 19

for code generation. There are two different kinds of templates in orchideo. On
the one hand there are root templates. A root template takes a model element
as input and generates artifacts out of it. For example the ObjectAspect specifies
root templates for generating a Java package for each modeled package, special
interfaces, and Java classes for each modeled class using the delegate pattern
as described in Section 4.5. The other kind of templates are aspect templates
[19]. With them aspect-orientation on template level is provided in orchideo. An
aspect template inserts text fragments during the generation process. Here, the
templates (root templates) serve as join points. For example the PropertyAspect
uses aspect templates to generate a field for all properties of modeled classes
and getters and setters for these properties in Java classes generated by the
ObjectAspect.

Modeling Aspects An aspect in orchideo is created with the help of a model-
ing language. In orchideo there are two kinds of diagrams, each of them giving
another view on the modeled aspect: aspect diagrams and container diagrams.
The container diagram can give an overview of the actions, services and ad-
vice defined by the aspects in this package and how these aspects are related
with each other and with other aspects. This kind of diagram gives no infor-
mation about the advice kind, pointcut actions of the advice, predecessors and
successors of the advice and the actions woven by the advice. An example of
a container diagram is shown in Figure 5. The InitializationAspect defines
one action, the Initialize action and one advice, the invokeInitialize advice.
When there where more than one aspects defined in this package, each aspect
would be shown as such a container and the relations between the aspects too
(generalization and dependencies).

Aspect diagramscan show information about advice of an aspect. The advice
kind, the woven action, the pointcut action and the predecessors and successors
defined by advice can be examined in aspect diagrams. Both diagram types are
based on the same model of the aspects and if one of them is changed by the
developer the other diagram will be automatically adjusted. In that way it is
possible to adjust the model in its tree view, in the aspect diagram and in the
container diagram. From the aspect model the base implementation of an aspect
is generated. The developer then has to implement the logic of the advice, actions
and services of the aspect.

4.2 orchideo as Aspect-Oriented Framework

Following the categorization in Section 3.2 the orchideo AOP framework is a
noninvasive system that uses a custom runtime environment. The orchideo AOP
implementation performs the following AOP activities [18]:

– dynamic aspect selection: The aspects to be used in an orchideo session and
their precedence are determined at runtime upon session creation, and de-
pend on the provided session configuration.

20 Christina Palm

Fig. 5: Container Diagram of the InitializationAspect

– aspect instantiation: Scoping is achieved by the usage of different sessions
in one application concurrently. As each session can be initialized with a
different session configuration, different aspect configurations are possible
for different sessions.

– advice execution: As this activity is required to qualify as an AOP framework,
it is performed by the framework; although in orchideo it is split in advice
and action execution, respectively.

– bookkeeping: The orchideo|engine keeps track of various additional informa-
tion. The most obvious information is the execution history storing a subset
of all execution context objects used so far. An execution context encapsu-
lates the execution of actions. It is initialized with one action called by the
client application and recursively weaves all advice into itself, with regard to
the session configuration and advice precedence. This provides the possibility
to undo previously performed actions.

4.3 Models in orchideo|engine and orchideo|objects

In orchideo there are the aspect models which are created with the function-
ality of the orchideo|engine and application models which are created with or-
chideo|objects. As mentioned in Section 4.1 there are two different types of dia-
grams based on one aspect model: the aspect diagram and the container diagram.
Both of them provide a different view on the aspect.

Application models in orchideo|objects Application models can be created
with the help of a DSL provided by orchideo|objects. Each model element has
properties that are not necessarily shown in the diagram. The main elements
that can be modeled with the help of the DSL provided by orchideo|objects are:

– Classifiers: Classes, interfaces and data types are the classifiers that can
be modeled. Classes can be modeled as abstract. Additionally there is the
possibility to use external interfaces and external data types in the model.
Classifiers can have the following child nodes:

Developing an Application with the orchideo Framework 21

• Attributes1: Attributes can be represented in diagrams with a name, a
type and a cardinality. An attribute of a classifier cannot be modeled as
private or public. Classes, and data types can define attributes.

• Operations: Operations can be modeled as abstract, but not as static.
Like attributes they cannot be modeled as public or private. All classifiers
can define operations.

• Constraints: There are different types of constraints in orchideo|objects.
These are examined in Section 4.4. Classes, and datatypes can define
constraints.

Relationships between classifiers can be modeled graphically with the help of
the DSL of orchideo|objects, but are represented in the metamodel as prop-
erties of attributes or of classifiers. The relationships, that can be modeled
with orchideo|objects are:
• Associations: Associations are represented in the metamodel as proper-
ties of classes and data types. There is the possibility to model bidirec-
tional associations, these are represented by an opposite property of an
attribute.

• Aggregations: Aggregations are represented by the Aggregation property
of an attribute.

• Realization: Realization is represented as a property of classes and data
types. These classifiers have a property Realized Interfaces which con-
tains all interfaces the classifier realizes.

• Generalization: Modeling inheritance is provided by orchideo|objects to
all classifiers. Generalization is also represented as a property of classi-
fiers (Super Types). Modeling multiple inheritance is not possible.

Besides these main elements orchideo|objects provides the functionality to
model packages, enumerations, and state-machines. The orchideo|objects DSL
for creating application models is based on the class diagrams of the UML 2.0,
but in a very simplified form of them.

4.4 Constraints and Derived Attributes

With the help of some Aspects of orchideo|objects it is possible to use constraints,
derived attributes, persistence and Hibernate support. These aspects influence
the modeling. Constraints and derived attributes can be modeled, but when
the ConstraintAspect and the DerivedAspect are not activated in the session
configuration there would be no impact during the execution of the system or
during the code generation. For example when modeling a constraint fullname
the developer can model this constraint and specify its type as OCL (explained
later in this section). Then he can enter an OCL expression, but there would
be no effect at runtime when the ConstraintAspect is not activated. When he
specifies the type as Java, the check method in the DelegateImpl class will not
be generated, when the ConstraintAspect is not activated.
1 With attributes we actually mean properties of classifiers. We call them attributes
to distinguish between those properties and properties of model elements.

22 Christina Palm

Constraints Constraints for attributes of orchideo objects can be created in
the application model. An orchideo object is an object that is an instance of
a class modeled in the application model. It is possible to create constraints
for attributes of different classifiers. These are classes and data types. It is not
possible to use constraints in the context of external data types or enumerations.
There are three kinds of constraints in orchideo: cardinality constraints, Java
constraints and OCL constraints. Constraints could be specified depending on
their type with Java code or the Object Constraint Language (OCL) [20].

Cardinality Constraints Cardinality constraints are generated automatically for
every attribute of a class or a data type with the help of the ConstraintAspect.
They are used by orchideo|objects to ensure that the upper and lower cardinal-
ity bounds are adhered at runtime. For example when modeling an attribute
name:String[1] a cardinality constraint will be generated automatically to en-
sure that the concerning classifier has exact one name.

Java Constraints When defining the constraint’s type as Java, explicit triggers
must be defined by the developer. This is also possible in the properties view. A
check() method declaration for the constraint is generated in the DelegateImpl
class of the classifier the constraint is defined in. The developer has to implement
the logic of the constraint in this method. For example, when a constraint of the
type Java with the name CurrentGreaterOrEqual and with the explicit triggers
firstRegistrationDate and currentRegristrationDate was modeled in the clas-
sifier Vehicle, the generator will generate a method checkGreaterOrEqual() as
shown in Figure 6.

OCL Constraints If the type of the created constraint is OCL, it is possible
to write the OCL expression in an editor in the properties view. Different to
Java constraints the relevant properties for an OCL constraint are extracted
from the OCL expression and so have not to be defined explicitly. The example
from above is shown in Figure 7. The advantage of expressing constraints in
OCL (beside being shorter in this case) is that the developer does not need to
change the source code but can define the expression in the properties view of
the application model.

Derived Attributes There is also the possibility to model derived attributes in
orchideo— attributes that are computed on the basis of other attribute. Similar
to constraints the computation of derived attributes can be done with the help of
OCL expressions or can be implemented in Java code. As concerning constraints
there is an editor for writing the OCL expression for the derived attribute. When
specifying the type of the constraint as Java, a compute() method declaration
for the derived attribute will be generated with the help of the DerivedAspect in
the DelegateImpl class of the derived attributes classifier.

Developing an Application with the orchideo Framework 23

public boolean checkGreaterOrEqual (Vehicle contextObject) {
Calendar first = contextObject . getFirstRegristrationDate ();
Calendar current =

contextObject . getCurrentRegristrationDate ();

if (first != null && current != null)
return first. equals (current) || first. before (current);

else
return true;

}

Fig. 6: The check() method for a Java constraint

context Vehicle inv:
firstRegistrationDate <= currentRegistrationDate

Fig. 7: An OCL Expression for an OCL Constraint

4.5 Source Code Generation in orchideo|engine and orchideo|objects

The generator is responsible for generating code and other textual artifacts out
of models. The generator uses builders and natures [21] to run automatically
and integrate in the Eclipse IDE. So the generator can run each time an orchideo
project is built. The orchideo generator is generic, it just knows, with the help of
orchideo aspects, what code it will generate and therefore needs a configuration
(exact the same configuration as the orchideo|engine session configuration). The
generator produces (dependent on aspects) different types of output. These are
managed in so called outlets. An outlet is a symbolic name for a directory, for
example src or gen_src. An aspect has to declare which outlet it is going to use
for generating artifacts. Some of these outlets are cleared before the generation
process, for example the gen_src outlet of an orchideo project. In that way some
files are generated entirely new every time the generator runs. Other files are
generated only once, for example the delegate implementation classes, which
must be changed by the developer.

Separation of Generated and Non-Generated Source Code in orchideo
In orchideo the generated Java files are written in the outlets src and gen_src.
The directory gen_src is cleared and so the files in this directory are generated
new every time the generator runs. The files in the src directory are generated
only once, when the class was modeled the first time. They have to be filled
and maintained by the application developer. In the generated implementation

24 Christina Palm

classes (that follow the scheme ClassnameDelegate.java) the Delegate Pattern
[22] is used. Following the Delegate Pattern an object implements an outward
interface but forwards method invocations to so called delegates. The Delegate
Pattern in orchideo is basically used by the implementation classes generated by
the ObjectAspect. For example if a class Customer is created in the model, the
generator will generate an public interface Customer that can be accessed from
within the application code, a Java implementation class CustomerImpl, an empty
delegate interface CustomerDelegate and an empty delegate implementation class
CustomerDelegateImpl which implements the delegate interface and contains the
logic the developer has to add.

5 Using orchideo|engine and orchideo|objects to Develop
the Application TeltowCar

For evaluating the orchideo framework we developed the application TeltowCar.
TeltowCar is an application for managing customers and vehicles of a car repair
shop. Customers and vehicles are stored in a database and the application pro-
vides functionality to add, remove, and alter the data of a customer or a vehicle,
and to assign vehicles to customers.

5.1 Requirements
We will give a short overview of the requirements here:
– Customer data: A customer should have a first name, a last name and a title.

Additionally a customer can have several addresses and phone numbers, an
ID and a notes field which can be used for custom notes concerning this
customer. One customer can be associated with several vehicles over roles
like "owner" or "driver". Roles should be entered by the user, there should
not be default roles. It should be possible to add, edit and delete customers.

– Vehicle data: As customers vehicles should be possible to add, change and
remove. It should be possible to enter all fields that exist in the drivers license
and again a custom memo field should exist. A vehicle can be associated
with several customers over person roles. So for example a vehicle can be
associated with one customer that is the owner of the vehicle and with two
other customers who are drivers of the vehicle. It should be possible to create
a vehicle when editing a customer so that the vehicle will automatically be
associated with this customer.

– Security: Specified operations should only be possible to execute when en-
tering a password, for example deleting and editing customers and vehicles.
When the password was entered once, it should not be necessary to enter
the password for a specified time — the time-out of the password.

– Settings: It should be possible to change settings like the time-out of the
password and the password itself.

– Searching: There should be the possibility to search data sets via a search
field. It should be possible to search for vehicles and for customers and the
search should consider specified fields of customers and vehicles.

Developing an Application with the orchideo Framework 25

5.2 Infrastructure and Environment

The orchideo|suite builds on the Eclipse IDE. So when developing an orchideo
application there has to be an orchideo project for the application model and a
Eclipse Rich Client Platform (RCP) application project that uses the application
model of the orchideo project. TeltowCar consists of an orchideo project named
TeltowCar, three orchideo aspects (SequentialIdAspect, InitializationAspect,
and RefreshApplicationAspect) and a Java project called TeltowCarApplication.
In the project TeltowCar the application model is defined an the modeled classes
are implemented. The project TeltowCarApplication contains the application
logic and uses the application model, orchideo|objects aspects and the three as-
pects we implemented. For testing purposes we created two test projects, one for
the application project and one for the orchideo application model project. The
data sets are stored in a database. The database connection and management is
done with the help of the HibernateAspect. Its usage is explained in Section 5.5.

5.3 The Application Model

In Figure 8 a diagram of the application model of TeltowCar is shown. This
diagram shows not all entities and relationships of the application model, but
provides a view on the main classes and their relationships. The main classes
of TeltowCar are Customer and Vehicle. They are related with help of the class
PersonRole. One customer can have no, one or more vehicles and a vehicle can
have no, one or more customers associated with it. We used the class PersonRole
for searching purposes. When searching for a specific tuple of customer and ve-
hicle PersonRole provides tuples that match one customer to exactly one vehicle.

We created and changed the application model of TeltowCar mainly in one
diagram and in the tree view of the model. In Figure 9 the tree view of the
application model is shown. All classes, interfaces, and the external types used
can be examined here. The Preference class is used for settings like passwords.
The external interfaces IIninialize and ICustomIdModel are defined in the as-
pects we implemented (see Section 5.4). The other classes are used for storing
information about customers or vehicles.

Searchable Map. orchideo|objects does not provide the possibility to model
static methods. TeltowCar had the requirement to search through customers
and vehicles. When searching a vehicle, it is necessary to search objects that
are referenced by a vehicle, in fact the PersonRole. We do not want to search
in all associations and all properties of the vehicle. If there would be a possi-
bility to model static methods, we could have given the vehicle a static method
that returns the fields to search in. To solve this problem, we created a sepa-
rate class called SearchableMap and an interface called IDescribable. The class
SearchableMap is located in the src folder of the application model project in
an extra package. This class provides the functionality to define the properties
it should be possible to search in. To indicate which classes are concerned, the

26 Christina Palm

IDescribableInterface is used in the model. All classes, that should be search-
able, have to implement this interface.

Constraints. Besides the cardinality constraints that are generated au-
tomatically, we used just one constraint in TeltowCar, that is the
CurrentRegistrationDateGreaterOrEqualFirstRegistrationDate constraint of the
type Java. It is the constraint that was discussed in 4.4. The vehicle has some
attributes that have a cardinality of one or higher. Object are initialized in or-
chideo|objects with all properties having the value null. So after creating such
an object, these cardinality constraints are not met. For solving that problem
we wrote the InitializationAspect that is described in Section (5.4).

Derived Attribute. For the attribute fullname of Customer we used a derived
attribute. The fullname consists of the firstname and the lastname of a Customer.
We used a derived attribute of the type Java. In Figure 10 the compute() method
of fullname is shown. The method computes the full name of a customer depend-
ing on whether the first or the last name exists or not.

Fig. 8: The Application Model Diagram of TeltowCar

Developing an Application with the orchideo Framework 27

Fig. 9: The Application Model of TeltowCar

5.4 Implemented Aspects

We implemented three aspects in the context of TeltowCar. These are:

– SequentialIdAspect
– InitializationAspect
– RefreshApplicationAspect

The SequentialIdAspect. One requirement on a customer was, that each
customer should have an ID and that these IDs should be set automatically.
The IDs should be sequential. Assuming that the customer was not the only
entity which needs an ID (for example bills need sequential invoice numbers) we
wrote an orchideo aspect to calculate and set the IDs.

28 Christina Palm

public String computeFullNameValue (Customer contextObject)
{

if (contextObject . getFirstName () == null &&
contextObject . getLastName () == null)

return "";
else if (contextObject . getFirstName () == null)

return contextObject . getLastName ();
else if (contextObject . getLastName () == null)

return contextObject . getFirstName ();
else

return contextObject . getLastName () + ", " +
contextObject . getFirstName ();

}

Fig. 10: compute() Method of the Derived Attribute fullname

private void delete (Object o) {
closeEditorFor (o);
Activator . getDefault (). getObjectAspect (). destroyObject (o);
Activator . getDefault (). getHibernateAspect (). commit ();

}

Fig. 11: The delete() Method for Deleting an Object from the Database

The aspects advice InvokeSequentialId works with an interface
ICustomIdModel. A class implementing this interface will be considered by
the advice. This is ensured in the apply() method of the advice that is shown
in Figure (13).

action.getSession().getAspect(HibernateAspect.class).getNewObjects
gives us all objects that should be committed to the database and are
not already in the database. getNewObjects is a service provided by the
HibernateAspect. A service does not change the state of the orchideo|engine, any
objects or any aspect. Hence it is allowed to use services in the apply() methods
of an advice.

From these objects we collect the objects that are of the type ICustomIdModel.
When there are no objects or no objects of the type ICustomIdModel the method
will return an EMPTY_ACTION_ARRAY, what means, no action is executed by this
advice because the pointcut requirements are not met by the pointcut action of
the advice and the context of this action. When there are objects of the type
ICustomIdModel the advice creates a new GenerateSequentialIdAction with the
object found. Then this action (defined in this aspect) is executed. In the case of

Developing an Application with the orchideo Framework 29

our application only the Customer class implements this interface. It is reasonable
not to set the ID until the Customer was committed to the database. This is
because when setting it earlier (before saving the customer) there would be more
effort to assure that the ID is sequential. The SequentialIdAspect defines one
advice, the InvokeGenerateSequentialId advice. The advice is shown in Figure
12. Objects are committed to the database with the help of the HibernateAspect
of orchideo|objects. We defined the commit action of the HibernateAspect as the
pointcut action of the advice. For handling the calculation of the IDs we created
an own action, GenerateSequentialId. For each object without an ID this action
searches in the database for all objects of the same type, that already have an
ID. These objects are ordered to get the last ID given to such an object. The
next ID is given to the new object.

Fig. 12: The SequentialIdAspect

The InitializationAspect. As mentioned in 4.4, during the development of
TeltowCar we encountered a problem with the initialization of objects, that
are defined in the application model. When defining an attribute of a class
with cardinality one or more, the generated cardinality constraint is validated
after creating an instance of this class with createObject(). This is because the
ObjectAspect of orchideo|objects initializes attributes with null. Hence every time
such an object is created, it is necessary to initialize the concerned attributes
manually.

This problem could be solved using an aspect that works every time after
such an object is created. For that purpose we wrote the InitializationAspect.
The aspect works with an interface IInitialize. All classes, that implement this
interface, are considered by the InitializationAspect. The interface only tells
them to implement an initialize() method. As shown in Figure 3 it defines
the advice InvokeInitialize that is an after advice. The advices pointcut action
is the CreateObject action of the object aspect which is responsible for creating
objects. The aspect defines the action Initialize, which is woven by the advice.
The advice defines the RegisterCreatedObject advice as predecessor. This is
because an object has to be registered after its creation and before anyone can
manipulate this object. The apply() method of the advice is shown in 4. The

30 Christina Palm

public InternalAction [] apply (InternalAction action) {
assert action instanceof CommitAction ;
Collection <?> objects = ((CommitAction)

action). getSession ()
. getAspect (HibernateAspect . class). getNewObjects ();

if (objects == null) return EMPTY_ACTION_ARRAY ;
Vector < ICustomIdModel > new_objects = new

Vector < ICustomIdModel >();
for (Object o : objects) {

if (o instanceof ICustomIdModel) {
new_objects .add ((ICustomIdModel) o);

}
}
if (! new_objects . isEmpty ()) {

InternalAction generateIdAction = new
GenerateSequentialIdActionImpl (new_objects);

return new InternalAction [] { generateIdAction };
} else {

return EMPTY_ACTION_ARRAY ;
}

}

Fig. 13: apply() Method of the InvokeGenerateSequentialId Advice

advice just checks whether there is an object or not. The action Initialize calls
the initialize() method of the newly created object which has to be of the type
IInitialize.

The InitializationAspect in particular can be reused by other applications,
because the problem of null initialized properties that have cardinalities of one
or more is not only a problem of TeltowCar.

The RefreshApplicationAspect. When a customer or a vehicle is saved in
the database, the search view should update and it should be visible in the edi-
tor, that the object was saved. The save button should no longer be enable, but
the edit button should be enabled. An objecft was saved in the database after
the commit action of the HibernateAspect of orchideo|objects was executed. The
editor and the search view should only be updated, if the commit action was suc-
cessfully executed. For updating the editor and the search view we implemented
the RefreshApplicationAspect.

As shown in Figure 14, the RefreshApplicationAspect defines the after advice
invokeRefreshApplication and two actions: the RefreshEditors action and the
RefreshViews action. The advices pointcut action is the commit action and it
weaves both the RefreshEditors and the RefreshViewAction. The IRefreshable
interface is implemented by all editors and views that should be refreshable. It

Developing an Application with the orchideo Framework 31

tells them to implement the method refreshView(). The advice does not check
anything in its apply() method, it just returns both actions, the RefreshViews
and the RefreshEditors action. The doRefreshEditors is shown in Figure 15. The
action mainly calls refreshView() on all editors that implement the IRefreshable
interface and that are registered. The RefreshViews action does the same with
views.

Fig. 14: The RefreshApplicationAspect

5.5 Our Application

The application project is an Eclipse RCP application. To develop the graphical
user interface we used the Eclipse Standard Widget Toolkit (SWT) [23]. All of
the aspects in orchideo|objects and their advice are enabled in the application.
Furthermore the RefreshApplicationAspect described in Section 5.4 works at
runtime of the application.

The Running Application. A screenshot of the TeltowCar application is
shown in Figure 16. We provide an overview list of customers or vehicles À.
The items in the list can be expanded, so that the vehicles associated with a
customer or the customers associated with a vehicle are shown. The overview can
be switched from customers to vehicles and back with the button above the list
Á. When double clicking on a list item, it will open in the editor area on the left
Â. Open items are shown as tabs. The selected item can be examined in detail
here. When the item is a customer (like in the example) the main information is
shown in the top, above the tab. These are the title, the first name and the last
name of the customer. In the area below, three different tabs are displayed Ã.
The first tab contains contact information, like addresses and phone numbers.
The second tab provides an overview of the customer’s vehicles. For each vehicle
the role of the customer for this vehicle, the registration number, maker and
an identifier are shown here Ä. From within the vehicles tab of a customer, a
new vehicle (that will automatically be associated with this customer) can be
created. The third tab is intended to be used for custom notes about a customer.
In the right top corner of this area the buttons for saving, editing and canceling
(which are active or not active, depending on whether they are available or not)

32 Christina Palm

public void doRefreshEditorsAction (RefreshEditorsActionImpl
action) {

if (PlatformUI . isWorkbenchRunning ()) {
IEditorReference [] references =

PlatformUI . getWorkbench (). getActiveWorkbenchWindow ()
. getActivePage ()

. getEditorReferences ();
for (IEditorReference ref : references) {

IEditorPart editor = ref. getEditor (false);
if (editor != null && editor instanceof IRefreshable) {

((IRefreshable) editor). refreshView ();
}

}
}

}

Fig. 15: The do() Method for the RefreshEditors Action

are located Å. When opening a vehicle, an editor for the vehicle which provides
all information of a drivers license is shown. The overview list on the right side
provides the functionality to search for customers or vehicles Æ. In this example,
we are searching for "Ma" and a list of customer which have these letters in their
names is given.

In the Activator of the application project an orchideo session has
to be created with a session configuration. This has to be done with
Engine.INSTANCE.createSession("TeltowCarModelConfiguration") in the case of
TeltowCar. "TeltowCarModelConfiguration" is the name of the session config-
uration. Our session configuration has all aspects and advice enabled. Using
the orchideo|engine session the access on orchideo aspects is managed. From
within the application aspects (here the ObjectAspect) can be accessed with
session.getAspect(ObjectAspect.class). So every time a developer has to invoke
an action of an orchideo aspect, he has to write (again in case of the ObjectAsepct)
Activator.getDefault().getSession.getAspect(ObjectAspect.class). So we de-
cided to implement getter methods for the aspects we use more often in
the Activator. These are the ObjectAspect, the HibernateAspect and the
ConstraintAspect.

Persistence with the HibernateAspect. The HibernateAspect provides a bridge
between orchideo objects and therefore it uses the functionality of Hibernate
[24]. When a class is modeled as persistent, it will be considered by the
HibernateAspect. Instances of such classes can be stored to and loaded from
a relational database with the help of this aspect. To use the hibernate aspect,
a relational database and a hibernate.cfg.xml have to be set up. This configu-

Developing an Application with the orchideo Framework 33

ration file contains information about the database connection, for example the
location of the database (host and port), the driver class (for example for mysql)
and the username and password. The HibernateAspect will generate a Hibernate
XML (Extensible Markup Language) [25] mapping file for every class that is
modeled as persistent in the application model. These mapping files have to be
registered in the hibernate.cfg.xml

Instances of orchideo objects that are modeled as persistent then have to
be created with the createObject action of the ObjectAspect and deleted with
the destroyObject action. The developer has to execute the commit action of the
HibernateAspect to commit the new, changed or deleted objects to the database.
For example for our DeleteAction we use the method in Figure 11 to delete
objects from the database. When executing the destroyObject action an advice
of the HibernateAspect (the delete advice) is executed. It ensures internally, that
the object is considered as deleted object the next time the commit action of the
HibernateAspect is executed. Deleted, dirty and new objects are managed in lists
by the HibernateAspect internally.

Fig. 16: A Screenshot of TeltowCar

34 Christina Palm

5.6 Testing

For testing purpose in TeltowCar we used JUnit [26]. JUnit provides function-
ality to define test cases with assertions, that can be bundled in test suites and
the possibility to use launch configurations for test running. We created one test
project for the TeltowCar application model project, and one for the TeltowCar
application. Both JUnit projects contain a launch configuration, so that they
can be executed on a server [?]. For showing the status of the JUnit Tests we
developed a traffic light plug-in [?]. For the tests we use a test database. Hence
we needed a new Hibernate configuration. As we are testing orchideo projects
(and for that purpose want to use aspects) we have to create an orchideo session
in the set up of the tests. For testing purposes it would be suitable to use another
session configuration than for the actual application.

After setting up such a testing environment, it is possible to write normal JU-
nit tests for orchideo projects. A test we wrote for the application model project
is shown in Figure 17. A customer is committed to the database and the test
asserts, that this customer is found in the database. We use the ObjectAspect to
create a new customer (this is done in createCustomer), and the HibernateAspect
to commit the customer to the database and to find the customer there after
committing (this is done in findInDatabase).

6 Lessons Learned

The development of TeltowCar was a good way to become acquainted with the
orchideo framework. We found that orchideo|objects provides good functionality
for MDSD. Because the DSL of orchideo|objects is a simplified form of UML
2.0 class diagrams, it is good to understand. Modeling the application model
feels natural after a short time. Working in the different views for the applica-
tion model (the application diagram and the tree view of the model) and in the
source code is easy. The aspect model and the join point model of orchideo are
comparatively simple and thus easy to understand and clear. But due to its sim-
plicity it is less capable. During the development of TeltowCar we gained enough
experience about the orchideo framework, and especially about the development
of applications with it, to discover some problems of orchideo.

The application developer does not know what code will be woven at join
points during code writing. Depending on the session configuration he uses,
different aspects can influence the control flow at the join points. To get to
know which actions are possibly woven, he has to open the session configuration
and select the action he uses in the code. If there is more than one session
configuration, he possibly has to check all of them. So when writing code and
invoking an action, important information is not visible for the developer at
this point. In [?] this and other problems of AOP and especially of orchideo are
examined and a solution for orchideo, the join point marker plug-in, is provided.

While debugging the developer has no direct access to the state of the engine
and the aspect configuration. He may want to know about the session config-
uration, the enabled aspects and advice within this configuration, and the join

Developing an Application with the orchideo Framework 35

@Test
public void testCommitNewCustomer () {

int numberOfPersonsNamedJohnDoe ;
// find out how often there is a John Doe in the database
Criterion [] crit = { Restrictions .like(" firstName ",

"John"), Restrictions .like(" lastName ", "Doe") };
numberOfPersonsNamedJohnDoe =

findInDatabase (Customer .CLASS , crit).size ();
try {

@SuppressWarnings (" unused ")
Customer c = createCustomer ("Mr.", "John", "Doe");

// commit customer to database
hibernateAspect . commit ();

} catch (Exception e) {
e. printStackTrace ();
fail(" commit failed ");

}

// assert that the customer is in the database
assertSame (findInDatabase (Customer .CLASS , crit).size (),

numberOfPersonsNamedJohnDoe + 1);
}

Fig. 17: The JUnit Test testCommitNewCustomer() for the Application Model
Project

points for this session configuration. The session object also provides a history
that contains a log of the previously invoked actions. In the variables view, the
session object can be found, but the developer is confronted with a lot of infor-
mation about the session. In [?] the session view, displaying the most important
information about the session, and the logical structure plug-in we developed
are examined.

When stepping through source code, the developer may step into framework
code he is not interested in. A developer does not want to step into generated
code or into the implementation of an action. We provide a solution for this
problem with the step filter plug-in [?].

During debugging the state of orchideo objects is not visible for the developer.
The developer has no information about the constraints of orchideo objects.
When a constraint is violated the HibernateAspect.commit action will fail. The
developer then has to check all orchideo objects within a session and whether
they meet their constraints. We developed a constraint view [?] that provides
information about whether the constraints of an orchideo object are violated
during the debugging or not.

36 Christina Palm

Assuming that there is a constraint violation like mentioned above in
this section and HibernateAspect.commit is executed, this will lead to an
ExecutionInterruptedException. The exception trace, produced by this excep-
tion, is very long and hard to understand. It is not easy to find out that constraint
violation was the cause of this error. Tools developed to solve this problem for
orchideo are described in [?] and [?]. To find the cause of such an exception while
the application is alive, we provide the runtime rescue plug-in [?].

During the development of TeltowCar, we decided to set up a continuous in-
tegration system (CI), to be able to execute integration tests and regular builds
of the whole system. The requirements we defined for a CI and the CI system
we used during the development of the plug-ins are described in [?]. The or-
chideo|suite does not provide a model-level debugger. Hence errors cannot be
mapped back to the model.

When the developer uses modeled objects during code writing there is no
information about the constraints of this object. Every time he wants to alter
such an object he has to check back in the model, if it has any constraints and
if any of them is violated. This could lead to accidental constraint violation. If
the developer does not do this manual check, he will get an error followed by a
stack trace during the execution.

When developing own aspects, the developer has to implement the apply()
method of advice. The advice’s woven actions are defined in the model. The
advice’s apply() method has to return actions that are defined in the model, but
it is possible to return actions not defined in the model. There will be no warning
in the code or in the model. The developer just has the chance to find out at
runtime, when assertions are enabled in his orchideo IDE. Only then orchideo
will throw an exception.

7 Conclusion

The orchideo framework combines the two software development approaches
AOP and MDSD. For a better understanding of orchideo we shortly presented
these approaches. We described how they are realized in orchideo and how we
used the orchideo|engine and orchideo|objects to develop the application Teltow-
Car. We used TeltowCar to get to know orchideo and its possibilities. We found
that orchideo|objects provides good tool-support for the model-driven develop-
ment of business applications and that the aspect model of the orchideo|engine
is comparatively simple. During the development of TeltowCar we found some
problems as well. These were mainly typical problems a developer is faced with
when creating an application with orchideo. A subset of these problems and
solutions we found for them are examined in [?,?,?,?].

Bachelor Thesis

Static Analysis of orchideo
Advice Weaving

Stephanie Platz

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Static Analysis of orchideo Advice Weaving

Stephanie Platz

Hasso Plattner Institute
Potsdam, Germany

stephanie.platz@student.hpi.uni-potsdam.de

Abstract. Aspect-oriented programming has been proposed as a way
to improve modularity and increase the complexity of a program. As-
pects are used to encapsulate crosscutting concerns which tangle and
scatter the object-oriented code. However, the impact of aspects to the
object-oriented base program are difficult to understand. The developers
have to keep all aspects in mind to comprehend the whole impact. In
today’s software development frameworks a good support to overview
the program code is expected. We have extended the orchideo|suite with
an analysis plug-in which visualizes aspect impacts.

1 Introduction

The orchideo|suite [4] is an Eclipse[1]-based hybrid of an aspect framework and
a model-driven development environment as described in paper [?]. The or-
chideo|object part offers tool-support to create application code with models.
Furthermore the orchideo|engine enables the software developers to use aspect-
oriented programming (aop) [27] in their application code. Similar to object-
oriented programming (oop), aop offers a higher abstraction level of the actual
code, for example to get a better overview of the whole program. As a result
the developers have to deal with other arising difficulties. During program de-
velopment, coherences of classes and methods are hard to overlook due to late
binding and polymorphism [28]. Those constructs are a result of oop. Using aop
can result in important information being not visible when a software developer
needs it.

Another problem is the general difficulty in understanding the impact of
aspects. An overview of problems caused by the paradigm aop is listed and
explained in Section 2.1. To support the developer in facing those problems ide
tools use analysis techniques. Analysis can be either static or dynamic, whereas
both are used in various fields. Compilers use static analysis to optimize the
performance of a program. Static analysis is also used to construct test data.
Information of the control or data flow of a program can be visualized as an aid
for a developer to debug and to comprehend the structure of a program [29].

To understand how analysis can be helpful to overcome those problems we
give a closer look on how aop is realized in orchideo in Section 2.2. There we
state some profound information to Section 4 of paper [?]. Furthermore we list
the problems with aop, both, those that orchideo has to deal with, and those

mailto:stephanie.platz@student.hpi.uni-potsdam.de

40 Stephanie Platz

orchideo does not have to deal with. In Section 2.3 we explain what should be
analyzed to overcome the problems and classify our work in the wider field of
analysis. In Section 2.4 we state similarities and differences between AspectJ [30]
and the realization of aop in orchideo. Both realizations are based on Java [31].
That is why we use AspectJ and tools for AspectJ to evaluate our approach.

As stated above orchideo is a tool that combines both paradigms aop and
mdsd. In this paper we will focus on the realization of aop only. The nature
of aop is to modularize cross cutting concerns. Thus aspects can influence a
lot of parts of the base program. When implementing aop the developers using
it have to be kept in mind. One of the difficulties is to make the developers
aware of where code is influenced by aspects and in which way it is influenced.
Additionally it is important to make the control flow at such locations visible to
the developers.

Also an orchideo user has to deal with those exact same problems (Section 2).
He has to collect and combine aspect information from many different places
to face these problems (e.g. configuration files, framework aspect definitions,
implementation files of own aspects, debug code of interest, and so forth). Our
approach—the JoinPointMarker plug-in for orchideo—uses static control flow
analysis to extend orchideo in visualizing information about aspect impacts. This
includes displaying woven code at corresponding source code locations. Our goal
is that a developer gets aspect information feedback while he writes code without
switching files.

The JoinPointMarker and the ajdt [32] plug-in help the software developers
to have an overview of the aspects that are contained in their program. Both
are introduced in Section 3. While we only state the developers’ point of view
on our JoinPointMarker plug-in in Section 3, we will give a detailed description
of how the JoinPointMarker plug-in works in the following Section 4. Then we
discuss the support of our plug-in for the developers. We state which of the
orchideo-specific aop problems we solved and which may need improved. After
a short overview of related work we conclude our paper.

2 Static Aspect Impact Analysis in orchideo: An Overview

2.1 Problems with aop

The terms of aop are described in Section 3 of paper [?]. There we list most
of the advantages and use cases of aop. But common points of criticism are
that aop is good for tracing and logging only and that aop can be obviated by
annotations, application frameworks, design patterns or well-designed interfaces.
Ramnivas therefore states in [33] that aop itself does not solve any problems, but
improves solutions for already fixable problems by decreasing the complexity.

Nevertheless other problems remain that aop has to face. Frequently asked
questions from developers are: Where is code woven to and what code is woven?
Which advice is woven first? Which changes influence the matching of a pointcut?

The last question addresses the fragile pointcut problem [34]. In most of the
current aop languages the matched join points were described lexically. But

Static Analysis of orchideo Advice Weaving 41

during system evolution the code of the base program is changed permanently
and therefore causes a change in matched and unmatched join points. Pointcut
delta analysis [35] or (automated) refactoring [36,37] tools can help to overcome
the fragile pointcut problem. In pointcut delta analysis two versions of a program
(before and after editing the code) are compared. The changes between these
two versions are analyzed and checked if the set of matched join points changes.
The resulting delta are removed and added join points. A developer can use this
delta to decide if the changes he has made are those he has intended.

Using refactoring tools means that changes in the program do not change
the behavior of the program. Thus if a developer edits his code and the set of
join points alter, the respective adjustments to pointcuts are either implemented
or suggested to the developer. Hence with a refactoring tool or point cut delta
information the developer is aware of changes which influence the matching of
pointcuts.

The remaining questions arise due to violations of information hiding prin-
ciples [38,39]. aop constructs, such as advice and pointcut, can introduce new
data and control dependencies and can additionally alter or eliminate existing
dependencies. Thus information for program comprehension is not visible where
it is strongly required [40].

On the one hand a developer wants to know if there is more behavior than
he expects while writing object-oriented code without memorizing all pointcuts.
On the other hand, even if a developer knows the location of all insertions, he
cannot be sure of their order. If several advice match the same join point—
which is then defined as a shared join point [41]—the woven order can often be
nondeterministic. This can lead to undefined behavior if the woven code depends
on data that is changed by certain matching advice.

All in all there is a lack of clarity concerning the location at which a developer
is working. The impacts of aspects are not visible. We state in Section 3 two
approaches facing this problem, whereas one of them is our own approach to
make hidden aspect information visible.

2.2 aop Problems Found in orchideo

In the above section we characterize two main problems with aop: The fragile
pointcut problem and the hidden impacts of aspects. The fragile pointcut prob-
lem does not exist in orchideo because the pointcut language is very simple and
is not based on lexical properties of the code. Therefore we do not need to use
pointcut delta analysis.

A pointcut in orchideo is one single action which is defined by the framework
or by a self-modeled aspect. The orchideo join point model and aspect examples
are described in [?]. This implies that in orchideo code can only be woven around
an explicit call of a modeled action, which is in particular a method call to an
aspect. So if a developer is aware of that fact, he knows where code can be woven
to. But even this is about a fifty-fifty chance because not every call to an aspect
is a join point of current enabled advice.

42 Stephanie Platz

In 2.3 we state the conditions that influence the actions that are being used
as a join point. As a developer does not really know where code is woven and
especially does not know what is woven, orchideo does not handle impacts of
aspects in the base program satisfyingly. In an extra editor a developer can search
for actions of aspects and inspect woven actions (see Figure 2). But the aspect
impacts are not visible in combination with the base program. And in particular
if the developer does not know what kind of method calls are actions, he cannot
expect impact of aspects and so has no reason to look into the configuration
dependencies. In the next section we propose what must be done to overcome
these problems.

2.3 Reducing Problems Using Static Analysis

To solve orchideo specific aop problems we have to analyze what happens during
a call of an orchideo action, since it can be used as a join point and alter data
and control dependencies. Analysis can be split into static and dynamic analysis.
In the static analysis, information from different locations in the source code
is combined and results in an approximation to the executed program. The
static analysis produces a contingently larger set of possibilities than what will
happen during the execution of the program. Contrary to this information is
collected during program execution in dynamic analysis. Such information can
be arbitrary exact but never complete because there is no assurance that the
program runs through every possible execution state.

Our goal is to get and visualize information about the control flow at source
code locations where advice matches while a developer writes code. This fact
excludes the usage of dynamic analysis. A developer does not wish to execute
the program to get information about what code will be woven. He rather wishes
to have feedback as soon as he writes code because switching back and forth
between the environments drastically decreases his efficiency for writing code.

Additionally the execution of the program takes time and is not exact enough
for this use case. During every execution another instance of the possible woven
order may appear. A developer cannot be sure that the results from the dy-
namic analysis are complete and that all possible woven code is offered to him.
This problem remains independent of the number of times the program is being
executed.

In our solution we therefore use static analysis to visualize information about
woven code in orchideo. The collected information can be displayed when and
where a developer writes code. We will discuss the accuracy of the resulting
information in Section 5.

In orchideo code can only be woven to actions defined by aspects due to the
join point model defined in orchideo. An advice can only weave other actions
either before, after or around. But actions themselves can call another action
directly, which is then treated as a nested action. Further, other aspects inject
actions to a specific action. The difference is that the aspect containing this
specific action is not aware of these injected actions. In orchideo the control flow
at a method call being an action is influenced by the following conditions:

Static Analysis of orchideo Advice Weaving 43

i The action is not matched by any
advice.

ii The action is matched by at least
one advice.

iii More than one advice of the same
kind matches this action.

iv A matching advice weaves more
than one action.

Fig. 1: Conditions influencing the Control Flow. The matching advice in condi-
tions ii to iv weave at least one action. Otherwise the impact will be the same
as in condition i.

Fig. 2: Inspecting a Configuration File

Every condition causes other effects on the control flow and more than one
of the four conditions can occur simultaneously. For each condition an example
is given in the picture to the left of the listing in Figure 1. The first condition i
implies that no single action will be woven to the action call. So only the method
body of the action will be executed and the control flow continues as usual.

Condition ii means that other actions will be woven to this action. While
writing source code that contains a call of an orchideo action, a developer does
not know which of those two conditions (i or ii) affects that action call. He can
manually look up through his configuration files and inspect what aspects and
advices he has enabled. Once he has found the concerning action he can find out
if there are other actions woven to it by selecting said action. He can also see
which actions were woven before, after, around, nested or injected. Assuming a
developer used the commit action of the Hibernate aspect in his code this can
look like Figure 2.

In the displayed configuration file the commit action is inspected and addi-
tional actions woven before, after and nested can be unfolded. The problem here
is that the information is stored in a separate file. That would result in the

44 Stephanie Platz

undesired side effect of a developer changing back and forth between files. He
wishes to have a complete overview of the current edited code at the location he
changes it.

The control flow is influenced by condition ii if only one advice per kind
(before, after or around) matches an action. The order of the advice is obvious:
first the actions of the before advice, then the actions from the around advice
and finally the actions of the after advice are woven.

Condition iii implies that the control flow is now influenced by advice prece-
dence. An advice can be preceded and followed by an advice of the same kind.
A developer can currently look into the configuration file editor and find out the
woven order of advice with regard to the predecessors or successors. Nevertheless
if advice specify for example the same predecessor and have no dependency to
each other, the order of the woven advice is nondeterministic. Though there is
no indication that the order remains the same as the displayed one during every
execution, a developer might assume otherwise nonetheless.

An advice that is weaving more than one action also influences the control
flow (iv). The behavior of the advice specifies the order and the amount of the
woven actions. This means that not all woven actions defined by a single advice
do always have to be woven. But the editor of the configuration file displays
all actions the advice might weave. This is the same with nested and injected
actions. In some executions of a specific action, not all nested or injected actions
have to be called, depending on whether certain conditions are fulfilled to call
those actions.

In Figure 2 we can see two other tabs. In the tab ’sessions’, a developer
can create and delete session configurations. With a click on the tab ’aspects’, a
developer can specify which aspects and advice of the orchideo|engine, or from the
current program environment, should be enabled. This disabling and enabling
will have an effect on the four conditions we stated in Figure 1 because this
changes the actions woven to join points.

2.4 Comparison with AspectJs Ordering of Advice

AspectJ is another commonly used aop realization for Java. The join point model
of AspectJ is more powerful than the one used in orchideo. For example every
method, constructor, exception or field access [30] can be used as a join point.
Thus this totally different join point model of AspectJ causes other influences in
the object-oriented Java source code than those appearing in orchideo. In orchideo
code can only be woven to an explicit call of a modeled action which excludes a
lot of code being a potential join point. Nevertheless a developer cannot be sure
which method calls to aspects are actions (see Section 2.3). But in AspectJ he
has no chance to guess where code will be woven to when looking at the bare
source code. See [?] to have a closer look at the orchideo join point model. In
Section 3 we describe an approach for that problem for both realizations of aop.

Inspecting the advice ordering in AspectJ we can recognize some similari-
ties with the orchideo weaving model. Figure 3 shows a comparison of advice
precedence of both weaving models. AspectJ offers to specify the precedence of

Static Analysis of orchideo Advice Weaving 45

aspects. An aspect has a higher precedence than another if it is explicitly de-
clared by a developer or if an aspect is a specialization of the other one. Thus
in the case that advice from different aspects have a shared join point,

– the aspect with higher precedence executes its before advice before the one
with the lower precedence.

– the aspect with higher precedence executes its after advice after the one with
the lower precedence.

– the aspect with higher precedence executes its around advice and encloses
the one with the lower precedence. As a result the higher-precedence aspect
decides if the lower ones are executed by calling proceed() or not.

In orchideo there is no abstraction defined that aspects functioning as a con-
tainer of advice can specify advice precedence. Every single advice can specify its
own predecessors or successors. If no precedence is specified—in both AspectJ
and orchideo—the order of advice is nondeterministic.

However, AspectJ offers beside aspect precedence an ordering mechanism
for advice defined by the same aspect. The lexical arrangement in an aspect
determines the order of advice. So the first appearing before advice is running
before the following before advice with the same matched join point. Like a
lexically leading around advice likewise encloses subsequent before À and after
advices Á (see lower part in Figure 3).

This phenomenon cannot happen in orchideo. At a matched join point, all
before advice are executed, followed by one to all around advice. Lastly, all after
advice are executed, whereas those three stages take place with regard to the
defined predecessors and successors (see upper part in Figure 3). Nevertheless
in AspectJ and in orchideo, nondeterministic ordered advice remain.

3 Improvement of Awareness of Aspect Impacts

In Section 2.1 we state different problems with AOP. The fragile pointcut prob-
lem does not apply to orchideo, but orchideo does point out an impact problem.
Therefore we focus on approaches for visualizing aop impacts in the base pro-
gram. Approaches facing this problem have to make hidden impacts visible,
which leads us to two requirements:

– Disclose matched join points
– Clarify the control flow at matched join points

The first requirement means that locations where code is woven to should be
offered to the developers while he writes object-oriented code. This helps the de-
velopers be aware of locations where aspects add additional behavior. Depending
on how many advice match a shared join point the control flow at this join point
becomes more obscure.

The second requirement claims that information concerning the order of wo-
ven code is prepared for the developers. In this section we will explain two dif-
ferent approaches for those two requirements. Since orchideo is based on Eclipse

46 Stephanie Platz

Fig. 3: Comparison: AspectJ and orchideo advice precedence.

we have done research on an Eclipse-based plug-in for AspectJ (ajdt). We
choose AspectJ because it has a similar way to order advice as done by the
orchideo|engine, which we mentioned in Section 2.4. We will first have a look at
the ajdt plug-in and then at the JoinPointMarker plug-in, which is our approach
for the hidden impact problem with aop in orchideo.

Working with Eclipse. When starting Eclipse the developers are asked to choose
a workspace. The workspace is the location where the Eclipse user wishes to
save all his Eclipse settings and where he can create and save his source code.
Eclipse users are accustomed to working in perspectives which are customized to
a specific programming language or functionality (like debugging). Almost every
perspective provides the developers with an editor to write code and a view in
which the developers can explore the projects of his current workspace. Devel-
opers are also able to add or remove views to match their individual workflow.

3.1 The AJDT Plug-in

ajdt is a plug-in for Eclipse and the state of-the-art tool for understanding
AspectJ systems [42]. Static analysis from ajdt provides valuable feedback for a
developer to disclose matched join points. ajdt offers two strategies to disclose
aspect information while writing code.

The first one is an extension of the Outline view and special editor mark-
ers, both well-known tools for Eclipse developers. The Outline view displays all

Static Analysis of orchideo Advice Weaving 47

methods and field members contained in an opened Java source code file, while
also displaying the import declarations and the package that contains the file (À
in Figure 4). The symbol of each entry of a method or field member varies be-
longing on the type of accessibility. If a method is matched by an advice a little
red triangle appears additionally in the according symbol. In very early versions
of ajdt the advice matching such a method were assigned to that method in the
outline view and could be unfolded by the Eclipse user. In newer ajdt version
this information is displayed in an extra view—the Cross Reference view.

The Cross Reference view shows all influences of aspects on the currently
opened Java file. Affected fields and methods are listed in a tree-based structure
(Á in Figure 4). For example a developer can inspect all matching advice for
a listed method (Â in Figure 4) and by clicking on one of them he will be
navigated to the aspect file containing that advice. This causes the Outline and
Cross Reference view to change their content. The Cross Reference view now
displays all methods and classes on which the aspect takes effect. This way
ajdt guarantees a good overview of the effects of one single aspect in the whole
program. The Outline view displays all specific members of an aspect similar
as it is done for a Java file. These are for example methods and inner classes
or interfaces and also pointcuts and advice. All in all the Outline view gives a
structural view of the current file and the Cross Reference view shows all cross
cutting influences in or of the current file.

Additionally ajdt sets editor markers at source code lines from advised meth-
ods. The markers are placed in the left ruler of the editor (Ã in Figure 4). Clicking
on the marker will highlight the whole line and the matching advice is displayed
in a tool tip. But if more than one advice weaves code to a method the tool tip
becomes useless because there is only the number of matching advice displayed.
To figure out which advice matches the method a developer has to right click the
marker and select the entry ‘advised by’ in the pop-up menu. Then all concern-
ing advice are listed. By clicking on one of these entries a developer is navigated
to the specific advice. The editor marker in an aspect file behaves the same way.
They are set at code lines which affect the base program and a developer can
also right click them to navigate to the affected code.

The second strategy from ajdt to disclose aspect information is the Aspect
Visualization perspective. This perspective makes use of the Visualizer and the
Visualizer Menu. ajdt offers an AspectJ Provider for the Visualizer which is
enabled by default in the Aspect Visualization perspective. With an enabled
AspectJ Provider, the Visualizer Menu displays all aspects affecting a selected
project, package or source file. Every aspect is assigned an individual color and an
own checkbox (Å in Figure 4). The Visualizer in combination with the AspectJ
Provider displays source code files that are contained in the current selection of a
project, package or simply a single file (Ä in Figure 4). The source code files are
represented by bars whereas their lengths depend on the number of lines of the
file. Every affected file is striped in a specific color that depends on the aspects
and is defined in the Visualizer Menu. The position of the colored stripe in the
bar depends on the location in a file of the program elements that are affected

48 Stephanie Platz

Fig. 4: The Aspect Visualization Perspective

by aspects. Aspects are only displayed in the Visualizer if the checkbox in the
Visualizer Menu is enabled. This offers a developer to choose which aspects he
wants to visualize.

With those two views a developer has an overview of where his aspects influ-
ence the base program, and by clicking on a stripe a developer is navigated to
the corresponding source code line and can resume work there. In Figure 4 the
Aspect Visualizer perspective is extended with the Cross Reference and Outline
view. A developer using this customized Eclipse workspace has a good overview
of aspect impacts in his base program.

But for our second requirement—clarification of the control flow at matched
join points—a developer does not receive sufficient support from ajdt. ajdt
provides the developers with the knowledge of which advice will weave at which
join point. Via navigation a developer can look into every single advice to find
out the woven behavior. He knows what will be woven but has no chance to
get information about the order of advice from ajdt, simply debugging and
observing the execution of the program remains the only mean to get examples of
the possible order of woven advice. Unfortunately, debugging of aspect constructs
is not well supported, too [43], [?].

Static Analysis of orchideo Advice Weaving 49

Fig. 5: JoinPointMarker plug-in in orchideo

3.2 The JoinPointMarker Plug-in

For orchideo we created a solution that supports a developer in getting an
overview of the impact created by aspects. We use static control flow analy-
sis to visualize what code is being woven at which location and in which order.
In orchideo code can only be woven to a call of an aspect action (see Section 2.3).
To help a developer in getting an overview of aspect impacts our first require-
ment is to disclose matched join points. In orchideo this means to disclose aspect
actions which are currently used as join points. Our plug-in currently marks
matched actions in the editor. This is done while a developer writes code and it
automatically adjusts to the newly generated input. That allows a developer to
receive instant feedback from our plug-in. We mark matched join points similar
to ajdt. Markers are placed on the left ruler of the editor where the method
call of a matched action is written (À in Figure 5) A marker signalizes that
the action in this line is matched by at least one advice, which visualizes the
difference between the conditions i and ii mentioned in Section 2.3. Therefore a
developer knows that other actions will be woven to this action.

Having those markers, a developer is now aware of the location that code is
woven to but he is still unaware of what is woven to it. To get this information
he can click on the marker and a pop-up will appear displaying woven actions
(see Figure 5). In orchideo the woven actions depend on the configuration file
that a developer uses to create sessions in his program code. Because of this
our plug-in will display a comparison of woven actions of different configura-
tions on demand. There are two ways to choose which configurations should be

50 Stephanie Platz

compared. A developer can select configurations in the preference page of our
plug-in which is reachable by a right click on our marker. A simple click on a
join point marker will compare enabled session configurations of the preference
page only. In case that a developer has not defined such settings he can choose
for the configurations to be compared in the pop-up. This capability is skipped
when there is only one configuration with a matching pointcut. In Figure 2 only
the TeltowCarModelConfiguration contains an advice matching the action called
in this line.

Now a developer can inspect woven actions in the pop-up just like he does
in the configuration editor. Actions are grouped by before, after, around, nested
and injected action and for every woven action additional woven actions can be
unfolded. An example is shown in Figure 5 where commit() is called and all woven
actions can be inspected. Our plug-in pays attention to the order of the woven
actions and does not display them lexically. The pop-up therefore visualizes the
effects of conditions iii and iv mentioned in Section 2.3. In Section 5 we discuss
the benefits of our visualization.

During the evolution of the program, orchideo specific configuration files are
changed in addition to source code files. Aspects and advice can be added,
changed or removed and therefore the set of matching advice at a shared join
point can vary. This causes changes to the amount and order of advice and ac-
cordingly to the order of actions (see Section 2.3). That is why our plug-in also
notices of changes in configuration files.

4 JoinPointMarker Plug-In in Detail

In the previous section we have shown that our orchideo plug-in has to complete
several tasks when certain files have been changed. Because orchideo is based
on Eclipse, we have been able to make use of its automatic build process. This
process will be explained further before discussing the details of our plug-in.
While developing our plug-in several questions arose such as: Which projects
in the workspace should be observed by the plug in? What must be observed
to ensure all current information is available? In which order should the advice
be listed? How do we make a matched join point visible in source code? What
happens if the source code is changed? All questions are answered in detail in
the following sections.

4.1 Eclipse Automated Build Process

This section will focus on how Eclipse uses its background work to compile code
and support a developer during programming. In order to handle all information
of projects found in the workspace, Eclipse offers two mechanisms, nature and
incremental project builder.

Eclipse uses its builders to produce output based on the raw materials en-
tered. Such a build process can be either manually triggered or automated. The

Static Analysis of orchideo Advice Weaving 51

Java compiler in Eclipse for example is a builder provided by the Java Develop-
ment Tools (jdt) plug-in [44] for Eclipse. Build processes are incremental which
means that an initial build is developed, followed by incremental builds. The ad-
vantage of using this process is that only changes to the previous version must
be rebuild. We focus on that specific advantage and therefore implemented two
individual builders.

In Eclipse one builder is associated to one single project only and the builder
operates on the containing project resources. Associating a builder with a project
is in general done by natures. They can install and uninstall builders to a project
by changing the project’s build specification. The build specification is held in
the IProjectDescription which is assigned to a project and is represented as an
array of ICommand objects. The builder is added or removed from this array by
a nature. Once a builder is assigned to a project, it is informed of all resources
that changed in the project.

The build process can be triggered explicitly or automatically, for either a
specific project or the entire workspace. Incremental project builders are invoked
implicitly by the Eclipse platform during an auto-build. If enabled, auto-builds
run whenever the workspace is changed. The build process is then triggered by
a project delta which contains all changed resources. The builder then inspects
the changes and if any files of interest have changed it can work on those files.
Further information can be found in [21] or in [45] at chapter 14.

As soon as the OrchideoJoinpointMarkerProjectNature has been assigned to
a project, it manages the association of our two specific builders to the project.
Once the builders have been assigned they can collect information needed to
mark code lines where something is woven to. Figure 10 explains how our plug-
in integrates in the Eclipse Automated Build process. The AutoBuildJob calls
build(kind, monitor) on the Eclipse framework BuildManager, which runs in
background. The build kind can be either full or incremental. Eclipse runs an
automatic build job, when it is started (full build) and when resources of the
workspace where changed (incremental build). The BuildManager then builds ev-
ery concerned project with every assigned builder until no more builders request
a rebuild. In the sequence diagram in Figure 10 we show as an example how one
single builder—in this case our Advice Cache Builder—is triggered in that loop.

4.2 Project Selection

In this section we describe to which projects we assign our two builders, so that
our plug-in hooks into the automatic build process.

Typically in Eclipse more than one project is found in the workspace for a
single software program and each project contains a set of related functionality.
The orchideo project nature is assigned to projects in which the application data
is modeled or aspects are defined. This nature takes care of the generator creating
code from the modeled diagrams [?]. There are however, other projects in the
Eclipse workspace which establish on the orchideo projects and especially make
use of aspect actions.

52 Stephanie Platz

An example is given in the TeltowCarApplication which is introduced in [?].
In this application exists some custom aspect projects, the TeltowCar project
and the TeltowCarApplication project. Whereas the TeltowCar project defines
the domain objects of the application and therefore has the orchideo nature
assigned, the TeltowCarApplication depends on this project and uses those mod-
eled domain objects. In this way the TeltowCarApplication has no orchideo nature
assigned but can use aspect actions.

This is the reason why we have chosen to take care of different kinds of
projects in order to highlight all affected code. We first add our nature to all
created projects that have the orchideo project nature. Then we have to analyze
the project dependencies and add our nature to all projects that depend (recur-
sively) on an orchideo project. If the dependency to an orchideo project is lost or
if the orchideo project nature is removed from a project our plug-in removes our
nature in the same way.

Our plug-in additionally gives a developer the possibility to choose whether
our nature should be assigned to a project or not using the project menu. In the
case that a developer does not want our plug-in to change the project natures
automatically, he can specify this in our preference page.

4.3 Join Point Highlight Builder

Developers using Eclipse are often accustomed to using tools the ide offers,
such as markers described in Section 3. The jdt plug-in makes use of problem
markers and sets them up in locations where compilations errors have been
detected. These markers are placed in the left ruler of the Eclipse editor. In
order to determine why a piece of code is incorrect, the programmer can click
on the marker and gets a pop-up providing error information.

Just as compilation errors are highlighted, a developer could be assisted by
using the ide to collect and display information about woven code. In order
to meet this demand, we implemented two builders in our plug-in. The Advice
Cache Builder collects any aspect information needed; this process is described
in section 4.4. The Join Point Highlight Builder combines this information with
the current source code and highlights it.

When the source code in a project our builder is assigned to changes, the
builder collects all Java files contained in the delta. The collection includes any
added Java files but excludes those that have been removed, as there is nothing
to highlight. The builder parses each changed Java file and creates an abstract
syntax tree (ast) to inspect the written source code. With the aid of a visitor
our builder checks every node of the ast to see if it is a method invocation that
represents a matched action. This check is done using two criteria:

– The method invocation has to be called on an orchideo aspect.
– The method invocation has to represent an orchideo action which is matched

by at least one advice in the current advice cache.

The first criteria ensures that the method invocation is a method call to an
orchideo aspect, meaning that the method call is potentially an orchideo action.

Static Analysis of orchideo Advice Weaving 53

With the second criteria we can be sure that the method invocation is an orchideo
action which is used as a join point and is currently matched by at least one
defined pointcut in the program environment.

An example is given in figure 6. At the top of Figure 6 a screenshot of a
code snippet is presented. It calls the commit action of the Hibernate Aspect.
Below the snippet there is the respective abbreviated ast. Our visitor is only
interested in MethodInvocation nodes. The visitor first checks if the declaring
class implements de.exxcellent.orchideo.engine.Aspect. Looking at the inter-
face inheritance structure of the ast in Figure 6, we can assess that the aspect
interface is implemented and now we can be sure that commit() is a method im-
plemented by an aspect. The next step is to check if this is an action that is used
as a pointcut by a currently enabled advice. Therefore the visitor will equalize
current aspect information from the Advice Cache Builder with information of
the MethodInvocation. The action, aspect and package name identify one-to-one
and onto a join point. These identifiers are marked in Figure 6. If a join point
following those identifiers is currently used as a pointcut the visitor memorizes
this method invocation. Once the visitor finishes visiting the ast of a file, it
hands all collected method invocations to the Join Point Highlight Builder.

The builder then deletes all old markers and sets new ones into each source
code file that has been changed. The deletion of old markers ensures that the
markers visible are displayed at the right location while the code evolves. When
a developer clicks on a marker the action matched by the marker is highlighted
in the source code and a pop-up appears, as seen in Figure 5. In this figure
only one configuration contains an advice with a pointcut that is the commit
action. Otherwise the other applicable configurations will appear next to the
TeltowCarModelConfiguration and this provides a developer to easily compare
both configurations.

Nested and injected actions are found by the Join Point Highlight Builder.
This information is fast available from the model of the action. The woven before,
after and around actions are requested from the Advice Cache Builder, whereas
here we have to consider advice precedence with regard to the Any advice [?],
action inheritance and pointcuts being the Any action [?].

4.4 Advice Cache Builder

The Join Point Highlight Builder marks whether certain method invocations are
matched join points. An orchideo application developer uses configuration files to
specify which aspects and advice are enabled for a certain session. Depending on
the session configuration different actions can be woven at a certain join point.
Therefore our plug-in must analyze all configuration files in order to mark used
join points and list woven actions.

The join point markers have to be refreshed each time a Java file is saved
and therefore the Join Point Highlight Builder is triggered. Saving files is done
frequently during program evolution. As analyzing the configuration files takes
time, the information is cached. The cache needs to be updated only when con-

54 Stephanie Platz

Fig. 6: AST (lower part) of an orchideo Action Call (upper part)

figuration files change. This way we provide fast feedback when a Java file is
changed, but still maintain up to date weaving information.

The Ordering of Advice. In order for our cache to benefit the Join Point Highlight
Builder, it must contain the information where code is woven and what actions
are woven in which order. All configuration files of the developed program must
be analyzed in order to determine this information.

The listing in Figure 7 shows our approach to acquiring all advice information
needed from those configuration files. The first step is to find all enabled advice
by finding all enabled aspects in a session configuration. In line 7 of the listing
the findAllAdvice(sessionConfiguraion) method gathers this information.

This information would be enough to know what actions are woven to which
join point, but further steps are required to get the right order of the actions.
Therefore the method getAdvicePerKind(adviceList) is used to group the ad-
vice into before, after and around. As mentioned in Section 2.3 advice can define
their predecessor and successor, respectively. We use the orchideo|engine to ar-
range the individual lists. The engine is responsible to weave the advice in the
executed program and sorts the before, after and around advice with regard
to their predecessors and successors. The engine sorts the advice list using the
SortedAdviceList<AdviceType> class. As we use the same class to determine the
action ordering our results are similar to the ones in the executed program (see
lines 12–15 in listing 7).

Static Analysis of orchideo Advice Weaving 55

1

2 private void refreshAdvice () {
3 for (SessionConfiguration sc : sessionConfigurations){
4 List <Advice >[] advicePerKind ;
5 Advice [][] advicePerKindArray = new Advice [3][];
6

7 advicePerKind = getAdvicePerKind (findAllAdvice (sc));
8

9 for(int i = 0; i < advicePerKind . length ; i++) {
10 List <Advice > adviceList = advicePerKind [i];
11 // sort the advice list as done by the engine
12 SortedAdviceList <Advice > sortedAdviceList =
13 new SortedAdviceList <Advice >(
14 adviceList , SortedAdviceList . ADVICEMODEL);
15 adviceList = sortedAdviceList ;
16 advicePerKindArray [i] = adviceList . toArray (
17 new Advice [adviceList .size ()]);
18 }
19 AdviceCache . getAdvicePerConfiguration (). remove (sc);
20 AdviceCache . getAdvicePerConfiguration ().put(sc ,

advicePerKindArray);
21 }
22 }

Fig. 7: Collect and Sort all Current Advice

Unfortunately, this statement is not applicable to all advice. For example
advice without a predecessor or successor were woven nondeterministic, because
the orchideo|engine has no indication as to what priority is given to them. So dur-
ing the sorting of the advice lists, those without precedence remain unaffected.
But as soon as another advice is defined to be the predecessor or successor of
the Any advice [?] the advice without predecessor or successor definitions will be
moved into the respective position. Thus we cannot be sure which advice are
ordered deterministically and which are not.

The final step is to remove the outdated advice information (see line 19 in
listing 7) and to save the three arranged advice lists per configuration into our
cache (see line 20 in listing 7).

The Ordering of Actions. The next step in our algorithm is to get the woven
actions from each advice with regard to the order of advice. Once we have the
sorted advice we can collect the woven actions in sequence from every advice list.
At this point we have three advice lists per session configuration. Our objective
is now to save all matched join points and the belonging woven actions which
are defined by their according advice. The algorithm to sort the woven actions

56 Stephanie Platz

Fig. 8: Data Structure of Woven Actions

is shown in Figure 12. Thereby the order of actions depends on the order of the
previously sorted advice list.

This information is assigned to the respective session configuration, so that
the origin of the woven actions is clear. First of all we save a map that looks
like the one in Figure 8 in our cache. We have a tuple of a join point (repre-
senting an orchideo action) and a session configuration which together map a
two dimensional array of actions. The first dimension splits the woven actions
into before, after and around advised actions. The second dimension includes
the actions themselves (see Figure 8).

We iterate all session configurations and the three contained advice lists to
establish this structure. The inner iteration over an advice list can be seen in
the Appendix A in combination with the flow charts 12 and 13. We individually
select each advice and create a new entry in a map for every pointcut we find.
This map relates join points, which are orchideo actions, to their woven actions
À. In order to keep the kind defined by the advice, the woven actions are split
in before, after and around actions.

After a new entry has been created we append the woven actions to the
belonging before, after or around list Á. If an entry for a join point already
exists, the woven actions of the current advice are appended to one of the three
existing lists, depending on the kind of the advice Â.

After iterating over every single advice from the three advice lists, we can
save our analysis into our cache. Therefore every entry that we created with the
respective session configuration is put into the map described in Figure 8. If such
an entry already exists it is deleted before adding the new one because it most
likely contains outdated information.

There are two exceptions in the described algorithm:

1. During the iteration over every single advice it is necessary to pay attention
to pointcuts that are the orchideo Any action [?]. All alternatives caused by the
Any action are highlighted in dark gray in Figure 12. In case the Any action is
the current pointcut, it is necessary to append the actions the current advice
weaves, to all existing action lists of every join point entry Ã. This is done with
regard to the right type of list (either before, after or around). Besides we also
have to put an entry with the Any action in our map and save all woven actions,
just like we have done for every other pointcut.

Here is a short example of why we need this information: Whenever an advice
x appears after an advice y which defines the Any action as a pointcut, all actions

Static Analysis of orchideo Advice Weaving 57

woven from advice y have to append to the new created join point map entry
from advice x before the woven action from advice x are appended. That is why
advice y matches also the pointcut from advice x but appears in precede order.
As a result we have to check if an entry of the Any action exists in the map.
If that is the case we copy all woven actions to the newly created entry of the
current iterating advice. Then we can append the woven actions of the current
advice Ä.

A list for the Any action is created before iterating over all advice lists and
therefore we do not have to append the current woven actions to the woven
actions of the Any action. (This was done when the woven actions were append
to all existing lists.) Lastly, after all actions of the current configuration file are
sorted, the list for the Any action is thrown away.

2. During the iteration of every single advice in the three sorted advice lists, we
have to check if there are inherited join points. All alternatives caused by a base
actions are highlighted in light gray in Figure 12.

A pointcut can have base actions or can be the base action of another point-
cut. Thus we have to perform a check at two positions in our algorithm: If an
advice has a pointcut with a base action, we have to check if such base action is a
pointcut of a previous advice. This means we have to check if base actions appear
as a key in our current map of join point to woven actions. Once we find such
an entry, we have to put all woven actions of the base action as woven actions to
the pointcut of the current advice Å. Further we do not have to check if there
are previous woven actions to the Any action, because those should be contained
in the woven actions of the base action. If we find no base action entry we have
nothing to do, but check if there are actions woven to the any action as described
above (Ä). Then we can add the woven actions of the current advice. Lastly, we
have to check if the current pointcut is a base action of previous pointcuts. So
we check all previous matched join points whether they inherit from the current
advice. If so, we have to add the woven actions of the current advice Æ.

The Workflow. We implemented the Advice Cache Builder to collect all the as-
pect information mentioned in this section and the Join Point Highlight Builder
to display aspect impacts in the base program. Both builders are assigned to
exactly the same projects. This is done and observed by our nature. In case any
resources of the assigned project are changed, an automatic build is triggered as
described in Section 4.1.

Once the build() method of our Advice Cache Builder is called from the
BuilderManager, our Advice Cache Builder collects and inspects all added, changed
and removed configuration files. This build job is shown in the sequence diagram
in Figure 10. We then parse these configuration files and determine the session
configurations they define. This is performed by the findChangedResources(kind)
method. If we find removed session configurations we have to delete all the infor-
mation saved in our cache assigned to them (deleteRemovedSessionConfigurations()).

Then the builder analyzes every single added or changed session configura-
tion: First the builder searches for enabled aspects and then collects all advice

58 Stephanie Platz

enabled in each aspect description which is done by method refreshAdvice()
and is described in ‘The Ordering of Advice’. The produced advice list is then
sorted as described above in ‘The Ordering of Actions’.

After the builder has sorted every single action it saves this information in our
cache. Now the Join Point Highlight Builder can display up to date information
concerning the location and the order actions are woven to. Whereas the Join
Point Highlight Builder is only triggered by source code changes, the Advice
Cache Builder has to make a request to several Join Point Highlight Builders
to rebuild their assigned project. This is due to the fact that join points may
have been changed by aspect definitions when the Advice Cache Builder has
run. This concerns the project that the Advice Cache Builder is assigned to and
all projects referencing it because they can all make use of the actions defined
in the changed configuration files. In the sequence diagram of Figure 10 this
is modeled as a loop. Each step of the loop is shown in Figure 11. For every
concerning project a new project build job is created, which triggers an explicit
build on that project with our Join Point Highlight Builder. This build is a full
build so that in all resources of the project the markers are refreshed.

4.5 Integration of our Components with orchideo
When starting orchideo all builders of all workspace projects run. This first build
always is a full build. In Figure 9 we can see how our builder integrates with
the build process. The Java compiler compiles binaries from all Java sources of
the assigned project and generates the application. Whereas the Java compiler
ignores orchideo specific files. The orchideo|engine is responsible to weave advice
where action calls occur at runtime and therefore uses aspect information con-
tained in configuration and aspect source code files. The combined output of
both is an application with deployed aspects (as displayed in Figure 9).

During the development process changing Java files will trigger a project delta
which is then analyzed by the Java Compiler and according binaries are created
incrementally. With our plug-in a modification of files triggers our builders, too.
Changed orchideo specific files trigger the Advice Cache Builder to refresh the
cache and to generate aspect metadata. Changed Java source code files addition-
ally trigger our Join Point Highlight Builder to set markers in the editor with
regard to the current aspect metadata.

5 Evaluation

We have stated several general problems with aop for developers at the begin-
ning of our paper. We have identified that the hidden impact problem applies
to orchideo and thus decreases the comprehension of the program for the de-
velopers. Further we have specified two requirements to clarify the meaning of
impacts. The first requirement is that join points matched by advice should be
made visible in the source code. The other requirement is to clarify the control
flow at those join points to the developers. Now we will discuss if our plug-in
does help to overcome the orchideo-specific aop problems.

Static Analysis of orchideo Advice Weaving 59

Fig. 9: Integration of our Components (highlighted in grey) with orchideo

Disclose Matched Join Points. In orchideo a programmer can make use of two
different paradigms. He can use models to develop application code and draw on
functionality with the aid of aspects. That functionality is for example creation,
deletion or persistence of object instances of the modeled classes. Furthermore,
a developer can define his own aspects, just like we did as described in [?]. While
developing the object-oriented part of the application, markers on the left ruler
of the editor visualize join points. Two such markers are set in Figure 5. Having
a look at both code lines we can see that there are method calls to aspects
which are the matched actions. But this method call does neither imply that
every method call to an aspect is an action nor that this action is used as a join
point by a currently enabled advice. It could also be a service (see Section 4.1
in [?]) or a simple method call defined in that aspect. Developers are not able to
determine whether they are pointcut actions without the presence of our plug-in.
In each line that our plug-in sets a marker, a join point matched by a currently
enabled advice is now disclosed. With those markers a developer is now aware
of all locations in the code where other code is woven to. But this does not help
to comprehend what actually happens at these locations.

Clarify the Control Flow At Matched Join Points. Nothing will be woven to
an action of an aspect if it is not used as a pointcut in any enabled advice of a
configuration. The control flow remains the same. But if that is not the case, then

60 Stephanie Platz

our plug-in will have to consider several conditions as mentioned in Section 2.3. It
collects aspect information as described in Section 4, finds all woven actions for a
specific join point and prepares the information for the developers. By clicking on
a belonging marker a developer gets a pop-up with all woven actions separated
by before, after, around, nested and injected. Further a developer can compare
different configurations of woven actions in the pop-up. Thus the orchideo user
is now aware of what is woven to a pointcut action.

Furthermore our plug-in pays attention to the order of actions. Our plug-in
displays the weavings in the same order as the orchideo|engine weaves actions.
It does that with full regard to the advices predecessors and successors, the
Any advice, the Any action and action inheritance. Nevertheless we have to face
that exceptions to this scenario can occur: There is always the possibility of the
occurrence of nondeterministic woven advice (see Section 2.3). Because of the
nondeterministic nature it is random if our displayed order is the same as the one
that is woven by the orchideo|engine (which also weaves nondeterministically).
Nevertheless we currently do not communicate this to the developers and they
might therefore make wrong assumptions.

This deficit leaves room for future improvements:

1. An analysis of the predecessors and successors of advice with a shared join
point (with regard to inheritance) has to be done. A point of interest are advice
defining either successor or predecessor to any advice.

An interesting aspect for this might be to have an advice define either the
successor or predecessor for the other advice in question. So advice with unde-
fined successors or predecessors are indirectly affected and therefore might be
woven deterministically. On the contrary, if multiple advice with a shared join
point have the same advice as their successor or predecessor and do not define
a dependency between themselves, their order is nondeterministic.

This is caused due to the weaving algorithm used by orchideo|engine. Because
of those phenomena it is hard to determine the advice being woven nondeter-
ministically. Nevertheless actions woven by nondeterministically ordered advice
can for example then be highlighted.

2. In addition to this there is another discrepancy remaining. The order of woven
actions of a single advice is not displayed. Our plug-in gets the woven actions
from the modeled advice and displays them in the same order as they were
modeled. But how they are actually woven is difficult to determine. The order
of woven actions depends on the behavior of the advice weaving them. Every
advice implements the method apply(joinPointAction) and the return value
determines the amount and order of actions. This means that not all actions,
which are defined as woven actions from an advice, have to be woven. Besides
implemented conditions this can affect less, equal, or some duplicate actions.

An example is the InvokeGenerateSequentialId advice which weaves the
GenerateSequentialId action before the commit action (see Section 5.4 in [?]).
In Figure 5 it is the third woven before action. This action is only woven if ob-
jects of a certain type were committed. So the apply(joinPointAction) method

Static Analysis of orchideo Advice Weaving 61

from the InvokeGenerateSequentialIdAdviceImpl returns an empty array or an
array which contains one GenerateSequentialId action.

Analyzing the return values of such advice implementations can be included
with an additional builder. But imagine an advice weaving three actions (a, b,
c) on three different conditions, either action a, action b or action c will be the
only one woven. This will be a challenge to display intuitively. The next issue
is the impossibility of analyzing framework aspects and advice simply because
orchideo does not provide the required resources. So this information has to be
included by orchideo and not analyzed at development time. And questions as
to how actions that specialize the actions from the framework are to be handled
remain.

For visualizing the order of actions with special suggestions to nondeter-
ministically woven actions a lot can be done. But perhaps it is important to
consider the possible benefit beforehand. This task might be too specific for the
developers. It might be more efficient to recheck their own code or to query
the documentation of framework aspects compared to having it analyzed by a
tool. Nevertheless there could already be a hint for the developers that there are
nondeterministic woven actions.

Conclusion. All in all what and where code is woven is offered from our plug-in.
This increases the comprehension and evolution of the program. But the order of
actions might not always be the executed one. This information is currently not
provided to the developers. It represents the larger set of possibilities produced
by static analysis (see Section 2.3). Concerning the nondeterministic order of
actions—which is caused by the orchideo|engine—we do not offer more informa-
tion than a developer can get from the configuration editor. But we spare them
from having to change their development environment. In particular they do
not need to compare different configurations files manually but rather use our
pop-up where they currently work.

Classification of Debugging. Another method to analyze woven code is de-
bugging. The orchideo tool suite strives to support parallelized, multi-level dis-
tributed architectures. For the purpose of our work we will follow a classification
of debugging techniques, modeled after [46, McDowell, 1989]:

– Traditional dynamic debugging using breakpoints and step filtering is pre-
sented in [?].

– Static analysis based on call, flow and configuration analysis is discussed in
this paper.

– Displaying and structuring information about complex data is presented
in [?] as well.

– Techniques for recording, analyzing and displaying execution history are the
subjects of [?] and [?].

This classification gives an orientation for the various debugging techniques. The
terms of debugging are explained in [?].

62 Stephanie Platz

orchideo uses mdsd and aop to decrease the complexity of the source code
while developing software. But both constructs can introduce new source of
complexity. For instance there is a lot of generated source code. Despite all
efforts to develop software of high quality, defects can occur. To reproduce a
defect using a dynamic debugger requires stepping through a mass of source
code, which can be a tedious process. orchideo is no exception to this rule.

An orchideo user has almost no possibility to find out where a specific action
is woven to. The order of actions is not interesting to a developer that only
uses framework aspects because he can assume that the framework operates
faultlessly and therefore weaving of framework aspects must not be observed.
For aspect developers on the other hand, the order of own actions poses a topic
of high interest. In the ‘TeltowCar’ application which we have developed with
orchideo [?], it was hard to analyze when our implemented actions are woven.
But with growing experience about orchideo, we recognized that setting either
the right predecessor or successor seems to be the solution.

Nevertheless the possibilities to find out the order of woven actions are lim-
ited. The developers can set a breakpoint to an action call but without any
orchideo resources they cannot step into. Furthermore without our plug-in they
have to guess which actions are currently used as a join point. With an addi-
tional breakpoint, the developers can go step by step through their action code,
but they still have no information as to which actions are currently woven and
which ones are about to be woven. Some of our other debug tools described in [?]
and [?,?] can support the developers in this case.

We have implemented a view which searches for session objects in the current
debugged stack frames (see Session View in [?]). A developer is then able to,
for example look for the last entry in the execution history of the currently used
session. It is not rare that the history itself has a thousand entries, but the entries
themselves are difficult to understand due to their length and representation.
Every entry of the execution history could be dumped and the output is similar
to an orchideo stack trace which could be parsed by our implemented Trace View
(see [?]). But this process would mean a major inconvenience to a developer (for
details see Section 4.5 in [?]).

So all in all an interactive debug tool on AOP abstraction levels is still
missing. When debugging becomes exhausting, programmers tend to avoid the
dynamic debugger and try to analyze the program from its source [29]. And this
is where our plug-in through static analysis, can help the programmer to actually
debug. It is much more convenient for a developer if the ide itself could collect
and show aspect information. Object-oriented tools have evolved and therefore
raise the bar for aspect-oriented tool integration. With our plug-in the program
comprehension is improved and we support the evolution of the application. A
developer now neither needs to switch the environment nor does he require extra
interactive debugging to get information about aspect impacts.

AJDT vs JoinPointMarker. In Section 3 we can find two main differences
between the ajdt plug-in and our JoinPointMarker plug-in. Whereas both—

Static Analysis of orchideo Advice Weaving 63

AspectJ and the realization of aop in orchideo—offer an according mechanism
to order the advice, only our plug-in visualizes the order of advice at a shared join
point. If a developer knows that nondeterministic advice weaving is occurring
in either AspectJ or orchideo, he has the ability to determine the order: He can
either define the predecessor or successor for the advice in orchideo; or he can
define the aspect precedence which is transferred to containing advice in AspectJ
(see Section 2.4). Nevertheless the order of advice is not displayed in ajdt.

The second difference is that ajdt provides an overview of aspect impacts in
the whole base program and can split those impacts per aspect. Our plug-in on
the other hand does not offer a project wide visualization of impacts but rather
visualizes the impacts for the currently edited code only. This has several reasons:
In orchideo aspects cannot change the behavior of a Java class. For example
neither fields nor interfaces can be added to Java classes nor can methods be
advised. In orchideo code is only woven to actions, which are explicitly called
in the object-oriented code. The majority of these actions are object creations
or deletions, persisting certain objects in a database, and so forth. Further we
can identify that the most framework aspects of orchideo are used to connect
the modeled and generated code with the application code (e.g. PropertyAspect,
OperationAspect, ObjectAspect). This leads to the question if it is meaningful
to know where in the base program for example objects are created. Therefore
a whole impact visualization might not be necessary. This should be a part of
further research concerning how much impact of orchideo aspects influences the
base programs of orchideo applications.

Besides comparing Figure 4 and 5 we can state that only with one pop-up
it is easier to get an overview of the current impacts and to stay focused on the
current implementation details.

6 Additional Related Work

We already presented a comparison of ajdt and our plug-in in Sections 3 and 5.
Kersten presents ajdt in [43,47]. Although the papers were written in 2003
nothing has been improved until today concerning the aspect impact visualiza-
tion. The order of actions is still not displayed, whereas our plug-in provides this
information.

Next to ajdt there are other ide tools to support the comprehension of
aspects, for example Borland®‘s JBuilder®, Sun®‘s NetBeans, Emacs and jdee.
All of them use a similar way to visualize aspect impact as ajdt and all concern
AspectJ visualization. Kersten states in [47] that for commercial use of aop such
ides have to make the advice execution order on a particular join point clear.
This affirms our solution for orchideo.

In [48] Zhang presents static analysis of aspect impacts with special regard
to state and computation Impacts. orchideo aspects can have impact on the
state of objects which are defined as in parameters (see Section 4.1 in [?]) of
actions. As the orchideo actions are implemented with Java constructs rather
than with aspect constructs state impact analysis can be difficult in orchideo

64 Stephanie Platz

and is not performed by our plug-in. The computation impact analysis Zhang
presents splits advice in invariant and variant advice. Variant advice do not
modify the base code which we can compare with our condition i stated in
Section 2.3. On the other hand invariant advice do have impacts on the base
code which actually has the same meaning as conditions ii to iv. Zhang does not
pay attention to the order of advice with a shared join point (condition iii), but
we do.

7 Conclusion

In this paper we saw which general aop problems apply to orchideo. Whereas
no fragile pointcut problem can be detected, aspect impacts were not visible
to a developer. We therefore statically analyze the advice weaving of the or-
chideo|engine with special regard to the order of advice sharing a join point. In
Section 3 we describe how our plug-in realizes aspect impact visualization to
the developers. While they write code, they can get informed of woven code by
clicking on special code line markers. Further we described implementation and
algorithm details of our plug-in.

We additionally showed how our plug-in integrates with the Eclipse auto-
mated build process. This integration is used to get source code deltas during
the code evolves and thus display up to date aspect impacts. We evaluated our
plug-in in comparison to ajdt, which is an aspect visualization tool also based
on Eclipse. In summary ajdt provides a project wide overview of aspect im-
pacts whereas our plug-in visualizes aspect impacts only at locations where code
is woven to. Furthermore our plug-in pays attention to advice ordering, whereas
ajdt is not capable of this.

With our plug-in the developers can stay focused on writing code and do not
need to switch back and forth between files to comprehend aspect impacts. This
drastically increases their efficiency for writing code.

Static Analysis of orchideo Advice Weaving 65

Fig. 10: Integration with the Eclipse Automated Build Process

66 Stephanie Platz

Fig. 11: Triggered Build Process

Static Analysis of orchideo Advice Weaving 67

Access the pointcut
and wovenActions of
the current advice

Is the pointcut

the Any action?

Add the current
wovenActions to
all pointcuts of
previous advice

For every advice of the current
session configuration sort the
woven actions per pointcut

YES

Have actions already
been woven to the
current pointcut?

NO

Create a new entry for
the current pointcut
with no woven actions

NO

Append the wovenActions
to previous woven

actions of the pointcut

Does the current
pointcut has a
base action?

Search for
Actions
Woven to

Base Actions

YES

Copy the actions woven to the Any
action to the woven actions of the

current pointcut

Is the current pointcut not
the Any action and has no base

Actions? And have actions already
been woven to the Any action?

YES

YES

Is the
pointcut the
Any action?

NO

Is the pointcut a base
action of pointcuts of

previous advice?

YES

NO

Append the wovenActions to
all pointcuts whose base

action is current pointcut

The wovenActions of the current
advice are now assined to the
pointcut of the current advice

with regard to the order of other
advice with the same pointcut

NO

NO

1

5

4

3

2

7

6

Fig. 12: Assigning Woven Actions to Pointcuts

68 Stephanie Platz

Does a base

action exist?
No

Are there actions woven

to the baseAction?

Access the baseAction of
the current pointcut

YES

NO

Set the parent action of
baseAction as the current

baseAction

Copy the actions woven to the
baseAction to the woven actions of the

current pointcut

YES

Fig. 13: Search for Actions Woven to Base Actions

Bachelor Thesis

Debug Support for orchideo
Lysann Kessler

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Debug Support for orchideo

Lysann Kessler

Hasso Plattner Institute
Potsdam, Germany

lysann.kessler@student.hpi.uni-potsdam.de

Abstract. Model-driven software development and aspect-oriented pro-
gramming support programmers in developing software that needs to
meet complex requirements. With these approaches programmers can
focus on the features they have to implement and can abstract from low
level details. Unfortunately, frameworks using these approaches often
lack appropriate debug support. Developers still have to debug with re-
gard to the low level details they wanted to abstract from. In this paper,
we describe tools that provide debugging solutions for a commercially
used model-driven and aspect-oriented framework called orchideo. The
tools help the programmer to comprehend the processes in the complex
framework, but also allow them to debug their applications at a higher
level of abstraction.

1 Motivation

Model-driven software development (mdsd) and aspect-oriented programming
(aop) support programmers to focus on the features they have to implement
and abstract from low level details [?]. But despite all efforts to create software
of high quality, even with these approaches failures can occur during development
and after release of the software. The defect that caused the failure is often not
identifiable without further analysis. Several methods have evolved that help to
find such defects. One mature and commonly applied technique is the so-called
interactive debugging.

Unfortunately both, mdsd and aop frameworks, often lack the possibility
of appropriate debugging support. For mdsd no common solution has been en-
countered yet that allows interactive debugging at the appropriate level of ab-
straction. Developers still need to debug at lower levels of abstraction. This is
unsatisfactory, because the goal of this approach is to allow the programmer to
abstract from implementation details and concentrate on the application’s do-
main problems. For individual frameworks specific solutions can be constructed,
but they typically depend on the concrete framework and its implementation.
Currently there is no general tooling available to implement a model level de-
bugger [49].

Interactive debugging of aop applications introduces new problems for the
debugger software and new complexity for the developer to cope with. For in-
stance the control flow may magically change and is not easy to comprehend
without additional runtime information.

mailto:lysann.kessler@student.hpi.uni-potsdam.de

72 Lysann Kessler

The orchideo integrated development environment (ide) as described in [?] is
a framework that combines both, mdsd and aop. It therefore inherits both ap-
proaches’ advantages, but also their problems concerning interactive debugging.

This paper deals with the problems of interactive debugging in orchideo. We
will first give an introduction to debugging terms and general methods applied
in aid of debugging (sec. 2). We will then focus on interactive debugging and
describe how this debugging method helps the programmer to find defects in a
software system. Section 3 will describe problems that occur when debugging
applications using mdsd and aop frameworks, and evaluate the problems found
in orchideo. In Section 4 we will then describe the solutions we developed to
provide better support for interactive debugging of orchideo applications and
the orchideo|engine in detail. Section 5 discusses our solutions and whether they
improve the debugging process. In Section 6 we will overview solutions for other
frameworks and discuss the differences to the orchideo debug tools. Finally we
will give a brief summary and draw a conclusion (sec. 7).

2 An Introduction to Interactive Debugging

This section will introduce basic terms of debugging, general debugging ap-
proaches and debugging methods. We will then focus on the debugging method
covered in this paper, interactive debugging.

2.1 Terminology

The following terms and their definition are adapted to [2] and [50].

Debugging. Debugging is the process of finding, isolating and removing defects
from software to make it behave as intended.

Defect. A defect is a piece of code or of an software artifact that can make the
software misbehave and cause an infection at runtime.

Infection. An infection is an incorrect state in the program execution caused
by a defect. This infection can propagate through the program execution
and manifest itself in incorrect states of other program parts. This does not
necessarily have to happen: The infection may be overwritten or corrected.
The infection eventually can but does not need to cause a failure.

Failure. A failure describes an externally observable malfunction in the behav-
ior of the software. Hence a failure is always preceded by an infection and a
defect. On the other hand the absence of failures does not imply the absence
of defects [51].

Infection Chain. The cause-effect chain from the defect to the failure is called
an infection chain.

2.2 General Approach to Debugging

Deduced from the above terms, debugging means to identify the infection chain,
find the defect and then remove it. As described in [2] and [52], the general

Debug Support for orchideo 73

approach to deduce the defect from the occurrence of a failure is as follows:
Using debugging methods further described in Section 2.3, the developer isolates
the infection chain to eventually find the defect itself. To achieve this, he uses a
divide and conquer approach and repeatedly sets up and tests a hypothesis that
narrows down the possible failure causes until he reaches the defect itself. The
defect can then be corrected.

To test an individual hypothesis it is crucial that the failure occurrence is
reproducible. It is also very useful if the test case is as simple as possible. This
speeds up the whole process as well as it reduces the possible failure causes to
some extent.

The concrete techniques used to isolate the infection chain can highly differ
depending on the defect, the erroneous program, its execution environment and
even on the programming language used. In certain situations it may even be
possible to automate the process [52]. If debugging needs to be done manually,
the time it takes can also depend very heavily on the developer who wrote the
code and on the presence of a good and comprehensive documentation. It also
depends on the developer debugging the program and his experience [53]. When
it comes to debugging, some programmers can be three times as effective as
others [2].

2.3 Debugging Methods

Different Methods have evolved to isolate the infection chain in an erroneous
program. We propose the following categorization:

Printf Debugging. When using printf debugging, the programmer adds com-
mands to print information to a simple output medium like the command
line. The programmer can then observe the output medium to track the
state of internal variables and whether the executed program reaches certain
points in the control flow. It can also be handy to understand the sequence
of actions in multi-threaded applications. Printf debugging in the context of
the orchideo framework is discussed in [?].

Test-Driven Development. In test-driven development, small pieces of code,
tests, are written and run. They are designated to test a certain function-
ality of the product. Given an adequate test coverage, an erroneous feature
implementation is detected when the tests run. On the one hand this will
cause failures of the system and therefore expose the existence of defects in
the features. Additionally it can help to localize the defect because multiple
tests checking different parts of the software can indicate which part is bro-
ken. Debugging of orchideo applications using test-driven development and
continuous integration is discussed in [?].

Interactive Debugging. With interactive debugging the developer controls
and monitors the program execution. He can inspect the internal state and
alter it to cause certain effects, like simulating a certain state of the envi-
ronment or causing a particular control sequence. To achieve this, the pro-
grammer uses a tool—the so-called debugger—that helps him controlling the

74 Lysann Kessler

program execution and inspecting and altering the state. Interactive debug-
ging normally only starts once a failure has been observed and the defect is
unknown. The developer will then try to backtrack the propagation of the
invalid software state. Interactive debugging will be introduced in detail in
Section 2.4.

Listener and Control Interfaces. A software may also have built-in debug-
ging support: It may provide listener and control interfaces that allow exter-
nal observation and failure tracking. Depending on the range of the interface
it can help to find failures and to isolate the infection cause. This method is
applicable if the program cannot be debugged or tested directly. Therefore
it is not a common solution but rather a solution for certain environments.

All of the introduced methods provide some kind of state information of the
running software that is essential for tracking the problem, but is usually not
accessible when the program is executed normally. Typically not all methods are
applicable in various situations. Timing problems in multi threaded applications
for example are usually hardly traceable and reproducible using an interactive
debugging technique [46].

2.4 Interactive Debugging

As mentioned in Section 2.3 interactive debugging describes a debugging method
where the developer directly monitors and manipulates the execution of a living
software system. Interactive debugging is usually triggered when a failure has
occurred and the causing defect is searched for. The goal is to understand the
program’s behavior and deduce the faulty statements. The developer uses a de-
bugger tool that helps to analyze the software and perform the following typical
interactive debugging techniques [2]:

– Execute the program and make it stop on specified conditions. Conditions
are often locations in source code, variable state conditions or occurrence of
exceptions during the program execution.

– Observe the state of the stopped program. This typically involves viewing
the values of certain variables.

– Change the state of the stopped program. This can be achieved by assigning
a value to a variable or by executing code with side effects.

Examples for interactive debugger tools are the command line gnu Project De-
bugger [54], the Java Debugger (jdb) [55], or the graphical Java Development
Tools (jdt) [44] for the Eclipse environment, implementations of the Java Debug
Interface (jdi) [56].

A debugger can read information built into the executable that it uses to
communicate with the developer. For instance the debugger may provide the
current method name and line number, or the name and declared type of a
variable. For many programming languages and underlying platforms this in-
formation is not of interest at runtime. As the developer cannot and is often
not able to debug byte or machine code, the debugger uses this more high level

Debug Support for orchideo 75

information to communicate with the user. The problem of different levels of
abstraction during debugging sessions is discussed in section 3.

Comparison In contrast to other debugging methods the execution of the pro-
gram is controlled by the developer. He has the full insight and can acquire
all information computationally accessible. He can hold the program execution,
examine and change its state to accomplish certain side effects. This makes inter-
active debugging very dynamic. Other debugging methods require the software
to be stopped, artifacts need to be changed and the program must be restarted
in order to test the impact of executing a certain operation or changing the in-
ternal state. Using external observation tools like an interactive debugger, the
developer can start debugging very fast or dynamically observe another detail
without changing source code or recompilation [2].

The act of controlling the execution of the program can also create a ma-
jor disadvantage: The runtime behavior of the software is changed extensively.
Changes made by the developer during the debugging session could be forgot-
ten and the potential solution to the problem unreproducible. Additionally any
timing issues in concurrent programs may be unreproducible once the program
is halted by the debugger. Although those Heisenbugs [57] are not unknown to
other debugging methods [58], the probability of untraceable timing issues is
very high for interactive debugging.

Concerning reproducibility there is another issue for interactive debugging:
If the developer actively manipulates the system during a debugging session, he
might fix the problem through the techniques described above. If the debugger
does not exactly log the actions taken, they might be forgotten and the solution
reinvented. In contrast to this, manipulations of the programs when using other
debugging methods always manifest in the source code or other artifacts and are
therefore not lost that easily.

Interactive debugging is a process that has to be done manually. Running
tests in test-driven development in contrast is very automated. The test cases
however are usually written by hand. Under certain circumstances even this
process can be automated [52].

Like in test-driven development one test focuses on one feature, the developer
focuses on one control flow path at a time when debugging interactively. The
other debugging methods may provide information about other paths too. This
can lead to information flooding, but can also provide an unconsidered piece of
information crucial to finding the problem.

Interactive debugging does typically not explicitly help to expose unknown
infections. Although a debugger can help with the process of reverse engineering
and can therefore support the gaining of understanding about a system, this is
merely a concern of dynamic analysis as described in section 2.3 of [?].

Interactive debugging needs a living system to work, whereas the other de-
bugging techniques may produce and persist information that can be examined
post mortem. Even if the debugger is attached, the program may reach a state
where no additional information can be retrieved; the program cannot be rescued

76 Lysann Kessler

model

MDSD
framework

source code

input for

generates

?

understand
and associate

debugscreates

model

MDSD framework

source code

input for

generates

debugscreates

debug
information

abstraction
from

developer developer

Fig. 1: Debugging of mdsd applications without and with a model level debugger,
displayed in the left and right part, respectively

and has to be shut down. An example for this is the occurrence of an uncaught
exception in a Java program.

3 Debug Support for MDSD and AOP Frameworks

In this section we will overview the general problems occurring in aop and
mdsd frameworks concerning interactive debugging, and what general approach
is proposed to provide a remedy. For both programming paradigms we describe
the problems that typically occur when debugging orchideo applications, orchideo
aspects and the orchideo|engine.

3.1 Debugging Applications Developed With MDSD Frameworks

When debugging applications partially generated by a mdsd framework devel-
opers are often faced with a semantic gap between the software models they
have created and the ones they have to debug. This gap exists because the de-
bugger does not allow debugging the application at the model level. The left
part of Figure 1 illustrates this problem. mdsd frameworks provide new levels
of abstraction: Higher level models are created by the user, and the framework
generates code from those models, usually through different steps of transfor-
mation. This helps the programmer to focus on the application specific problem
instead of the low level implementation issues [?].

Unfortunately, the frameworks do not adopt the debuggers to this situa-
tion [49]. Therefore the programmer has to debug the application at the low
level of the generated code and has to manually associate issues occurring in the
low level code to the high level models he created. This is no trivial process at
all, especially because during code generation the compilers may perform several

Debug Support for orchideo 77

optimizations. This may be one reason why model level debuggers do rarely ex-
ist [59]. The ability to trace the failure occurring in generated software artifacts
to the original ones is called model level observability [60].

In traditional programming languages it is taken for granted to debug the
program at the level of abstraction it was created in—which is for example the
C source code the program was written in and not the machine code the com-
piler generated from it. For mdsd it is even more important to allow model level
debugging because the semantic gap between original model and generated code
is often even wider than for traditional languages. If the model level observ-
ability is too low the problems encountered during error tracing can nullify the
advantages of model-driven software development [60].

According to [59] there are two possibilities to solve this issue: The mdsd
framework could either provide the possibility to execute and debug the models
themselves without a prior transformation into lower level representations. An
example for this is described in [61]. This solution enables only model debugging,
but not the debugging of the whole application at the model level.

The other solution is more analogue to traditional debugging: The framework
generates code from the model and executes this code. When debugging it inter-
prets the low level outputs and projects them onto the model level. This enables
high level debugging of the whole application, as illustrated in the right part of
Figure 1. As the second solution provides a more natural debugging experience
we chose this one for our debug tools.

Debuggability of orchideo as a MDSD Framework. The main abstractions
provided by orchideo|objects as a mdsd framework are classes having properties,
methods and constraints (see 4.3 in [?]). During an interactive debug session,
properties can be monitored in the Eclipse variables view, as the orchideo frame-
work generates a Java attribute for each property defined in the model.

Methods are also propagated as Java methods. Due to the usage of the del-
egate pattern those methods are partially generated and the actual method
implementation is defined in a different class. Debugging this method is there-
fore not as easy. As the feature is implemented using aop the next section will
describe how to improve debugging in this case.

Constraints are another important abstraction and are managed by the
ConstraintAspect provided through orchideo|objects. Currently, the constraints
of one certain object are not directly visible at runtime. The information whether
those constraints are currently violated is not provided, either. To provide this
information we propose a solution as described in 4.2.

3.2 Debugging Applications Developed With AOP Frameworks

As described in [18] the possibility to debug aspect-enabled programs is crucial
for the usage of aop. Unfortunately, aop frameworks seldom provide a good
debugging support, which makes it hard to understand and correct the program’s
control flow. Additionally the adoption of aop to solve a software development

78 Lysann Kessler

problem can introduce new sources of errors. A categorization and description
of general debugging problems produced due to the usage of aop can be found
in [18].

Considering the orchideo aop activities described in 4.2 of [?] and the com-
paratively simple join point model, orchideo applications can fall victim of the
following aop typical faults, classified and specified by [62], [63] and [18]:
1. Incorrect aspect composition: the execution order of different advice matching

the same join point can be wrong, for example if the advice precedence has
not been specified sufficiently. As in orchideo the execution order is nondeter-
ministic if no precedence is specified [?], runtime execution order problems
can be hard to identify and reproduce. Section 4.5 describes how to support
debugging of this problem.

2. Failure to establish expected postconditions or preserve state invariants: de-
fects in the action implementation or in the orchideo|engine can cause post-
conditions or state invariants to be violated, that would be met if aspects
were disabled.

3. Incorrect changes in the exceptional control flow: exceptions occurring dur-
ing action invocation and execution are caught by the orchideo execution
context, and propagated to the domain application within an encapsulating
ExcecutionInterruptedException. Additionally the actions executed so far in
the current execution context are rolled back by calling the Action.undo()
method existing for this purpose [?]. The ExcecutionInterruptedException
should therefore always be handled on action invocation. The encapsulated
exceptions depend on the session configuration and must be handled along
with changes in the configuration. Unfortunately this is not enforced by
the orchideo framework and can therefore easily be neglected, resulting in
either unhandled or undetected exceptions. The runtime rescue and trace
view plug-ins support the debugging process if confronted with the resulting
problems (see sec. 4.6 and [?]).

Debuggability of orchideo as an AOP Framework. As stated in [18], an
aop debugging solution should enable either debug intimacy, or debug oblivi-
ousness, each when desired.

Debug intimacy, i.e. the ability to debug all activities introduced by the usage of
the aop framework, including the injected code, is fully supported by orchideo
as long as the source code of orchideo|engine, orchideo|objects and the custom
aspects is available to the developer. The only limitation lies in the lack of
support when it comes to prediction of the runtime behavior and comprehension
of the weaving process at runtime. Using static analysis the weaving can be
predicted to a certain extend [?]. A possible solution to runtime comprehension
is proposed in Section 4.5.

Debug obliviousness in constrast describes the possibility to hide all aop activ-
ities during debugging. A solution for orchideo to support debug obliviousness
has been implemented and is described in Section 4.1.

Debug Support for orchideo 79

A debugging solution should also preserve the base program’s debug infor-
mation. As orchideo is a noninvasive framework this property is inherently given.

Dynamism and aspect introduction. These properties are not as easily to achieve
within orchideo. They refer to the possibility to enable or disable aspects, and to
the possibility to introduce new aspects, both dynamically at runtime. This sup-
ports the isolation of failure causes by dynamically enabling debug aspects, and
by ruling out specific aspects during error search. Aspect weaving in orchideo is
performed fully dynamically at runtime based on the join point and advice infor-
mation configured in the session configuration [?]. This information is generated
once upon session creation and never changed later at runtime. To support the
above properties, this join point and advice information has to be manipulated
at runtime. The programmer theoretically can do this, but as a matter of fact it
is not a practical solution because the orchideo framework does not provide any
convenience for this. As a workaround, during application development typically
another session configuration exists that is used for debugging purposes.

Runtime modification is a property generally important to all debugging solu-
tions. It provides the possibility to modify code at runtime that is automatically
applied. This enables the programmer to quickly add trace statements, or try
out a bug fix without the need to restart the application. For invasive aop frame-
works [?] this can be tricky to implement [18], whereas orchideo already features
this property and is only restricted by the underlying Java hot code replacement
capabilities 1.

Fault isolation describes the debugger’s ability to isolate the fault location—
whether it lies within the base program’s code, the aspects code, or code of other
aop activities. This property is strongly connected with reproducibility and the
ability to automatically rule out specific aspects. To determine whether aspect
weaving is erroneous— which implies a defect in the orchideo|enigne code —static
analysis of aspect precedence as described in [?] can be used. Other framework
activity may not be as easy to separate from aspect or base code faults. Currently
the debugger does not automatically point out runtime states that contradict
the results of the static analysis. This would help to automatically detect failures
in the orchideo|engine.

The separation of base and aspect code is not intended in orchideo. The
base program usually cannot be executed without certain aspects enabled, as
the main target of orchideo is to provide a mdsd implementation through the
aspects defined in orchideo|objects. Executing the base program without those
aspects does not make any sense. Some aspects can be disabled though to au-
tomatically determine whether or not the defect lies within such an aspect. An
orchideo application developer must rely on the correctness of the provided or-
chideo|objects aspects.
1 http://java.sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.html:
“HotSwap” Class File Replacement

80 Lysann Kessler

Conclusion. orchideo, just as most other aop frameworks does not provide ideal
debug support. For some of the problems debug tools were developed within the
scope of this project work and are described in the next section.

4 Debug Tools for orchideo

To provide better debugging support for orchideo application developers and
orchideo|engine developers we needed to create interfaces to provide important
information of the running application. This is the first step in elevating the
level of abstraction and support debugging of orchideo applications with focus
on aop debuggability.

With “application developers” we refer to developers using the orchideo frame-
work to develop domain specific applications. With “engine developers” we mean
those who develop and improve the orchideo|engine and framework. In some cases
developing an application may also include developing custom aspects. “Aspect
developers” are programmers who need to do this. They are specialized applica-
tion developers who need a deeper understanding of the orchideo|engine, but not
as deep as engine developers.

The concrete solution and information visualization depends on the concrete
problem to be solved. In this section each such problem will be described. Then
we propose our solution and describe its implementation in detail. This is fol-
lowed by an evaluation of the solution and a discussion of work that still needs
to be done.

All solutions have at least one thing in common: They are all implemented
as Eclipse plug-ins. This enables good integration into the existing development
framework. The Eclipse plug-in architecture has been introduced in [45] and is
taken as known in this section.

4.1 Step Filtering

The step filter plug-in targets the problem of debug obliviousness: orchideo is
a complex framework that ships with a lot of code in the orchideo|engine and
orchideo|objects that the application developer is not responsible for or interested
in. The same situation applies for code generated by the orchideo framework,
for example during model creation. During modeling and coding phases the
developer can avoid this orchideo code, but not while debugging. The Eclipse
debugger does not know which code is interesting to the developer and which is
not. We provide a plug-in that makes the debugger ignore code from the orchideo
framework with just a single click.

Problem Statement. An application developer debugging an orchideo applica-
tion interactively may step into classes that he did not implement and is not in-
terested in—he only wants to use them. A good example for this are all aspect ac-
tions, like the CreateObjectAction which is invoked by ObjectAspect.createObject()
to create a new domain object.

Debug Support for orchideo 81

The developer does not want to debug the method and is not interested
in seeing its implementation. He has to take the correctness of the method as
granted because he probably does not understand the complex processes in the
orchideo|engine. Therefore he does not accidentally want to step into the action
implementation (like when doing a “step return” from a deeper stack frame).

Solution. Eclipse provides a mechanism to ignore stack frames, method invo-
cation states on a call stack [64] of certain classes or packages when debugging.
It is called Step Filtering. If the step filters are configured correctly and the de-
bugger supports them, the developer does not get in frames he is not interested
in when stepping through the program execution.

The Java Development Tools provide step filtering support for Java applica-
tions. Such a step filter is a full package or class name, or a partial name defined
as a regular expression. The filters can be configured in a preference dialog. Step
filtering can be enabled or disabled for the current workspace, using a toggle
button in the debug view. For Java applications the user can configure a list of
step filters that will be stored in the workspace preferences. Using check boxes
individual filters can be enabled or disabled. Disabled filters are ignored in the
debugging sessions and are stored only for the purpose of quick re-enabling in
the preference dialog. See the table below for some example filters.

Currently Proposed orchideo Step Filters
de.exxcellent.ocl*
de.exxcellent.orchideo*
org.eclipse*
lpg.lpgjavaruntime*
ActionImpl
AspectImplBase

Currently the orchideo application developers are encouraged to configure the
step filters themselves. Of course configuring the list manually is error-prone and
takes some time. But developers may not even know the possibility to configure
the step filters.

We provide a plug-in that automatically configures the proposed step filters
as in the list above and can enable or disable them using a toggle button in
the Debug View. The current configuration is saved per workspace. Therefore
a developer that debugs normal orchideo domain applications in one workspace
is free to debug the orchideo|engine itself in another workspace without inter-
ferences. The orchideo step filters can be configured analogue to the Java step
filters in its preference dialog. This way the plug-in can quickly be adapted to
new package names. To update the proposed step filter list for all application
developers the Eclipse software update can be used because the orchideo step
filters are distributed as a regular Eclipse feature.

82 Lysann Kessler

Preferences
Eclipse Preferences

Java Preferences

Java Debugger
orchideo Step Filter Pref.

enable step �ltering:
 “TRUE”

active �lter list:
 “de.exxcellent.orchideo.*,
 com.sun.*”
inactive �lter list:
 “com.ibm.*”

enable step �ltering:
 “TRUE”

active �lter list:
 “de.exxcellent.orchideo.*”

inactive �lter list:
 “org.eclipse.*”

change stepping
 behavior

override if TRUE

add if enabled

remove if
disabled

Fig. 2: Preference dependencies for the orchideo step filters

Implementation. The problems we faced when implementing the step filtering
plug-in for orchideo were mainly api deficits. Although it is possible to program-
matically enable or disable the Java step filtering there is no api to configure the
concrete list used during the debug sessions. The list is intended to be configured
by the user via the preference dialog. For us the only possibility to manipulate
the filters was therefore to change them in the preference store using the Eclipse
Preferences api [45].

The jdt plug-in maintains two workspace wide preferences related to step
filtering: one comma-separated list of the currently active filters, and one comma-
separated list of the currently inactive filters. The preference defining whether
step filtering is enabled or not is a workspace wide eclipse preference. When
changing the preferences the debugger is informed of the change as it is registered
as a listener for the preferences. This way it can automatically apply the new
settings.

When enabling the orchideo step filters, the orchideo step filters currently
marked as active are added to the list of active Java step filters. Additionally Java
step filtering is enabled using the provided api method, because we assume that
the developer wants to enable global step filtering when enabling the orchideo
step filter—else the enabling would not have an effect. When disabling orchideo
step filtering, all orchideo step filters are disabled in the list of Java step filters.
Figure 2 illustrates the dependencies of the step filtering preferences.

As we manipulate the Java step filter preferences, the orchideo filters also
appear in the list of Java step filters and its preference dialog. Because of the
architecture and functionality of the preference dialog inconsistencies can occur
when manipulating Java and orchideo step filter lists at the same time. The
trade-off we chose was to always override the activation settings for Java step
filters with the orchideo lists, because the orchideo step filters are a special case of

Debug Support for orchideo 83

step filtering in Java applications. To force this override the orchideo step filter
plug-in listens for debug events and will check and override the settings each
time the user starts a debug session or steps through the code.

To avoid asynchronism of the orchideo and Java step filter preferences, we
synchronize the settings at Eclipse start-up, using the Eclipse early start-up
mechanism [45]. Additionally the step filter toggle button is updated at start-up
to reflect the current workspace settings.

Evaluation. The proposed plug-in can solve the debug obliviousness problem
described in Section 3.2 without preventing debug intimacy to the following ex-
tent: If the standard step filters are used all orchideo|engine code is invisible to the
programmer at runtime, because it is located inside the de.exxcellent.orchideo
package. All aspects predefined by orchideo and used for the mdsd implementa-
tion are located in the same package and are therefore ignored by the debugger,
too. Debug intimacy can be achieved when required at any time by disabling the
step filter toggle button. Those three properties cover the most common cases
of orchideo application debugging.

If the developer has defined custom aspects for the application, aspect and
advice implementation as described in Section 4.1 of [?] are hidden with the
standard plug-in configuration. We decided not to automatically add filters for
custom aspects, because typically the aspects have to be debugged along with
the application. To nevertheless hide a custom aspect’s implementation, the
programmer can add the corresponding aspect package to the filter list in the
preference page for the orchideo step filters.

4.2 Constraint View

The constraint view plug-in shows whether the orchideo objects meet their con-
straints. This elevates the level of abstraction during debugging to the model
level as discussed in Section 3.1 and provides the important information about
the constraint state. For instance it helps the programmer to know if the next
commit to the database would fail because of an invalid object state.

With orchideo domain objects we mean objects that are instances of domain
models created in the orchideo development environment. Those objects are all
adaptable to the orchideo type XObject, which is the object representation man-
ageable by the ObjectAspect.

Problem Statement. When developing an orchideo application developers usu-
ally define constraints in their domain models [?]. One of the most common
reasons for an action like HibernateAspect.commit() to fail is a constraint viola-
tion: The objects maintained by orchideo cannot be committed to the database
because at least one object does not fulfill its requirements.

Assuming there is an application that uses a domain model including a
class Customer. A customer has two attributes: a first name and a last name.
The model constraints that both of those attributes must exist. The orchideo

84 Lysann Kessler

Customer customer = (Customer)
objectAspect . createObject (Customer .CLASS);

customer . setFirstName (" Peter ");
// customer . setLastName (" Miller ");

hibernateAspect . commit ();

Fig. 3: The last statement will cause an ExecutionInterruptedException because
the customer object is missing its last name.

framework automatically generates two cardinality constraints for this class:
a firstNameCardinalityConstraint and a lastNameCardinalityConstraint. Both
constraints have an upper and a lower bound of one. At runtime an instance of
this class may be created using the ObjectAspect. If the session this aspect be-
longs to also has enabled the ConstraintAspect and the HibernateAspect the code
snippet in Figure 3 will fail with an ExecutionInterruptedException because the
customer object is missing its last name attribute.

In this simple example the cause of the problem is obvious. In a more complex
situation with more objects and complex constraints the developer debugging the
application now has to check all objects in the session whether their constraints
are met. He could check the constraints manually by comparing the objects’
attributes and the model requirements. The developer has to switch between
the model or diagram file and the debugging session to get the information. This
method is not well applicable to complex situations. Reading the orchideo failure
trace or using the Trace View plug-in (see [?]) can help to identify the constraint
that is violated and the object id of the invalid orchideo object. Matching all this
information manually takes time and is error-prone.

Requirements. A solution to this problem is to provide a tool that automat-
ically checks the orchideo constraints at runtime. It has to fulfill at least the
following requirements:

Constraints have to be checked every time a change to the domain objects
was applied. This means to check after every debug step and every time the user
executes code on the target vm. More commonly also external changes should
be considered as the system may be accessing a shared database.

The tool should give visual feedback whether constraints are violated. Changes
in the violation state from one step to another should be marked, too. For an ob-
ject it should list all constraints and their violation state. The user should have
easy access to information that helps him to understand the cause of the viola-
tion. If possible the developer should not have to leave the debug perspective or
switch to other files. Important information may include:

– the constraint type [?],
– all properties that influence the constraint’s fulfillment (triggers),

Debug Support for orchideo 85

1

2
3

4

5

6

7 8 9

Fig. 4: Screenshot of the constraint view at runtime

– the current state of the triggers,
– the ocl expression for ocl constraints,
– the method checking the constraint and a jump to code action for Java con-

straints

The solution should integrate with the Eclipse debug perspective and debug-
ging tools. It should have the “look and feel” of traditional debug elements in
Eclipse.

The tool should not impair the performance significantly when debugging an
application. If the user had to wait very long for the results of the constraint
checking just to continue debugging, he would probably disable the feature and
miss constraint violations.

Solution. We provide an Eclipse view that loads itself into the debug perspec-
tive and that shows for a set of objects whether they meet their constraints.
The constraints are re-checked after every stepping, breakpoint hit, and remote
code execution like when using the display view to execute code. The developer
can stay in the debug perspective and does not have to switch back and forth
between debug session and model file. Figure 4 shows a screenshot of the view.

The view has a tree similar to the tree in the Eclipse variables view, listing the
orchideo objects and a symbol to show whether the constraints of this object are
met À. Each object can be expanded to list its constraints Á, and each constraint
has a symbol to show whether the objects passed the check. In Figure 4 there are
three orchideo objects. The first one, encapsulated in a variable called customer
has some constraint violations. The constraint labeled Ã passed, whereas the
constraint Ä is violated.

The Java variable itself is listed, too Â. Therefore all information about the
orchideo object variable that is usually accessed using the variables view, is also

86 Lysann Kessler

visible in the constraint view. This way the developer does not need to switch
views and find the object in the variables view to get additional state information.
Furthermore the view itself behaves very similar to the Eclipse variables view:

– It also has a detail pane Å, showing extended information about the selected
variable, like the number of constraints and the number of constraints that
are violated, or about the selected constraint itself. Information about a ocl
constraint includes the ocl expression, whereas for cardinality constraint the
number of actual and required values assigned to the property is shown.

– The user can enable columns that show additional information in each line
along with the name of the variable or constraint. The columns available are
the same as in the variables view. For instance the declared type Æ and the
actual type show the type of the constraint. For cardinality constraints the
former also shows the number of required values for the constrained property.
The value column Ç shows whether a constraint is met. The instance ID
column, reserved for object ids in the Java virtual machine, is empty for
constraints. For a Java variable, columns and detail pane show exactly the
same information as in the variables view.

– The view actions are adopted to the variables view. For instance there is a
button that toggles the logical structure state È.

As thousands of domain objects may exist in an orchideo session object it is
not applicable to check all constraints of all objects in the session each debug
step. The current solution checks objects on the current stack frame only. This
is a first quite simple to implement solution that has some practical advantages:
The objects on the current stack frame most often are of highest interest. The
developer already has isolated the object type and now wants to find out why
such an object is taken into an invalid state. Additionally the performance is not
impaired significantly.

Implementation. The ConstraintView class inherits from the VariablesView
class to achieve good integration with the standard debug views. On debug
state changes it gets automatically informed along with the other debug views
and can react on it. The setViewerInput() method is called with input objects
representing new debug states, for instance new threads being spawned or the ac-
tivation of a new stack frame. A Java stack frame represents the current method
invocation state on a thread’s stack, including all local and static variables and
the this variable.

Model Objects. The variables view lists IJavaVariable objects in its tree viewer,
that have appropriate content and label providers. In the constraint view, we
display ConstrainedObjectVariable objects, encapsulating the original variable
and the list of constraints for that object.

Figure 5 shows an overview of the model entities used in the constraint view.
The ConstrainedObjectStackFrame is the encapsulating input passed to the tree
viewer. It is not displayed itself in the view. It holds ConstrainedObjectVariable

Debug Support for orchideo 87

entities, which are the top most objects displayed in the view (À in Figure 4). It
encapsulates one ConstrainedObjectJavaVariable Â and one ConstraintList Á.
A ConstrainedObjectJavaVariable simply holds its original IJavaVariable and
encapsualtes its children in instances of ConstrainedObjectJavaVariable, too.
Due to poor extensibility of the default content providers, this is required for
the content provider mechanism to work (see below).

The ConstraintList can hold several Constraints Ã, Ä. The Constraint class
is intended to be overwritten for the special constraints. Java constraints cur-
rently do not need to inherit, though, because they do not define any special
behavior yet. Cardinality constraints override the required value string and ac-
tual value string behavior to additionally display the upper and lower bounds.
ocl constraints have their ocl expression attached as a child entity.

Evaluating Constraints. As the Eclipse Java Debugger implements the client side
of the Java Debug Interface, the variable values we can get from a stack frame
have mirror objects [65] to the real objects in the debugged Java virtual machine.
Those mirror objects implement com.sun.jdi.Mirror, a proxy used by the debug-
ger to examine or manipulate entities in the virtual machine. ObjectReference is
a specialized interface implemented by mirrors that point to objects. The con-
straint view uses this interface to evaluate whether an object on the stack frame
adapts to the orchideo XObject interface (i.e. is an orchideo domain object), and
whether it fulfills its constraints.

To evaluate the constraints for each orchideo object its session, object aspect
and constraint aspect must be determined. Then the constraints can be enu-
merated and checked. As the remote method invocation is very inconvenient, we
implemented a helper class that provides more abstraction from the Mirror api.

To improve the runtime performance constraints are only checked if neces-
sary. The icon next to a orchideo object shows a red cross if at least one constraint
is violated, or a green check mark if all constraints of that object are satisfied.
Therefore probably not all constraints need to be checked to determine whether
there is a constraint violation. If a constraint state or another property is eval-
uated, it is cached and does therefore not need to be checked again until the
debug state changes (for instance because of a step event).

Content and Label Providers. The Eclipse debug views use a strong Model-View-
Controller (mvc) pattern. Each model object type that should be displayed in
the debug views must have a content and a label provider. Those providers
are registered at the global adapter manager. The input proxies used by the
debug views determine the matching content and label providers by searching
for appropriate adapters.

The content provider, implementing IElementContentProvider, is responsible
for defining the sub items of a given tree item. The label provider, implementing
IElementLabelProvider, defines how to display a certain item. Subjects to be
defined are text color, background color, label texts in the different columns and
an icon to be displayed at the left of the line. We therefore defined content and
label providers for the model object types mentioned above. Additionally we

88 Lysann Kessler

+
ge

tC
hi

ld
re

nC
ou

nt
()

: i
nt

+
ge

tC
hi

ld
re

n(
in

de
x:

in
t,

le
ng

th
:in

t)
O

bj
ec

t [
0.

.*]

C
on
st
ra
in
ed
O
bj
ec
tS
ta
ck
Fr
am

e

- s
ta

ck
Fr

am
e:

 IJ
av

aS
ta

ck
Fr

am
e

+
ge

tV
ar

ia
bl

e(
):

C
on

st
ra

in
ed

O
bj

ec
tJ

av
aV

ar
ia

bl
e

+
ge

tC
on

st
ra

in
ts

():
 C

on
st

ra
in

tL
is

t
+

ha
sV

io
la

tio
ns

():
 B

oo
le

an

C
on
st
ra
in
ed
O
bj
ec
tV
ar
ia
bl
e

- v
ar

ia
bl

e:
 IJ

av
aV

ar
ia

bl
e

+
ge

tC
hi

ld
re

nC
ou

nt
():

 in
t

+
ge

tC
hi

ld
re

n(
in

de
x:

in
t,

le
ng

th
:in

t):
 O

bj
ec

t [
0.

.*]
+

ha
sV

io
la

tio
ns

():
 B

oo
le

an
+

ge
tN

um
be

rO
fV

io
la

tio
ns

():
 in

t

C
on
st
ra
in
tL
is
t

- v
ar

ia
bl

e:
 IJ

av
aV

ar
ia

bl
e

- c
ac

he
dV

ar
ia

bl
es

1 0.
.*

- c
ac

he
dV

ar
ia

bl
e

0.
.1

1

+
ge

tV
ar

ia
bl

e(
):

IJ
av

aV
ar

ia
bl

e
+

ge
tC

hi
ld

re
n(

in
de

x:
in

t,
le

ng
th

:in
t):

 O
bj

ec
t [

0.
.*]

C
on
st
ra
in
ed
O
bj
ec
tJ
av
aV
ar
ia
bl
e

- v
ar

ia
bl

e:
 IJ

av
aV

ar
ia

bl
e

- c
on

st
ra

in
ts 1

- c
ac

he
dC

hi
ld

re
n 0.
.*

1
+

is
Vi

ol
at

ed
():

 B
oo

le
an

+
ge

tN
am

e(
):

St
rin

g
+

ge
tD

ec
la

re
dT

yp
eN

am
e(

):
St

rin
g

+
ge

tA
ct

ua
lT

yp
eN

am
e(

):
St

rin
g

+
ge

tR
eq

ui
re

dV
al

ue
St

rin
g(

):
St

rin
g

+
ge

tA
ct

ua
lV

al
ue

St
rin

g(
):

St
rin

g
+

ge
tC

hi
ld

C
ou

nt
: i

nt
+

ge
tC

hi
ld

re
n(

in
de

x:
in

t,
le

ng
th

:in
t):

 O
bj

ec
t [

0.
.*]

C
on
st
ra
in
t

- c
on

st
ra

in
t:

IJ
av

aO
bj

ec
t

- c
ac

he
dC

on
st

ra
in

ts
0.

.*1

+
ge

tD
ec

la
re

dT
yp

eN
am

e(
):

St
rin

g
+

ge
tR

eq
ui

re
dV

al
ue

St
rin

g(
):

St
rin

g
+

ge
tA

ct
ua

lV
al

ue
St

rin
g(

):
St

rin
g

C
ar
di
na
lit
yC
on
st
ra
in
t

- c
ac

he
dL

ow
er

Bo
un

d:
 in

t
- c

ac
he

dU
pp

er
Bo

un
d:

 in
t

+
ge

tR
eq

ui
re

dV
al

ue
St

rin
g(

):
St

rin
g

+
ge

tC
hi

ld
C

ou
nt

: i
nt

+
ge

tC
hi

ld
re

n(
in

de
x:

in
t,

le
ng

th
:in

t):
 O

bj
ec

t [
0.

.*]

O
cl
C
on
st
ra
in
t

C
us
to
m
Fi
el
d

- n
am

e:
 S

tri
ng

- d
ec

la
re

dT
yp

e:
 S

tri
ng

- v
al

ue
: S

tri
ng

- a
ct

ua
lT

yp
e:

 S
tri

ng

- c
ac

he
dE

xp
re

ss
io

n
0.

.11

Fig. 5: Simplified class diagram of the constraint view model hierarchy

Debug Support for orchideo 89

had to create an adapter factory used to register the providers at the adapter
manager.

Detail Pane. Detail pane integration is achieved using an extension point for
this purpose. The extension defines an IDetailPaneFactory implementation to
be used as factory for the above model classes. The factory creates a detail
pane which is capable of displaying extended information about the currently
selected object in the constraint view. The DefaultDetailPane and its correspond-
ing DefaultDetailPaneFactory provided by the Eclipse platform are capable of
displaying information about IVariables and IExpressions. We inherited from
those classes for our own detail pane and factory. By overriding the display()
method we added the ability to display detailed information about our model
objects, too.

Synchronization. As mentioned before all debug views are updated at the same
time. To check the constraints of the orchideo objects at runtime we need to oper-
ate on the suspended thread object and on the variable objects. But other debug
views also operate on the same objects. It is required that two such operations
do not happen concurrently, else an exception is thrown.

Unfortunately, there is no synchronization mechanisms in the Eclipse debug
plug-ins designated to solve this problem. We had to implement an external syn-
chronization mechanism that ensures that the view updates do not happen con-
currently. The SynchronizingJobManager class from the synchronization package
is responsible for this.

Synchronization is achieved using the IJobManager and IJobChangeListener
interfaces provided by the Eclipse platform. The debug view updates are all per-
formed asynchronously in so-called Jobs. The SynchronizingJobManager registers
itself at the workspace for job change events. Each time it takes notice that a
job of the other debug views is about to run it ensures that the constraint view
is not updating at the moment. It may suspend the job and put it into a queue.
This mechanism is implemented vice versa for a constraint view update job that
is about to run. This way these update jobs should not run at the same time.

Future Work. At the time this paper was written the above synchronization is
not working properly. The current implementation is also very dependent on a
specific debug plug-in version, because the jobs to be synchronized are identified
by string literals that are defined in the debug plug-in and are not accessible for
external plug-ins like the constraint view plug-in. The synchronization mecha-
nism is therefore subject to change.

Apart from that, the objects listed should not be taken from the current stack
frame only. As stated before it is not possible to always list all objects of a session.
At least recursive search should be implemented: Starting from the objects in the
current stack frame their properties should be searched for orchideo objects and
displayed appropriately until a given recursive depth is reached. This solution
has to handle circular dependencies and use a good visualization technique.

90 Lysann Kessler

Another possibility would be to provide the possibility to define expressions
to be evaluated like in the Eclipse expression view. As the expression view class
also inherits from VariablesView this might be not as hard to implement as it
may suggest at the first thought. Though we have not yet explored this option
further, it obviously provides the programmer much more freedom in choosing
the objects to be checked.

In the requirements section the need for two types of additional information
about the constraints was proposed: There currently is no action to jump to the
code of a Java constraint implementation and the properties that act as triggers
for the constraints are not directly accessible either. Those two features should
be implemented to make the usage of the plug-in more convenient and reduce
the need of switching to the model file in order to debug an application.

Evaluation. Currently the constraint triggers are not accessible in the view,
because this is only profitable for complex constraints and has a minor impor-
tance. A jump to code action for Java constraints has not been implemented
either, because it is more complicated to implement and there are only few Java
constraints.

In the current version the constraint view enables the programmer to easily
track the constraints of a certain object. The limitation that only objects on the
current stack frame are displayed will be eliminated in near future using one of
the above proposed solutions. This is important in orchideo as not only objects
on the current stack frame can cause an operation to fail, but on a hibernate
commit the whole object network has to be in a valid state. Apart from that
the elevation of the level of abstraction concerning the constraints is provided
by the plug-in and improves the debugging experience of orchideo applications.
Our customers already use the plug-in for this purpose.

4.3 Session View
The session view targets to improve the debugging intimacy. When debugging
the orchideo|engine it is necessary to have full insight into the engine activities.
As long as the source code of the engine is available it is theoretically possible
to debug the whole aop framework. The current session state is also important,
but this information is not as easily accessible while debugging. The session view
plug-in enables the programmer to easily access information about the current
orchideo sessions.

Problem Statement. If an engine developer suspects the existence of a de-
fect in the aspect weaving implementation, he has to inspect the internals of
the respective session object. Especially the list of advice, join points and the
execution history are of interest.

Unfortunately session objects are not directly accessible. Until now, engine
developers had to search the stack frames for orchideo domain objects which
hold a reference to their session. This process is inconvenient and error-prone,
because often multiple sessions exist in an orchideo application.

Debug Support for orchideo 91

Fig. 6: Screenshot of the session view at runtime

Solution. The session view plug-in provides an Eclipse view that lists all ses-
sion objects found in the current Java thread. The view automatically integrates
itself into the debug perspective. Sessions are ordered by priority, as the cus-
tomer demanded. The this object has highest priority if it is an orchideo session
itself. Otherwise sessions near to the current stack frame have high priority, ses-
sion objects farther away have a lower priority, determined by the number of
indirections needed to reach the session.

This way the developer can easily tell which session is the “current” session. If
he wants to see details about another session object he can study it nevertheless.

The session view furthermore acts like the Eclipse variables view, and there-
fore also adopts its advantages without reimplementing them, for example: View
updates are fully asynchronous and do not block the Eclipse ide. Attributes of a
Java object can be inspected because the object is displayed in a tree structure.
Changes to a variable or attribute are automatically highlighted to advise the
programmer of this change.

Figure 6 shows a screenshot of the session view during a debug session. It
contains one session object that has been expanded to view its attributes.

Implementation. The SessionView class also inherits from the VariablesView
class. When SessionView.setViewerInput() is called, the view uses a helper class
to recursively find all sessions in the thread of the provided stack frame. The
search begins at the top most stack frame, checks the this variable and its
properties, the orchideo domain objects and orchideo aspect objects and their
properties for a session until a given recursion depth is reached. When all ses-
sion objects are found they are passed as IVariables to a custom IStackFrame
implementation that is only used to be displayed as model object in the session

92 Lysann Kessler

view. This custom stack frame is then passed to super.setViewerInput() as the
input to the tree viewer.

IStackFrame and IVariable objects can be displayed by the view because
appropriate content and label providers are registered by the Java Development
Tools plug-in.

Problems and Future Work. To achieve the displaying of IStackFrame and
IVariable objects without providing own content and label providers it is neces-
sary for the view to act as if it was a Variables View. This means it has to set its
debug context id, a string needed for initialization of the input provider service,
to the same as the Variables View. As the same id is also used to determine the
id of the preference responsible for persisting the column selection and ordering
in the view, problems can occur when both views try to use this preference.

In the constraint view this string was changed to a new unique identifier
to solve this problem. Unfortunately, the content providers check the debug
context id of the view. If it does not match either the variables view’s, expression
view’s or launch view’s context id they will not work for the provided input
object—although they are appropriate for it. Therefore classes that encapsulate
the original IVariable objects have been implemented. The session view is an
older view, and therefore those classes are currently not available to it. To solve
the column presentation problem this will change in future and the session view
will also get a unique debug context id.

4.4 Logical Structures for orchideo|engine Objects

The logical structure plug-in improves the above session view plug-in by enabling
the engine developer to filter information about the session object and other
encapsulated entities.

Problem Statement. When an engine developer has isolated a session object
he wants to analyze, he is confronted with many attributes of that objects. But
typically only five attributes are of interest:

– The session configuration describes which aspects are enabled in the selected
session.

– The session object holds a list of advice and
– a list of join points for the current session configuration.
– The current history that log which actions have been invoked lately. Depen-

dent on what the user has enabled the history is either saved in the attribute
for the fixed limited execution history or in the undo marker based execution
history attribute. See [7] for more information about the history types.

The lists of advice and join points in turn are actually arrays of arrays. They
are structured in a way that enables fast accessibility at runtime which is crucial
for performance optimization of the orchideo|engine. Unfortunately this structure

Debug Support for orchideo 93

often interferes with the engine developer’s need to grasp the configured advice
and join points. Figure 6 shows a screenshot of an expanded session object at
runtime.

Solution. Obviously the information contained in the session objects should be
preprocessed and filtered before shown in the variables or session view. Never-
theless it should still be possible to see the full information without filtering, if
necessary.

The Java Development Tools plug-in provides a solution for this use case: For
a variables view the user can enable so-called logical structures. Logical structures
permit the user to define alternative display options for object instances of a
certain type. The JDT plug-in for instance uses this mechanism itself to render
collection objects in a clearer way. Instead of showing the internal attributes of
a collection the user sees the simple array representation, because he is probably
only interested in the number, identity and order of the objects in the collection.
To view the internal structure of the objects it is still possible to disable the
logical structures at any time. Figure 7 shows the toggle button (À) that enables
or disables the logical structure rendering.

The customer requested a logical structure rendering for session objects that
includes the above listed entities. There should be only one history attribute
that reflects the current history. Another attribute should exist to show the
type of the current history. Additionally the list of advice was to be separated
by the advice type that is either before, after or around. The list of join points
should lose its duplicate entries it had for performance reasons. The attributes of
session configuration objects should be reordered to display the most important
information, the name of the configuration, at the top. Our logical structure
definitions has all those attributes, as shown in Figure 7. The screenshot shows a
variables view with a session object expanded. As the logical structure rendering
is a feature provided by the variables view and its content providers the orchideo
logical structures of course also work in the variables view itself and in other
views derived from it.

Implementation. Logical structures can either be configured in the prefer-
ences dialog, or defined using the org.eclipse.jdt.debug.javaLogicalStructures
extension point. To make the logical structures easily distributable we decided
to use the latter way. Listing 8 shows an excerpt of our logical structure defi-
nition for the orchideo session type. The javaLogicalStructure element defines
the type that can be rendered differently. In the listing it is the orchideo Session
interface. As it is only an interface we set the subtypes attribute to true because
else the definition did not have any visual effect. The variable elements define
which attributes the session objects get and in what order they are displayed
in the tree viewer. The value attribute can be any valid Java code that can be
executed in the context of the object itself. The result of the execution will be
shown as the value of the defined variable.

94 Lysann Kessler

1

Fig. 7: Screenshot of the session view at runtime, with enabled logical structures

We decided to create a helper class, SessionLogicalStructureProvider, to cal-
culate the value that is to be displayed. This way we have as few code as possible
defined in the plugin.xml file itself that cannot be debugged. The getAdvices()
method for instance creates an object of a new type that is only to be used in
the logical structure mode. This enables us to alter the displaying of the array
containing the array of advice by using a logical structure definition for this type,
too. As the code that calculates the attribute values is executed in the session
object’s context, this helper class has to be defined in the same plug-in as the
Session type. Therefore we had to extend the de.exxcellent.orchideo.engine
package by our helper classes and the extension point definition.

Evaluation. Together the session view and the logical structure plug-ins pro-
vide a very simple possibility to reach internal session information for all session
objects. The information is filtered and sorted so the developer can focus on im-
portant information only. Both improve the debugging experience by supporting
debug intimacy.

4.5 Execution Context Visualization
In this subsection we propose a possibility to debug incorrect aspect compositions
due to wrong advice definitions or engine errors. Therefore it is intended to be
used by aspect developers or engine developers.

Problem Statement. An orchideo aspect developer has to define the advice
pointcuts and precedence when defining a custom aspect. When using this aspect
it might be possible that it is not invoked, or invoked at the wrong time. The
error can either be caused by the orchideo|engine that wrongly weaves the advice,
or by the advice definition and implementation. Debugging such issues is very
hard because the developer quickly has the impression to be stuck in glue code
that is hard to understand.

Debug Support for orchideo 95

<javaLogicalStructure
description =" Reduces information of an orchideo session

to its active history and its advices respectively
its actions ."

subtypes ="true"
type="de. exxcellent . orchideo . engine . Session ">

<variable
name=" configuration "
value=" return de. exxcellent . orchideo .debug. engine .

SessionLogicalStructureProvider . getConfiguration (this);">
</variable >
<variable

name=" advices "
value=" return de. exxcellent . orchideo .debug. engine .

SessionLogicalStructureProvider . getAdvices (this);">
</variable >
<variable

name=" joinpoints "
value=" return de. exxcellent . orchideo .debug. engine .

SessionLogicalStructureProvider . getJoinpoints (this);">
</variable >
<variable

name=" history "
value=" return de. exxcellent . orchideo .debug. engine .

SessionLogicalStructureProvider . getHistory (this);">
</variable >
<variable

name=" history kind"
value=" return de. exxcellent . orchideo .debug. engine .

SessionLogicalStructureProvider . getHistoryKind (this);">
</variable >

</ javaLogicalStructure >

Fig. 8: Example logical structure definition

Solution. The information the programmer is looking for is nevertheless pos-
sibly available: The session objects hold a history of execution contexts, which
encapsulate the actions woven and even their order. If an action is currently
being invoked, the current execution context is also available in the history. It
is actually the last one in the list.

The developer can use the session view described above to look into a certain
session and its execution history. Using this information the developer can de-
termine whether or not certain aspects have been invoked, and in which order.
If the developer would for instance set a breakpoint in the do() method of his
custom aspect he can find out which actions have been invoked so far through
the history. This information extends the information from the static analysis of
advice precedence [?].

96 Lysann Kessler

Unfortunately, the execution context is currently not visualized properly.
They have the same format as the exception trace described in [?]. A better
solution would therefore be an integration of the trace view described in [?] into
the interactive debugging process. The trace view provides a more comprehensi-
ble visualization of the execution context, and could automatically update itself
with the information from the current context. This would help the programmer
to keep track of actions currently being invoked.

Currently the performance of the trace parser is not sufficient for repeatedly
re-parsing execution contexts on each debug step [?], which would lead to un-
desirable latencies. On the other hand the developer can manually access the
execution context trough the session view and paste it into the trace view to
visualize the current execution context, when required. Due to the poor cost-
benefit ratio we therefore did not explore the automation of this process any
further, but instead concentrated on the value creation for our customer with
regard to other unsolved problems.

4.6 Runtime Rescue

The runtime rescue plug-in is more passive than the other plug-ins. It targets the
debuggability problem no. 3 described in Section 3.2: Because of the architecture
of the orchideo|engine, exceptions occurring in orchideo applications are thrown
deep inside the engine and not in the application code. The actual cause of the
problem is forgotten and can be found only in the exception trace. This plug-in
helps to find the original exceptions causing an ExecutionInterruptedException
while the application is held alive and the objects can still be inspected to identify
the problem causing the exceptions.

Problem Statement. In orchideo applications exceptions that are thrown dur-
ing execution of an action are caught by the orchideo|engine and written to
a stream. Then the actions in the current execution context invoked so far
are rolled back to return to a valid state. The engine is then left with an
ExecutionInterruptedException that holds the initial exception information. So
when the user catches the exception the erroneous state inside the engine has
vanished and the developer has to read and understand the orchideo exception
trace to find the manner and origin of the initial exception. As described in [?]
especially the comprehension of the trace was not easy to accomplish until re-
cently.

Solution. For interactive debugging it would be more desirable to make the
location of the original exception more comprehensible. As multiple problems can
occur during one action invocation, these multiple problems must be displayed
coequally [?].

Using the given capabilities of the Java Development Tools the user could
define exception breakpoints to be informed of caught and uncaught exception
occurring in the application. Defining the breakpoint for all types of exceptions

Debug Support for orchideo 97

will probably hold the program too often. If the type of the exception is already
known (i.e. if the problem has already occurred and should now be reproduced)
this more special exception type can be defined as the break point condition. If
the exception occurs the debugger will hold exactly at the location where it is
thrown. This could help the engine developer to debug the orchideo framework if
he suspects a defect in it. The orchideo application developer on the other hand
is probably not interested in this location, but only what operation has caused
this exception.

Our approach helps to find this location: We still make the orchideo|engine
catch any exception that is thrown during the action execution. We can then
use the capabilities of the orchideo framework to roll back the actions performed
in the current execution context, so the application is brought back to a valid
state. To fully roll back the application state, the thread’s stack is un-winded
to return to the application code instead of being stuck inside the engine code
where the ExecutionInterruptedException is thrown. The debugger will hold
at the beginning of the method of the application code that called the action
which finally caused the crash and the line of this call is marked to indicate the
problem. This process of returning to a valid state from an erroneous state gave
the plug-in its name, runtime rescue.

As the problem actually manifests itself in one or multiple exceptions we can
extract the stack trace and display the failure information to the user. After
the runtime rescue has taken place the user is therefore at the point in the
application that, if re-run, may cause the exception again. The developer can
then use the debugging tools that have already been presented to analyze the
current state and understand why the failure occurred. Especially the stack trace
bears important information that is automatically processed using the trace view
plug-in which is described in [?] and [?]. If the user wishes to test the application
behavior on occurrence of exceptions, the runtime rescue feature can of course
easily disabled and re-enabled using a toggle button in the debug view.

Implementation. When the user enables runtime rescue first of all an exception
break point is created that will break the debugger on caught and uncaught
exceptions of type ExecutionInterruptedException. The plug-in will then register
a listener on debug launches to be informed of the start or stop of debugging
sessions. The plug-in uses early start-up to determine whether runtime rescue is
initially enabled and to register the break point and its listener, if appropriate.
When a new program is launched in debug mode we start a thread that regularly
checks whether a thread of a currently debugged Java program has stopped at
the previously set exception breakpoint. When no more debugging sessions are
running, the thread is stopped to not pointlessly impair the Eclipse runtime
performance.

If the check is positive, the runtime rescue takes place: The orchideo trace
is extracted from the thread that has the exception. The extraction is achieved
using jdi mirrors just as in the constraint view plug-in. This way the current
orchideo|engine execution context is dumped to a string and passed to the de-

98 Lysann Kessler

bugger. This trace is then printed to the debugger console and parsed to be
displayed in the orchideo trace view.

Additionally the thread’s stack is un-winded to the top most method that has
source code available in the current workspace. This location is most probably
the last position before the exception which the developer can understand and
have influence over. If no such location is found, the thread is resumed and
therefore the exception is thrown.

Problems. The runtime rescue unwinds the stack until it reaches a method of
the application code again. This results in the current instruction being the first
instruction of that method. The Eclipse Debugger Framework does not provide
any possibility to set the current instruction to the method that has been called
and that resulted in an exception. The programmer has to step through the
method to reach the erroneous method call. This can lead to side effects which
may change the application state and prevent correct reproduction of the failure.

Another problem of stack unwinding is that finally blocks are currently not
executed. Usually the Java virtual machine takes care of finally blocks being ex-
ecuted when an exception is thrown, until a matching catch statement is reached.
When using stack unwinding this step is skipped. This is especially a problem
because the orchideo|engine uses a finally block in the ExecutionContextImpl
class throwing the ExecutionInterruptedException. Under certain circumstances
skipping the execution of this finally block can leave the session in an incorrect
state. This will lead to another exception as soon as the user tried to invoke
another action in this session.

The general execution of finally statements is a problem that we currently
cannot solve. Therefore the usage of the runtime rescue plug-in must happen
with this detail in mind. Currently the only practical problem is the finally
block in the ExecutionContextImpl class that is not executed. As a workaround
this block can be executed manually when a runtime rescue takes place.

Evaluation. In the current version the runtime rescue is able to hold the pro-
gram execution when an orchideo exception occurs. It automatically parses the
stack into the trace view [?] to enable the developer to analyze the problem. The
application is held alive by the debugger and the programmer can inspect its
state. Unfortunately, the application may be in a state where any further action
invocation may make the program crash again. As the application would crash
anyway this is only a small disadvantage.

All in all, the objective of the plug-in can be seen as being achieved. Uncaught
exceptions due to different aspect activation states are automatically caught and
can be analyzed interactively by the programmer. Nevertheless it would be more
convenient to reduce undesired side-effects to the application.

Debug Support for orchideo 99

5 Overall Evaluation

Our goal was to build tools that assist the debugging process of orchideo applica-
tions, aspects and the orchideo|engine. In this section we summarize the benefits
of our debugging solutions presented in Section 4.

Through our debug tools we can support the developer in debugging orchideo
applications, both from the mdsd and the aop point of view. The developer
is provided additional information to understand the runtime processes in the
orchideo|engine, and to inspect the current state of the domain objects. He can
focus on the important software parts by hiding framework code and information
that is not of interest. Unexpected errors can be caught by the debugger, allowing
the programmer to inspect the cause of the error in the living system.

The plug-ins integrate with the orchideo ide and make use of the mature
implementations provided by the Eclipse debug platform. There is of course room
for improvements, but the orchideo application and engine developers already
benefit from the provided plug-ins. As we made a first big step towards the
realization of characteristics good aop debugger frameworks should provide,
their development process is assisted and sped up.

Further research has to be done especially in the field of mdsd debugging
support to eliminate the need of hand-constructing specialized solutions for in-
dividual mdsd frameworks.

6 Related Work

Cougaar MDA System Debugger. Although there is no general debugging
solution for mdsd frameworks, debugging support for individual systems has
been hand-constructed, just like the debug tools for orchideo presented in this
paper. One such system is the Cougaar Model Driven Architecture System [66].
George et.al. present a model level debugger for this system [59]. The main
difference of this debugger to our solution is that a whole new debugger has been
implemented on top of the Eclipse Debug Platform [67] to provide the debugging
support. This way the authors are very flexible in their implementation but also
need to re-implement much convenience for such a debugging solution.

When implementing our tools we could rely on the jdi implementation pro-
vided by the Java Development Tools, instead of writing a new Java debugger.
This way we were not as flexible as the above debugging solution, but could bet-
ter focus on the mdsd and aop problems. The implementation of a new debugger
was therefore not an option to us.

AspectJ Development Tools. The AspectJ Development Tools (AJDT) pro-
vide tool support for editing, building and debugging AspectJ programs in
Eclipse [43]. They provide basic debug support, but some important features
are currently not present. Especially stepping into around advice is not sup-
ported and setting breakpoints in an around advice does not have any effect.

100 Lysann Kessler

orchideo as a noninvasive system has a slight advantage here because debug in-
formation does not really need to be modified or extended, but the information
needed by the debugger is automatically generated due to a normal Java build.
Additionally the join point model in AspectJ is much more powerful, but also
more complex, and the debugger therefore has to keep track of more information.

Model-Based Debugging. In contrast to model-level debugging, model-based
debugging [68] does not emerge from model-driven software development. In
model-based debugging models are generated from the existing source code of
the software. When debugging the programmer can use additional information
and visualization provided by the models.

Model-level debugging as applied by our tools bases on existing models. It
supports the debugging process by elevating the level of abstraction to the level
the programmer has created his models in. In model-based debugging the level
of abstraction is elevated to a higher level than the one the programmer initially
defined the program in. It therefore emerges from a different situation and pro-
vides merely a convenience, wheres model-level debugging in mdsd frameworks
is a requirement for efficient debugging.

7 Conclusion

In our project work we developed several Eclipse plug-ins that can assist the
developer during the debugging process in orchideo. Along with the static anal-
ysis of advice precedence [?] and the exception visualization [?], we filter and
process information that is extremely important to the orchideo application de-
veloper to comprehend the control flow and find defects in the software. We
saw that orchideo is not the only framework that suffered from missing debug
support, especially concerning model-level debugging in mdsd applications and
fault isolation in aop programs.

We discussed that it is very important that developers can debug programs at
the level of abstraction they created them. As software development continues
to evolve into levels of higher abstraction, there will always be the need for
appropriate debug support. On the other hand, programmers must always have
the ability to inspect low-level and framework code when required, so they can
comprehend the complex processes and understand why their implementation
does not behave as expected.

We discussed the implementation details of our debug plug-ins and saw how
to integrate with the powerful Eclipse ide. We extended existing tooling and
could therefore generally focus on high level tasks to realize the customer’s needs.
Our customers already use the tools and take advantage of them in their daily
work.

Bachelor Thesis

Post-mortem Analysis of Debug
Traces

Tim Felgentreff

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Post-mortem Analysis of Debug Traces

Tim Felgentreff

Hasso Plattner Institute
Potsdam, Germany

tim.felgentreff@student.hpi.uni-potsdam.de

Abstract. Debugging techniques become ever more versatile and help-
ful for developers. Platforms like Eclipse, upon which the orchideo suite
is built, have support for interactive debugging that allows programmers
to inspect systems at runtime. Yet, printf statements are still used even
today in cases where interactive debugging methods fail.
Such is the case with the orchideo|engine. Dealing with the output pro-
duced in engine’s logs is, today, challenging for new users and sometimes
impossible. We have built an analysis plug-in which solves this problem
through automation.

1 Debug Traces in orchideo

Debug output has been a prime method of debugging ever since serial line ter-
minals came into use and program output could be inspected while the program
was running. It has never been subject to any specific method of formatting,
no rules have been established as to what constitutes “debug output” [69]. This
may partly be due to the fact that although developing and testing programs is
taught in programming classes, debugging has traditionally been largely ignored
in teaching [70] and most programmers experiences with it is acquired through
the experience of writing programs [53].

The orchideo suite, too, uses debug output extensively. Within the engine
which is responsible for running aspects, program failures are trapped, debug
logs are collected and used by orchideo developers for further analysis.

This paper will discuss reasons for and ways of debugging programs using
debug output and briefly compare this activity to other ways of debugging. It
will then provide an analysis of orchideo|engine debug output and how we chose
to automate this task.

1.1 Origin and Purpose of “printf Debugging” in orchideo

“Printf debugging” is a term coined by the function name for printing to the
terminal in the C programming language [71]. Since C programs are compiled to
machine code, live debugging of C binaries is severely limited even today [72].
As an alternative to runtime debugging programmers have often used printf
statements to ask questions about program behavior and print state information
to the terminal [69].

mailto:tim.felgentreff@student.hpi.uni-potsdam.de

104 Tim Felgentreff

Debug code is irrelevant for the program execution and consequently not
generally subject to scrutiny in terms of read- or usability. It usually only pro-
vides information to the programmer who created it and might not be easily
understandable by any other person working on or with the software. Using
printf debugging a programmer tries to monitor program state over time. The
software in development writes a record of events to a log. Typically these events
include such things as message calls, parameters and return values as well as key
variable state changes [73]. Given a predefined input, correct variable states can
be determined manually and violations can be easily spotted by the developer
during test runs.

Over time, a programmer’s confidence in the correctness of his solution grows
and his debugging needs often shift to incorporate checking control flow and cor-
rect integration with the rest of the system [74]. Debug output used to this end
often structures method calls and arguments in some way in order to facilitate
reconstruction of the program flow through analysis of stack states. This kind of
output can quite easily be mapped to desired output given a specific architecture
and definitions of collaborations between key classes. Yet, growing systems con-
tain ever more classes and debug statements have to provide increasingly more
information to infer runtime state from it. The right decision about what to log
becomes a key factor to successful debugging.

1.2 Alternative Debugging Methods

Continued development on programming abstraction levels such as model-driven
software development (MDSD) and aspect-oriented programming (AOP) imple-
mented by orchideo seem to aggravate aforementioned problem. However, soft-
ware progress has added some support for more advanced debugging methods,
too. Just like operating systems have provided hardware abstracted memory
information for easier state monitoring, high level languages, sophisticated com-
pilers and complex IDEs enable programmers to spot errors early on and in-
terpreted languages in interactive systems allow stepping through code as it is
executed [75].

Users of the orchideo framework can already make use of those debugging
methods. Since orchideo is built on the Eclipse OSGi framework, the Eclipse
IDE’s excellent support for Java debugging (using conditional breakpoints and
step filters) is available to the orchideo programmer as well.

We have also developed tools to support more specific use-cases to debug
orchideo related problems [?]. These tools help solve a decent amount of mistakes
which occur when writing applications with orchideo.

In addition, an orchideo application is usually made up of at least two OSGi
bundles—one for the domain model and one for the application. This is the
default structure provided when running the orchideo project wizard to create
a new application. Unit tests, although no explicit aim of this separation, are
easy to implement for the domain model and the application separately and one
could argue that complete path and parameter coverage should ensure that all
pieces of the system work as expected on their own.

Post-mortem Analysis of Debug Traces 105

1.3 Why keep printf Debugging

First, as software and its complexity grows, collaborations can become increas-
ingly hard to predict and the system can no longer be easily verified [72].

These kinds of systems—examples include database servers with heartbeat,
remote control agents in power plants and network intrusion detection systems—
are often plain impossible to debug live. Reasons for this are:

– The system is split over multiple processes or even run on different hardware
and cannot be stopped and examined synchronously.

– Software execution distributed over multiple processes or even hardware
systems is, due to physical constraints, inherently non-repeatable and non-
deterministic.

– Multi-threaded systems are prone to latencies and timing issues more than
single-thread software. Missing a global “reference state” it is difficult to
verify correct concurrent execution.

Such applications may most reasonably be debugged using facilities for collecting
and structuring output [73].

Secondly, applications built on top of Eclipse tend to be a complex and
often fragile conglomerate of OSGi bundles. Many hidden rules must be followed
to prevent bugs in the system and even if the application as one part of this
system could be proven correct all collaborations cannot possibly be tested.
Developers outside the orchideo core team may be unaware of the API’s proper
usage patterns, both for orchideo and Eclipse, and introduce errors that are very
hard to predict and debug. Such bugs are often only discovered some time after
deployment [76].

Deployed orchideo systems fall in both categories, building on Eclipse and in-
teracting with database in knowledge systems on different servers when deployed.
Application developers using orchideo have limited access to the collaborating
systems and errors can often not be reproduced locally for testing. Based on the
above arguments, there is no substitute to tracing and logging.

1.4 Requirements on orchideo Trace Analysis

Developers at ex|xcellent and our own experiences with the TeltowCar [?] testing
project provided us with a number of problems our analysis would have to solve.
In this section we present those requirements and where they come from. They
have been summarized in table 1.4.

Application Developer Support We found it to be common practice at ex|xcellent
solutions to log engine errors in deployment and send log files to the developers
for review. Errors found in the logs are, most of the time, constraint violations
when trying to save dirty objects. In such cases the orchideo|engine uses actions
indicating failure to throw an error. An example we have come across most
frequently and which, according to developers of ex|xcellent , is the most common

106 Tim Felgentreff

Engine Developer Aspect Developer Application Developer

Failures in engine calls to
aspects

Errors in aspect code Errors in application code

Incorrect weaving in re-
gards to session configu-
ration

Improperly defined aspect
dependencies

Object validation errors

Wrong session configura-
tion

Faulty constraints

cause for problems, is the MarkConstraintViolation action which is called
when a constraint defined in the domain model is violated in application code.
In the textual representation these errors could usually be found using a simple
grep on the output. Constraint problems may arise easily when the developer has
not considered all possible changes to domain objects that might have occurred
before they are committed to the database. An application developer has to be
able to easily conclude from the analyzed stack which constraints have failed on
what kind of objects and why.

ex|xcellent solutions gave us a detailed description of the environment in
which an application developer requires automatic analysis and from which
sources logs might arrive that need to be analysed and have provided logs of
different kind to us for dissection and testing purposes:

– Automatically sent files containing logs from remote sites
– Parts of logs sent inline as emails
– Logs intermingled with console output in local sessions

To support developers maintaining deployed applications, we are required
to parse legacy traces. This means, that no or only minimal changes were to
be made to the engine trace. Our solution had to be able to parse the existing
format and not rely on changes to the trace. Any addition to the log format
would have to be optional.

Engine Developer Support While application developers rely on the orchideo suite
to build their application and are thus not interested in how it works exactly,
engine developers are interested in correct execution of the orchideo|engine itself.
Errors in the engine may result in incorrect weaving or exceptions in calls to
aspects. This means that more execution context must be available in a pre-
processed form for the engine developer to deduce errors from traces. Because
automated analysis might not always provide all information required, the trace
was to be kept in a human readable state for the developers to rely on. Markup
languages were not considered human readable enough to be useful on the kind
and amount of data the engine trace contains.

Apart from those requirements the engine developers will have to maintain
the software at some point. Due to this non-functional requirements were added
to avoid third party dependencies and to supply a solution written in Java lan-
guage.

Post-mortem Analysis of Debug Traces 107

Aspect Developer Support Aspect developers think in terms of actions and join-
points in the orchideo|engine. Aspects in orchideo are configured in a session
configuration. This configuration determines what aspects are run. To debug
aspects and dependencies between them aspect developers require session infor-
mation in addition to the current logging to make sure aspect dependencies have
been defined properly and the correct session has been used.

On these levels of development exceptions may occur which cause the appli-
cation to fail and are of prime interest to all developers. Such exceptions and
their stack traces need to be extracted and be easily recognizable.

1.5 The Problem with orchideo|engine Traces

The main problem faced when analysing program output is that simply reading
logs is not sufficient to understand anything about a program, its execution flow
or any errors that have occurred. Just like any kind of information it cannot
be directly transferred to the programmer, in whichever way it is presented.
Instead, the reader has to construct his own meaning from it [77].

The orchideo|engine is responsible for runing arbitrary actions whenever their
associated join-points are called. Each action defines a do method which is called
when the action is run. Most actions are never called directly by the application
developer, but instead are run as advices in a nested tree of advices when the de-
veloper request a specific action to be executed (e.g. HibernateAspect.commit to
submit objects to the database will cause a number of actions to run which check
those objects for validity first). As the engine cannot know in which ways any ac-
tion may fail, it keeps an execution history and catches all exceptions that might
occur. In a catch clause, the history is rolled-back by calling all undo methods on
actions that have successfully been run and an ExecutionInterruptedException
is generated. The exception has a serialized form of the history and the original
exception attached. This allows an application developer to simply catch this
one type of exception and deal with it in application code (e.g. by writing to a
log) without having to worry about inconsistent system state.

As with many debug systems that have grown into logging facilities the for-
mat of an orchideo|engine trace is not formally defined; it is, as we will show, not
even decidable. The content of the output was extended over time to accomodate
the logging needs of the developers. A typical orchideo trace may contain 10k–
20k lines, almost each line representing an action, its parameters and fields, as
well as possible nested values and session information (see figure 1). Developers
using orchideo have little chance of understanding this output without having
a look at the engine itself. Although it contains traditional Java stack traces
those are often not sufficient to determine the cause of the engine exception.
Different from stack traces, the engine’s execution path is not simply linear and
the problem is not necessarily to be found near the top or bottom of the trace.
We discuss how to improve the usability and expressibility of the orchideo trace
in the following sections.

108 Tim Felgentreff

at org.eclipse.equinox.launcher.Main.run(Main.java:1311)
at org.eclipse.equinox.launcher.Main.main(Main.java:1287)

[MainExceptionTrace:[Thread.java:java.lang.Thread#getStackT
> (Commit: wasCommitted="null" [ParameterHash=0] (SESSION:
(1) CheckValidity: [ParameterHash=0] (SESSION: TeltowCarMod
ParameterValue: [de.exxcellent.orchideo.objects.aspect.core
[no stacktrace available]
(2) >> (CheckConstraints: objects="null" constraints="null"
(1) ROOT: CheckConstraints: objects="null" constraints="nul

Fig. 1: An orchideo|engine trace

2 How to deal with Debug Output

Dealing with the problems in analyzing debug is no new idea: logging frameworks
like log4j or the JUnit report created by the “junit” task for the Ant build system
deal with this problem in different ways. We have looked at various solutions to
the problem and how we could use them to devise our own solution to the
problems with orchideo logs. In the following paragraphs we will present some of
those solutions and discuss how we could apply them to our problem.

2.1 Core Dumps

An OS level debugging technique also used in some Java debuggers is core dump-
ing. Core dumps are snapshots of process memory which are saved to a file in
case of an error. A core dump contains all information present in the system at
runtime when the error occured and (if source code and the original executable
are available) may be analyzed using the same techniques used in step-wise de-
bugging.

Using memory dumps as an alternative error log would enable application
developers to use our previously created debug plugins in Eclipse to analyze and
present the runtime information at the point in time when the original program
crashed in a sand-boxed environment. To do this, we would need to extend the
JVM to be able to load any memory image into it’s process space, re-create
thread states and basically “halt” all re-created threads. Platform and JVM
specific memory layout, however, would prevent direct loading of core dumps on
another machine. Alternatively, instead of creating a memory dump we could
try to serialize all reachable objects in all threads and deserialize them on the
developer machine into a sandbox. A user could then inspect the complete ap-
plication state as if he were sitting on the suspended system on which the error
occurred.

2.2 Logging Frameworks

When logging program execution, not all output is of equal importance. There
might be different “levels” of output, for debugging, for general information

Post-mortem Analysis of Debug Traces 109

about the state, for warnings if problems arise and for logging error messages.
The log4j framework is just one example how to provide a flexible way to enable
different levels of debugging output at runtime and use different “sinks” as output
options for them [78]. This may be used to separate different kinds of messages
into different logs to make allow easier filtering and make the error messages
problems more visible.

The customer requirement constrained the changes to the log format to a
minimum. Given that orchideo applications are deployed and running today and
major changes to the log format would not solve the problem for those legacy
applications. Employing a logging framework would be no solution for the exist-
ing system, but a rewrite of the part of the system we are building the solution
for and consequently no solution at all. Using a logging framework would have
to accomodate the need to analyse old as well as new logs:

1. Change the engine to use the a framework for logging. This includes adding
information to actions—whether they are printing information, warnings or
errors—and hooks for configuring the log level of the engine at runtime.

2. Build a list of patterns to convert old logs into the new format.
3. Develop a solution to automatically split logs based on the kind of informa-

tion.
4. Automate analysis of the new log format.

2.3 Formatted Output

Text formats such as XML [25] or JSON [79] have been developed to be easily
parseable and solutions exist to parse these formats. An example where XML is
used to structure output of another program is the junit task included with the
Ant [80] build system.

The Eclipse development environment (and by extension orchideo) offers ex-
cellent integration with the JUnit framework and offers a view with the progress
and details of unit tests with visualization and inspection for errors and failures.

Most larger software projects ensure tests are run on each change in the soft-
ware (e.g. upon each commit in a VCS) using some kind of continious integration
system. This prevents the use of a view to focus the attention on errors. Short
of extending JUnit, logging has to be used to on the CI.

The default output of JUnit is, while easily readable, not easily inspected
automatically. The Ant junit task task logs test results as XML files for later
analysis by other tools. The CI server Hudson in turn includes a plug-in which
displays the results recorded in the XML files and keeps a log of past test runs
(figure 2).

This situation is the result of custom logging in the case of the JUnit frame-
work which now has to meet the requirements of new software development
methodologies where the log cannot be viewed while the tests are run. The Ant
developers have provided a more structured output, which in itself is not much
of an improvement in regards to readability, but much easier to parse by other
tools. This problem is similar to the problem faced by orchideo developers as

110 Tim Felgentreff

.F.F
Time: 0.02
There were 2 failures
1) testGetFullName
at de.exxcellent.or...
2) testNullIsInName
at de.exxcellent.or...

FAILURES!!!

<testsuites testCou...
failureCount="2"

<testsuite errors="...
name="de.exxcelle...

<testcase classname...
name="testSelect"

</testcase>

Fig. 2: From JUnit over XML to visual output

the engine log was initially not meant to be used as a debug log on deployed
systems.

A solution built using this idea could be easily implemented by providing
hooks in the orchideo|engine for listeners to pick up logging. Different listeners
could then decide, based on the current log line, how (and if) this is formatted
as XML.

2.4 Log Analysis Toolkits

Toolkits such as the logstash framework provide flexible indexing for log files [81].
The goal is to be able to index any kind of log. In the case of logstash the
developers use the Grok [82] pattern matching tool which can, based on simple
grammar definitions, create JSON representations of loglines.

The ideas behind logstash are close to what we want to accomplish: provid-
ing analysis of output with no impact on the existing engine logging solution.
However, logstash/Grok produces JSON output, which, while easily parseable, is
not integrated at all with the orchideo suite, even though the . It is just another
intermediate representation. The tool itself cannot be integrated into the exist-
ing Eclipse based eco-system which would be a less-than-ideal solution given the
present coherent user experience.

3 Solution Description

In co-ordination with ex|xcellent solutions we weighed the above options against
one another. The customer set the requirement to keep the logs in a human
readable form close to what it is now and explicitly asked not to switch to XML
as the main log format, regardless of our analysis and visualization solution.
Also, the idea of generating core dump is evidently impossible to implement
with the Java language today and it was discarded directly.

To use a logging framework or a structured output format legacy system
traces would have to be automatically translated. Regarding the current format
of orchideo|engine traces analyzing the log to convert it to a new format just
to parse it would mean translating one representation into another. This would

Post-mortem Analysis of Debug Traces 111

Logging
Framework

Output
Formatter

Log
Analyser

Easily Parseable X X 7

Legacy Trace Support 7 7 X
Requires No Engine Changes 7 7 X

Applicable Solutions Exist X 7 7

essentially require the writing of two parsers and significant changes to the engine
itself to support the new log format. Those solutions are thus inadequate for the
given problem.

We believe that the idea behind logstash serves the needs of ex|xcellent so-
lutions best. Since avoiding third part dependencies and integration with the
existing system were requirements, we opted for writing our own parser as a
plug-in for orchideo.

4 Syntactic Form of orchideo|engine Traces

Parsing is a well understood field in computer science and most parsers today
are written using some kind of parsing framework. Popular Java-based parsing
frameworks, like ANTLR [83] and Rats! [84], take parsing expression grammars
(PEGs) and generate parsers from it.

As we previously said (section 1.1) no such grammatic definition for logs from
orchideo exist which is why we had to create one.

Analyzing orchideo|engine traces and the code to generate them yielded in-
formation which we will present first to help the reader understand a number
of design choices we made during our implementation. Errors we found in the
traces we have analyzed include:

– Constraint violations on domain objects
– Java exceptions in application and engine code
– Misconfigured aspects (e.g. database connection configuration)

The following examination will use the log extract shown in figure 3 to demon-
strate how such errors manifest in a trace. A complete set of grammar rules
based on this analysis may be found in appendix B.

4.1 One Action per Line

Each action is logged on a single line with at least it’s name and parameters. This
will help to understand the following explanations. There are additional lines
(mostly excluded from the example in figure 3), but the information immediately
relevant to a specific action is always contained in one line.

Actions are numbered starting with (1) on each nesting level (more on levels
below). Nested levels have a number in front of their opening brackets and all
but the first opening bracket (the root joint-point for the logged engine execution
history that led to the logged failure) are numbered.

112 Tim Felgentreff

> (Checks: objects="null" constraints="null" [ParameterHash=42])
(1) ROOT: Checks: objects="null" constraints="null" [ParameterHash=42]
(2) >> (MarkConstraint: contextObject="<caught exception>" ←↩

constraint="de.exxcellent.orchideo.objects.dsl.model.impl. ←↩

ConstraintImpl@595bcd (description: null) (name: nameLength) ←↩

(oclExpression: self.name.size()>0, type:OCL)" wasMarked="true" ←↩

[ParameterHash=<caught exception>])
...

<<
<

Fig. 3: Three line extract of a hand-formatted orchideo trace

4.2 Tree Structure

From what we learned about AOP and how actions work in part [?], we know that
the orchideo|engine executes actions at join-points created by other actions. This
creates levels of nested action executions where each action that acts as a join-
point generates a sub-level of executions. These nested leves may be interpreted
as trees. In figure 3 the formatting has been adjusted to the tree structure and
how each sub-tree surrounded by opening and closing angle brackets (“>”).

Apart from the beginning and end of a line of execution caused by one join-
point, more information is encoded in the opening and closing brackets. Closing
brackets come in groups and are always on a new line. They match the last
opening group of brackets with the same count of brackets. This cardinality
encodes the nesting level of a subtree.

Actions are printed by the engine in their execution order—which means that
before-advice is logged in front of the action which caused it within a tree. To
be able to see the cause for a subtree easily, the orchideo developers added two
redundant log entities:

– The the description of the action which acts as join-point is printed in regular
brackets on the same line and immediately after the opening angular brackets
for the level.

– The causing action has the string “ROOT:” as prefix when it is eventually
printed at its proper point in the execution history.

This is an example for a piece text which has been included in logs simply to
make interpretation for humans easier instead of encoding an actual surplus of
information.

4.3 Action Information

The logged information for each action is built in the exception simply by con-
catenating various strings retrieved from objects accessible at the point of failure.

Post-mortem Analysis of Debug Traces 113

Action Name: We previously explained that the engine prints the string “ROOT:”
in front of the root action (→ the cause) for a sub-sequence. After that follows
the name of the action. In the example above we see the actions Checks and
MarkConstraint have been run. The action name is not the name of the class
implementing the action, but is determined by the string given in the aspect
model [?]. This string is a valid Java identifier which is easy enough to parse [31].

Action Fields: Immediately after the action name, the parameters which have
been passed to the implementor instance are listed as key=value pairs of field
name and value. During our analysis we called these parameters “Action Fields”
even though they are not necessarily fields in the action class.

The action fields are, next to the name, often the most interesting part of
the action information as in them the object on which the action has worked is
revealed. If the action has to do with constraint checking, a frequent source of
errors, the attribute which a constraint is checked against is included in the fields
as well. In figure 3 the MarkConstraint action is passed the constraint it marks.
The string representation of this parameter contains the fully qualified class
name and reveals in the name field that the checked attribute was nameLength.
Extracting this information in order to make it more visible helps the developer
to connect an error back to the domain model.

The actual values passed as parameters are printed using their toString
methods and enclosed in quotation marks. In the above example, the Checks
action takes two parameters named objects and constraints. Of course when
writing new aspects, an engine developer has to avoid some character sequences
(such as a single quotation mark) implicitely that could render the output am-
bigious. Otherwise, the log will become difficult to interpret both for the human
reader as well as a computer program.

We found that many orchideo objects that are typically passed to actions—
examples include the various constraint classes, the domain-specific objects and
OCL expressions—have their toString methods overwritten in order to supply
more information about their state. This can be seen in the above MarkConstraint
action’s parameter constraint. The ConstraintImpl prints its default string
including full class identifier and address and appends some fields to it.

Fields in Parameters: Fields in parameters, if printed, are surrounded by regular
brackets and the key–value pairs are separated using a colon (key: value). A
pair of brackets may contain additional pairs which do not represent fields, but
additional information the orchideo developers deemed useful. Such additional
pairs are separated from one another using commas. The type: OCL pair in
figure 3 is an example for such additional information.

Different from parameters’ key-value pairs the values of subfields are not sur-
rounded by hyphens. However, the fields may contain any type of object which
can lead to problems with the aforementioned implicit restriction on character
sequences in parameter values. See in the above example the field oclExpression
in the constraint parameter value: we can see the OCL string which was en-
tered by an application developer using the orchideo|objects module for MDSD.

114 Tim Felgentreff

We have found cases where such expressions were invalid, but did not prevent
the application from starting. In such cases, however, an application developer
unaware of this implicit restriction to his input may render the log output con-
cerning this constraint unreadable.

Exceptions in Printing: In line 3 of the trace extract, the contextObject seems
to have the value “<caught exception>”. This is a fallback string the engine
prints if an exception occurs while trying to retrieve the string representation of
a parameter. The trace leading up to this exception is printed at the end of the
execution sequence and passed up to all parent execution sequences. This means
that exceptions occurring somewhere nested in the execution will propagate all
the way up to the root level. Although the original source of the exception is
thus obscured, it was allegedly done in order to increase visiblity of an exception.

The Parameter Hash: At the end of each action information a parameter hash,
that is, a sum of all parameters’ hashes, is printed. This hash has no informative
value in itself. The reason for its existence can be found in the orchideo documen-
tation which gives tips on how to use the textual log for debugging: if a problem
occurs and an orchideo trace is generated, the parameter hash, which can be re-
trieved from each action implementor using getParameterHash, is supposed to
be used as conditional breakpoint. Although we certainly hope that this use-case
now, with the addition of our debug plugins, will become less important, we still
decided to keep and parse this information as well to support users which might
have found this useful before.

5 Parser Architecture

Our parser is structured into a lexer for reading and converting input, a parser
to provide an API to other tools and modules for analyzing parts of interest in
traces.

5.1 Lexer

To be able to abstract from different inputs (files, strings) and deal with different
formats (platform specific line breaks, mixed whitespace) we have written a
simple lexer to be used by the actual parser. The lexer operations are loosely
modelled after the Stream protocol from Squeak/Smalltalk.

Our lexer is able to read from files, strings and streams, keeping track of line
numbers along the way. It also hides away differences in line endings on reading
and thus ensures that using the default \n for newlines in regular expressions
matches the end of a line regardless of the originating operating system’s line
ending convention.

Our lexer mainly consists of different methods to peek ahead in a stream,
either with a fixed character count, at an offset, or up to the end of the current
line. This provides flexible ways to check for different non-trivial conditions when

Post-mortem Analysis of Debug Traces 115

parsing a log. Consider, for example, the action which is printed in brackets on
line 1 of figure 3: Before the text is parsed, the lexer is used to peek ahead if the
next character, excluding whitespace, is an opening bracket. If that is the case,
the lexer method to peek ahead to the end of the line is used to look for the
closing bracket. If unintentional linebreaks have been introduced (e.g. by sending
the trace in an email), the lexer can peek ahead over the next lines to find the
closing bracket. Once it is found, the complete action text may be parsed at
once. If no closing brackets are found, the input stream position has not moved
and another rule is tried to continue parsing. Read methods to move ahead in
the stream mirror the peek methods and are used to consume the input.

Apart from that, we implemented rudimentary regex matching in the lexer,
in order simplify checking for start conditions of our grammar rules. However,
this functionality is limited to a few characters at the beginning of the current
text positions for performance reasons.

5.2 Parser

We have determined that even in configurations where the engine logs more
than 14k lines of action executions, the nesting depth hardly ever outgrew half
a dozen. This led us to consider a simple recursive parsing algorithm early on
as the stack level would not grow inconsiderably given such numbers. There are
but a handful of rules and an easy solution simplifies building upon those for
future extensions of the trace.

Our parser implementation consists of a Parser class exposing a simple API
which may take the same types of input formats as the lexer, as we wanted to hide
this implementation detail away from any visual frontend using the analyzer [?].

The parser is recursive in the way that it uses a number of classes that
implement specific grammar rules. Each grammar rule adheres to an interface
conveniently called GrammarRule. This interface contains methods which, given
a lexer as input, decide whether a rule matches at the input’s beginning or end
and one method to consume from the input one textual instance of itself. As
grammar rules themselves often consist of other rules, the input is passed down
to the children of a rule for consumption. In this way, our parser acts much
like a state machine, with different states depending on the parsed log lines
and a finite, but not unequivocal number of possible transitions based on the
current state. You may find a slightly simplified sequence diagram of the parsing
process on a separate page (figure 6). In this example, a file handle is passed
to the parser using the public API. The parser constructs a Lexer instance on
that file which abstracts from the underlying representation of the text. That
lexer is then passed to an instance of the Level class which represents a tree
nesting level. As execution always starts with a join-point action, the top level
enclosure is always a level (nesting level zero). A level then enters a loop to
parse everything that is included within, until its end-condition matches. In the
example, a trace item, which represents a line containing a number an an action
text, announces a match on the lexer position and the root level passes control
over the input stream (in form of the lexer) to the Item instance. The item

116 Tim Felgentreff

public class ActionName implements GrammarRule {
@Override boolean canMatch (Lexer in) {

return in.match("\\s*" + JavaIdentifierString + ":");
}
@Override boolean atEnd (Lexer in) {

return in.peek () == ’:’ || in. isEmpty ();
}
@Override public ActionName consume (Lexer in) {

consumeWhitespace (input);
while (! atEnd(in))

name. append (in.read ());

if (!(in.peek () == ’:’))
throw new ParseException (in.peek (), ’:’,

in. getLine ());
in.read (); // Consume the colon
return this;

}
}

Fig. 4: The implementation of the ActionName class for parsing

then consumes and parses its number from the lexer and passes control on to an
ActionText instance and so on. This way, the control state is always passed to
the next rule which can match at any given point and each rule extracts some
information from the trace. After parsing is done, the root level is returned to
the client—which now contains objects representing all parts of the trace.

5.3 Grammar Rules

Grammar rules in PEGs contain terminals and non-terminals (e.g. other gram-
mar rules). Each terminal/non-terminal may have cardinality modifiers to make
them required, optional or to allow multiple items of this terminal/non-terminal.

In our implementation rules as (see appendix B) are represented by instances
inheriting from the GrammarRule class. Optimizations have been made in some
cases were rules were so trivial that they could be expressed as a regular expres-
sion in a parent rule. Each class knows which terminals and non-terminals it
requires and how often. Each contained rule is asked for a match on the current
input using the canMatch method defined in the GrammarRule interface. Op-
tional children are given a value of null if they do not match. If a terminal/non-
terminal does not match although it is required, a ParserException is raised.
As an example of the relevant methods in the class responsible for parsing action
names from a trace contains is shown in figure 4. As shown in section 4.3 an
action name must be a valid Java identifier and end with a colon. If the colon is
not the next character after consuming the action name, an exception is raised.

Post-mortem Analysis of Debug Traces 117

The parser always consumes all leading text in its input until a Level
matches—level being the name we gave the rule matching one sequence of ac-
tions. The first level would always start with a single, opening, angular bracket
and the root action’s text encompassed in regular brackets. This first root ac-
tion is usually the action called by the application developer (often actions
like ObjectAspect.createObject which is used to create domain objects or
HibernateAspect.commit which is run to commit objects to the database).

Each nesting level contains a number of actions (or else the engine would have
printed it directly without a level around it). If a Level matches at the beginning
of the current input position and has consumed it’s action text, it enters a loop
trying to match children, which may either be more levels or simple actions,
until it hits enough closing angular brackets to finish. If the end of the input is
encountered before enough closing brackets could be read, an exception is raised.

5.4 Parsing Ambiguities

As specified in section 1.4, developers may receive logs by email. Mail clients
often change the whitespace of messages and we found problems arising thereof
are mainly:

1. Unintentional line breaks are introduced
2. Groups of spaces may be replaced with tabs
3. Different newline conventions might be mixed

In order to deal with these problems relating to whitespace, we implemented
various helper methods, both in the lexer and in the GrammarRule. To inhibit
the impact of erroneous matches due to problems with whitespace or missing
line-endings rules, in some places, does not actually pass the global lexer, and
thus global control of the parsing process, to their contained rules, but constructs
a new lexer on some part of the input.

Consider an ActionText (appendix B) that has a few user supplied values
in its nested fields. If such values were ambigious either because they contained
a quotation mark or looked like another rule, we would be able to decide on
a reasonable parsing strategy due to the fact that each action was logged on
a separate line in the trace. However, with additional line breaks such as in
mails, this decision cannot be based on line endings. Introducing new line ending
characters was considered, but would lead to problems with legacy support which
we are required to provide. Our solution to this problem matches both from the
beginning and the end of an action text. An action text first consumes its text
and the text which to be parsed by sub-rules directly, up until another action
text matches or the end of a level is reached, ignoring all line-breaks in between.
Action fields are parsed last and only with a lexer on the remaining unparsed
string in the middle of the action text.

Using this technique, short of encountering a string that looks like a trace
as part of a parameter value, we can prevent that matching on a broken trace
will disrupt more than one action at a time and even then, only the parameter
values would be parsed incorrectly, keeping the rest of the information intact.

118 Tim Felgentreff

5.5 Parsing Exceptions

As a result of our analyses we found that stack traces from exceptions which
occur somewhere during action execution in the engine are simply appended
directly to levels in which they occurred. Thus, they are actually part of a level,
but occur outside of the level’s brackets.

Stack traces per se have a distinct format which we can easily separate from
other rules. It is common, however, to provide an explanatory string when throw-
ing an exception which is printed at the beginning of the stack printout. These
strings may be arbitrary text and at this point we can rely neither on line end-
ings to check for the end of such a string, nor on pre-consumption through the
containing level. This means that the parser must be able to separate exceptions
correctly, but not confuse action texts with exception strings and possibly loose
information. Thus, the JavaTrace consumption was implemented as a fallback,
in case no other rule matched. While a JavaTrace consumes input, it contin-
uously checks all other existing rules and finishes if any match is found. This
special case ensures that under no circumstance an action’s execution is lost
because a stack trace precedes it.

6 Extensions for Requirements

Several of the aforementioned requirements cannot be satisfied with the infor-
mation contained in the engine traces today. In the sections below we show how
we have extended the trace to solve more of the problems related to the orchideo
traces. The extended grammar may be found in appendix B.1.

6.1 Object State Logging

The most complex systems running on orchideo at the moment have more than
fifty domain specific classes in their model alone. In these projects our analysis
plug-in is a useful asset to help connect an error back to the model. Still, knowing
that a violation has occurred on an attribute is quite different to knowing why
this has happened. The information that a constraint was violated is already
logged, however, the violating state of the object at the time the constraint
failed is not. The current architecture of the orchideo|engine does not permit us to
retrieve those values easily which is why the customer has made the requirement
optional.

The orchideo|objects framework, which is built upon EMF. The “Eclipse
Modeling Framework” is a modeling and code generation facility for building
tools and other applications based on a structured data model [5]. When using
orchideo objects in application code, we are not dealing with the domain models
directly. In the engine, at the time the trace is generated, only (EMF-) objects
representing the domain models are available, without holding the application
objects’ values.

We have solved this problem by inferring more information from the type and
target of constraints passed to the MarkConstraint action: Constraint objects

Post-mortem Analysis of Debug Traces 119

print fields relating to their type and the object’s field which they apply to. We
parse those fields as part of the paramater value for analysis. This way users
are now told whether the object in question validated an OCL constraint (and
which) or a cardinality constraint. Additionally, the field which has been violated
is emphasized.

6.2 Connecting back to Code

Initial user research (which we discuss in more detail in [?]) has shown the tool
is being used actively by orchideo application developers. The previous workflow

Receiving a logged failure
å Analyzing the problem with help from engine developers

å Finding the bug in the application code
å Fixing the application

and in the process bother at least two developers with the problem is moving
towards the more ideal

Receiving a logged failure automatically visualized
å Finding the bug in the application code

å Fixing the application

which not only occupies less developers, but also reduces the time needed
until a problem is understood and a bugfix can be constructed.

However, the application developer still has to match a failure like a con-
straint violation manually to source code. This is often enough straightforward
given the top-level root action and the failure. Yet, especially a developer only
started working on an existing project, there is still manual work required when
trying to match a failed action to the place in source code where it was called.
The customer requested a method to automate recovering the way from errors
back into application code.

To alleviate this problem, we have extended the engine trace and prepended
stack information to it. It is important to know that, when an aspect’s action is
called from application code and fails, the trace will be printed in the context
of that action. At that time, the stack will only be a few frames away from the
application code’s call.

We analyze the ExecutionStackTrace in the primary level and build in-
stances of the StackTraceElement class from, it which is available in Eclipse as
a representation of stack frames. Those can be used directly to find documents in
the local workspace relating to the stack frames giving the developer conclusive
hints to find bugs.

120 Tim Felgentreff

6.3 Engine Failures In Session Configuration

During development, orchideo developers often use different session configura-
tions in order to adjust the engine’s aspects according to their needs [?]. From
the engine developers point-of-view, if any code, from the engine itself or the as-
pects it is calling, fails or if aspects have run their actions that should not have
been active with the current setup, this failure can only be debugged knowing
which session configuration was active at the point of failure. An aspect devel-
oper who configured a session to run his actions can use the session configuration
information to check the execution history and make sure his actions are run in
the right places.

Sessions are configured using XML files. We resolved that these files be send
along with the logs if they are transmitted from a remote system. This enables
us to add the session identifiers to the engine trace and use it to find the config-
uration information active at any given point in the execution history.

Our parser architecture allows us to easily add grammar rules merely by
implementing a new class. We added an optional suffix after the parameter hash
which contains the session name:

(SESSION: sessionName, objectPointer)

Although this possibly adds redundancy, including the session information e.g.
at the beginning of the trace is not a viable alternative: session configurations
may be changed dynamically at runtime so the active session can change during
the execution of a sequence.

We have also included the object pointer to the active session in the output.
Though that might seem odd at first, we reason that, using our previously cov-
ered RuntimeRescue and SessionView plugins, we are able analyze an engine
trace when the program is still running [?]. Using the object pointer, the active
session in the engine can easily be determined.

6.4 Exposing Details for Visualization

In the following part [?] we will show how we chose to visualize the trace analysis
conducted here. Our research into visualization techniques influenced the data
structures we chose to offer to some extent.

Node and Leaf Representation We have differentiated levels and actions from the
other rules to some extent and made them “nodes” in a tree. This arose from
our the decision to map the stack on a tree and use tree-visualization techniques
for display [?].

The StackNode class contains methods to establish a parent-child relation-
ship between nodes. In addition, it provides getters for action text details for
easy access by the frontend. We introduced this abstraction for two reasons: first
to hide the different types of nodes in our constructed tree from the frontend and
secondly to express the sub-sequence relationship a level has with the included
actions as its items.

Post-mortem Analysis of Debug Traces 121

Fig. 5: A simple frontend for testing the parser

Parsing Thread When working with software, users have come to expect inter-
activity from their tools [85]. Even if a reaction to user input, like starting to
parse an orchideo trace, takes longer than a few seconds, users expect to be able
to interact with other parts of their program in the meantime. In order to re-
lieve the frontend, which might change, from the burden of moving the parsing
into a separate thread explicitly, we offer a callback interface and manage the
thread for parsing the trace in the analyzer. When the analysis is started from
the frontend, an implementation of the IParserThreadCallback interface may
be passed into the backend to run code once the parsing is finished.

Monitor Interface Another usability consideration was to inform the user of
progress when parsing. The Eclipse libraries offer so-called ProgressMonitors:
objects, which provide callbacks to announce progress in one way or another
and relay that information to the user—graphically or otherwise. To be able
to offer such functionality in the frontend we applied the observer pattern to
our Lexer class, offering notifications on read bytes of the input stream and the
number of bytes left to read.

7 Evaluation

Using our parser implementation we were able to parse any stack trace we have
at our disposal supporting old logs as well as extended traces with more infor-
mation. To harden the parser against random errors we have built a test suite
which mutates traces and tries to parse them. This way we found some additional
problems mostly related to whitespace which we fixed. Our implementation can
be used to safely parse and extract all unambiguous and even most ambiguous
information correctly.

To check parsing of traces we have built a simple frontend (figure 5) which
we used to check parsing on various stacks.

7.1 Requirements Fulfillment
One of our goals was to aid developers who are users of the orchideo framework
when debugging their application. Before they had to use textual search in the

122 Tim Felgentreff

engine logs to find constraint violations, provided they knew what they were
looking for. But even if a constraint violation was found this left the action text
to interpret which, as we have shown, is not always easy if one does not know
what to look for. Additionally, if not a constraint violation caused the failure,
the user was at a loss as to what to look for in a trace. The problem degraded to
a fuzzy search over the log where the human mind is prone to missing important
details. We have diminished this problem for users of the orchideo framework
and our plug-in provides support in the context of the initial requirement to
help application developers using the orchideo suite solve their problems fast
and without having to understand inner workings of the engine or even the
aspects.

The requirement not to change the current log format has been addressed
with only encoding optional additional information. The changes to the core are
minimal and the impact of including it with new versions of the orchideo suite is
neglectable. Finally, our plug-in can be deployed and used with existing systems
and customers now: We are confident that this will lead to fast adoption among
orchideo users. There is no need to deploy new versions of the orchideo|engine on
each remote installation to benefit from the analysis we provide.

7.2 Discussion of the Implementation

The implementation we have devised—using a recursive parser simulating a state
machine—provided a working solution quickly and is easy to extend and build
upon. Representing states in our parser with grammar rules allowed us to include
more information without sacrificing backwards compatibility. Even though the
recursive nature of the parsing process might lead to difficulties if more aspects
create much deeper nesting, we do not think this will be a problem for the
following reason: The way aspects are used in orchideo they can be seen more
as assets which make MDSD possible instead of a programming model in and
of itself. Aspect oriented programming in orchideo alone, without the powerful
weaving conditions as, for example, in AspectJ [17], would not unfold the real
benefit the orchideo suite provides; the combination of MDSD and AOP.

Our implementation of the analyser as a separate OSGi bundle further al-
lowed us to ship the analyser separately from visualization. This way, if at any
time the evaluation criteria for problems change or a different visualization is
required, it will be easy to write a plug-in against our API to fulfill that purpose.

Our solution may be considered less than ideal if the requirements had been
known and considered in the design of the initial implementation of orchideo.
As we have argued in section 2.2, a different logging method with a completely
restructured way of generating debug output, separating errors from other in-
formation from the start might be a viable alternative if the current system
is going to be refactored at some point to break backwards compatibility. Yet,
new and changing requirements for growing software systems are inherent to
the software development process [86]. The problems arising thereof and how to
solve them are not part of this work. Extensions to existing software must strike
a balance between the cost of changing the underlying system and the cost of

Post-mortem Analysis of Debug Traces 123

working around some of its implementation specific restrictions [87]. Our anal-
yser works with the existing system and has minimal impact on orchideo and
existing orchideo applications. Integration and usefullness with existing systems
were requirements which are thus satisfied.

A different issue with our parser which, according to user feedback, arose
sporadically were out-of-memory errors in the PermGen heap of the JVM. The
PermGen is a special heap in some JVMs which contains the permanent gen-
eration of objects that should never be garbage collected. This usually includes
things like class metadata, bytecode, interned strings and so on, however, there
is no clear documentation on this as it is certainly also dependent on the virtual
machine. We were unable to reproduce the problem through random testing nor
could the application developers provide us with a way to reproduce the prob-
lem. Our current workaround includes increasing the heap space using a JVM
parameter.

Yet another implementation specific problem with the current implemen-
tation is its performance. There are sections of the code where input is read
byte-wise in order to ensure the best match. This slows down execution consid-
erably; an average stack of about 15k lines takes something between 90 seconds
and 2 minutes to parse. This depends largely on the distribution of constructs
—some rules take considerably longer to parse than others. The extra care we
have to take for action parameter fields makes this rule much slower than parsing
a Java stack trace, as in a stack we can read line-wise.

7.3 Future Work

As with any large software project, several areas of work still remain which we
may yet target.

We already mentioned an issue with logging object state in section 6.1. In
this case, the actual object cannot be retrieved at the point where the trace is
created due to restrictions in the EMF architecture applied. This problem may
only be solved with some substantial changes to the orchideo|engine architecture
and has in agreement with ex|xcellent been postponed for the time being.

Regarding the session information which we have added to the trace (sec-
tion 6.3) we have plans to make this more useful by integrating it with our other
tools. Right now, a developer will still have to manually compare the session
configuration to the recorded execution history manually. This is especially diffi-
cult as the execution order is not entirely deterministic and may differ from the
orchideo supplied session configuration view [?]. This can be enhanced to show
actual discrepancies between configured aspects and execution history automat-
ically. This will further reduce the time needed to find errors related to faulty
session configurations.

Additionally, while the runtime rescue and the session view plugins allow the
recorded session history to be inspected at runtime the object ids recorded in the
trace still have to be matched manually to the sessions in the session view [?].
Better integration of both plugins should be addressed, too.

124 Tim Felgentreff

Finally, while we have been able to diminish the problem of ambiguous snip-
pets leading to false matching, it might still present a problem. In the beginning
the recursive parsing led to some problems when rules “misbehaved” for ambigu-
ous matches and consumed more or less than they were supposed to. We solved
this problem by using different lexers on substrings of the input. This restrains
problems to affect only the action which contains the ambigious match. If the
action in which the parse failed is the actual interesting one, however,the failure
possibly leads to confusing information and might prompt a user to suspect an
entirely different problem. We need to find a way around this, possibly by mark-
ing such problematic rules to communicate to the user that extra care should be
taken.

8 Additional Related Work

Apart from the different logging solutions we have presented in section 2 there are
other solutions similar in scope to our work. Those solutions, too, deal not only
with the problem of providing analyzed output, but also try to help developers
find bugs in deployed software.

Log file analysis as a formal method is used to analyse software event logs
in order to evaluate whether the program has behaved as expected. This tech-
nique has been used for verification and testing of programs by Andrews and
Zhang [88]. Their work includes a formalization of a state machine approach to
log file analysis which is very similar to the changing state our parser implements
by means of passing control to grammar rules. However, our focus was not on
using that log for testing, but on structuring the output we are given.

The orchideo setup of logging on customer machines and sending log files for
automated analysis is a common technique in the computer industry [89][90][91],
easily the best known example is the crash dialog of the Windows NT operat-
ing system [92]. The binary crash report created by this tool is automatically
analyzed to prioritize and categorize the crash reports.

In the mobile sector, the Mobile Crash debug system for Symbian OS provides
the means to both send automated crash reports in binary form and analyse
them [3]. This analysis’ intention is similar to ours as it, too, tries to determine
the type of problem and provide the developer with hints about were the actual
problem lies.

9 Conclusion

For this project we have designed and implemented an OSGi bundle for Eclipse
available for use by other plug-ins. The plugin is tailored to log format of the
orchideo suite. In conjunction with our visualization solution (see [?]) we have
optimized the workflow of the average orchideo developer, who no longer needs
to learn about the interna of his framework to understand simple errors. Addi-
tionally, we have extended the log to provide more information to the developers

Post-mortem Analysis of Debug Traces 125

of aspects and the orchideo|engine. This may be built upon to provide automated
validation of the session configuration as well.

We have seen how changing requirements and time restrictions can cause
design decisions and in turn code which stay with a software project for consid-
erable time. Debug code written early during the development of a program was
extended and has been put to use in other ways than initially planned with the
advent of new requirements.

We have also seen how working with the circumstances in a system, instead
of changing them, might sometimes be worthwhile. It can save time and costs,
new requirements may be integrated into existing structures without too much
disruption and legacy system support may be easier because of it.

126 Tim Felgentreff

Fig. 6: Simplified parsing process

Bachelor Thesis

Exception Visualization
Philipp Tessenow

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Exception Visualization

Philipp Tessenow

Hasso Plattner Institute
Potsdam, Germany

philipp.tessenow@student.hpi.uni-potsdam.de

Abstract. Current software development frameworks provide good sup-
port for the software creation process. Unfortunately they often give
unexpected, incomprehensible or long error messages when things go
wrong. The paper describes our research on error visualizations of tree-
structured error messages. Furthermore we present our implementation
of different error visualizations for the orchideo suite. Using our exten-
sions for orchideo the error identification process of orchideo|engine error
traces is much faster.

1 Introduction

Software developers spend a large part of their effort on debugging [93]. Studies
differ on concrete numbers, but for the debugging process—which includes com-
prehending error messages of a compiler, a programming framework or another
entity in the workflow—a developer uses around 40% of his time[94]. When de-
velopment tools are growing, for example through adapting to new software de-
velopment principles, like model-driven and aspect-oriented development, their
error messages are harder to understand. This is because a developer has to
understand which part of the tool-chain went wrong and for what reason.

As the inner structure of most software development frameworks grows in-
creasingly complex, it is difficult to produce simple and easy to understand error
messages. Error visualization techniques are meant to support a developer in
understanding and fixing the error.

The orchideo suite [4] is a hybrid of an aspect framework and a model-driven
development environment which is highly integrated in Eclipse [1]. orchideo pro-
vides excellent tool-support for the model-driven creation of application code.
Furthermore the orchideo|engine enables the software developer to intuitively in-
tegrate aspect-oriented principles. While we experienced this during our research,
we also recognized that debugging-support in orchideo is lacking.

The lacking debugging-support of the orchideo suite becomes noticeable when
looking at the following scenario: An orchideo object model was built describing
a customer who has some attributes, such as firstName and lastName. Using the
code orchideo created out of this model, we instantiate a customer object as seen
in Figure 1. Here we set the customers first name but not his last name, which
is required for a valid customer object. When trying to add the customer to
a database through the HibernateAspects commit() method, the orchideo|engine

mailto:philipp.tessenow@student.hpi.uni-potsdam.de

130 Philipp Tessenow

Customer customer = (Customer)
objectAspect . createObject (Customer .CLASS);

customer . setFirstName ("Jane");
// customer . setLastName (" Doe ");
hibernateAspect . commit (); // throws an exception

at org.eclipse.equinox.launcher.Main.run(Main.java:1311)
at org.eclipse.equinox.launcher.Main.main(Main.java:1287)

[MainExceptionTrace:[Thread.java:java.lang.Thread#getStackT
> (Commit: wasCommitted="null" [ParameterHash=0] (SESSION:
(1) CheckValidity: [ParameterHash=0] (SESSION: TeltowCarMod
ParameterValue: [de.exxcellent.orchideo.objects.aspect.core
[no stacktrace available]
(2) >> (CheckConstraints: objects="null" constraints="null"
(1) ROOT: CheckConstraints: objects="null" constraints="nul

Fig. 1: In the Java code example at the top of this figure we create a Customer
object. As the customer needs a first name and a last name, the commit() at line
4 fails. An ExecutionInterruptedException printing an orchideo|engine trace will
be thrown. A small part of this trace is shown in the bottom part of this figure.

throws an ExecutionInterruptedException which dumps the current engine state
to a string, which is shown in Figure 1. Besides the fact that the exception is
thrown in an unexpected context (usually within some SWT-, Eclipse-plug-in-,
or JUnit- code), the exception trace is very long and not easy to understand.

orchideo traces with sizes of about 3MB—when saved to an ASCII-encoded
file—are not unusual and contain several thousand lines of cryptic code. We
attached a shortened version of an example trace in the Appendix C. Neither
us nor most of the every-day orchideo developers were able to read and fully
understand such a trace at first glance. Unfortunately the reason for the en-
gine crash, for example a missing last name attribute of a customer, is hidden
somewhere in this trace of many similar looking lines of text. To spot the error
within the trace feels like the proverbial search for a needle in a haystack. The
current situation at ex|xcellent is such that most of these traces are sent by mail
to orchideo|engine developers asking them to find out what went wrong. Those
engine developers are busy most of their time. Obviously this situation has some
potential for optimization.

This paper discusses error visualization techniques taking orchideo as an ex-
ample, as it produces very long and cryptic error messages. We present an or-
chideo plug-in, that is able to read and analyze orchideo traces. Our plug-in
visualizes those traces using different methods to help the orchideo developer to
understand them and find the hidden error.

In the following section we discuss several visualization techniques and the
requirements they have to fulfill. After deciding which techniques suit our task,
we present our implementation. This includes a detailed description of how these
visualizations were implemented as well as how we integrated them in the de-

Exception Visualization 131

velopment workflow. Thereafter we evaluate our contribution to the orchideo
suite on given user feedback. Finally we give a brief summary and present our
conclusions.

2 Tree Visualization Techniques

The process of understanding orchideo|engine traces currently does not scale as
there is only one engine developer that fully understands those traces. We want
to enable each application developer to find out and understand what went wrong
when an engine trace was thrown.

An orchideo trace has a special tree-like structure which can be parsed pro-
grammatically [?]. Our Trace View plug-in offers the ability to parse and display
such a tree taking into account difficulties like an undecidable grammar and un-
expected white-spaces. In addition to the ability to parse an orchideo trace, our
goal is to visualize it in a way that overcomes the shortcomings of the current
solution.

We have to keep in mind that we need a solution that suits different users:
The application developer, who develops applications using orchideo, usually is
confronted with orchideo traces because of a failure in his application code. The
orchideo|engine developer however develops the orchideo|engine itself and usually
gets orchideo traces when running the engine tests. In contrast to application
developers, orchideo|engine developers are not interested which code called the
engine, but in the engine code itself.

This led to different requirements that have to be fulfilled for a successful
implementation. After we discuss the requirements, we give an overview to sev-
eral tree visualization techniques. Finally we compare them and choose which
technique to use in our implementation.

2.1 Requirements for Error Visualizations

To be able to fulfill our task and to evaluate what we implemented, we need
to define which requirements our implementation should fulfill. After talking
to orchideo|engine developers and application developers that use orchideo at
ex|xcellent solutions, six main requirements have emerged.

Integration into the Current Workflow. It is a common case that an application
developer using orchideo has to handle orchideo|engine traces. Therefore he should
be able to handle the trace as conveniently as possible without leaving his usual
workflow. User interviews showed that orchideo traces usually exist either in the
form of log files from production systems, or plain text copied from mails or
other resources. It should be possible to use drag and drop or copy and paste
actions as an input method for the visualization. Furthermore the visualization
itself should be placed within the developers usual environment—orchideo.

132 Philipp Tessenow

Give Hints as to which Part of the Application Code may have Produced the
Error. When an application developer who uses orchideo is confronted with
an engine trace, it is hard for him to see which part of his application code
caused the orchideo|engine crash. This is unexpected at first glance, because the
ExecutionInterruptedException contains the usual Java execution stack that
shows where the exception was thrown. We have to keep in mind that or-
chideo|engine code is often called within several environments like SWT [95],
JUnit [96], or the Eclipse plug-in framework [45]. Each of these frameworks en-
large the printed execution stack, which makes it hard to find the erroneous
code. Even worse, orchideo itself adds some entries to the execution stack too.

Therefore we need a mechanism that can handle a given execution stack to
find the part of the code causing the error that the application developer has
modified.

Show the Necessary Information in as Little Space as Possible. An application
developer should focus on writing code and designing the application. When an
engine trace is thrown it should be possible to analyze it alongside as this is
not a developers main task. Therefore the visualization should occupy as small
screen space as possible without limiting the quality of the trace analysis.

Find and Highlight Common Errors. There are two common reasons for an
orchideo|engine crash causing a trace. The most common causes are constraint
violations which appear when a constraint, which was defined in the orchideo
model [?], was violated. This happens when the engine tries to handle invalid
orchideo objects. The other cause is an erroneous aspect implementation that
the engine tries to execute. We can not exclude other reasons causing an engine
crash, but we have not found any in all of the traces we analyzed.

Our project partners at ex|xcellent solutions confirmed that the large major-
ity of reasons for an engine crash can be traced back to the two cases described
above. Therefore the error visualization has to provide excellent support for these
cases.

Hide Unimportant Information. The orchideo trace potentially contains several
thousand lines of code representing the state of the orchideo|engine at the mo-
ment its execution stopped. Usually only a few of these lines are important to
understand what went wrong. In consideration of the previous requirement to
occupy only a small amount of space on the screen, we need to hide unimportant
information.

Enable Engine Developers to Find Uncommon Problems in the Engine Trace.
In some cases it is important to have all the information at hand. This happens
when the structure of the trace is important as it decodes which actions were
executed in what order. So we need to hide unimportant information but should
be able to provide all the necessary information on request.

Keeping the tree structure of engine traces in mind, we want to present different

Exception Visualization 133

{"Level": {
"name": " Commit ",
" wasCommited ": null ,
" ParameterHash ": 0,
"items": [

{"Item": {"name": " CheckValidity ", " parameterHash ": 0,
" javaError ": ...}} ,

{"Level": {"name": " CheckConstraints ",
" objects ": null ,
...,
"items": [...]

}},
...

]
}}

Fig. 2: An example orchideo trace written in JSON. The trace is shortened consid-
erably using dots (. . .), which are not part of the trace. There are two different
JSON objects: Items, which are leafs in the tree structure, and Levels, which
contain further Levels and Items in their items field.

tree visualization techniques. Afterwards we compare each of these techniques
on the basis of our requirements.

2.2 Text Representation

orchideo applications which are used in production usually catch any engine crash
and try to recover their state so that the user can continue their work [7]. All
orchideo traces are written to log files for later analysis. The trace is a textual
representation of the current engine state. As discussed earlier in this section
this representation is hard to understand and space consuming [?].

We discuss JSON and XML as possible representatives for text output in
general.

JSON The JavaScript Object Notation (JSON) is defined as a “lightweight,
text-based, language-independent data interchange format” [79]. As its name
suggests, JSON is defined as a subset of JavaScript. JSON uses six different types,
four primitive and two structured ones, to represent data. The primitive types
are strings, numbers, booleans, and null. Objects and arrays are the structured
types used in JSON.

Whereas the notation of the primitive types is trivial, we have to follow some
syntax for the two structured types. Objects are unordered collections of name-
value pairs, where name is always a string and value can be of any type. The
following is a JSON object: {"name": "commit", "parameterHash", null}. How-
ever Arrays are ordered sequences of values which may look like the following:

134 Philipp Tessenow

[{"name":"commit"},{"name":"WrapLazyProperty"}], which is an array of two sim-
ple objects.

In our example trace in Figure 2 we have two different kinds of objects:
levels and items. Each level has an attribute called items, which is an array of
further sub-levels or items. Items may have other attributes like parameterHash
(integer), root (boolean), and name (string). A lot of other optional attributes,
like wasCommited, or contextObject, may be defined for an item as a lot of different
types of items (each of them representing a different orchideo action) exist.

The orchideo|engine trace consists of different actions, which are organized in
a tree structure. With JSON being a general purpose object notation format, it
is not optimized in representing tree structures. This results in a more verbose
engine trace as shown in Figure 2. However, a verbose engine trace, having the
disadvantage of generating large files,would be acceptable if it aided the locating
of errors in the trace. Unfortunately it is hard to separate different levels and
items as they are always—with the exception of the very first level—written
within just another level.

This makes it hard to spot the error within a JSON formatted orchideo trace.
Consequently, we would need another visualization on top of JSON to satisfy
the requirements we defined previously.

<level name=" Commit " wasCommited ="null" parameterHash =0>
<item name=" CheckValidity " action =" before "

parameterHash =0/ > ... </item >
<level name=" CheckConstraints " objects ="null" ...>

...
</level >

</level >

Fig. 3: An example orchideo trace expressed in XML. The trace is shortened using
dots (. . .), which are not part of the trace. Again, we see two different kinds of
entities: levels and items.

XML The extended markup language (XML) specification defines XML as a
language that describes a class of data objects called XML documents [25]. Those
documents consist of storage units called entities, which themselves refer to other
entities. Different kinds of XML documents can be specified through Document
Type Definitions (DTD). DTD’s define which entities are valid within an XML
document and which attributes they may have.

XML documents may be well-formed and valid. According to the XML spec-
ification they are well-formed if they follow a list of rules. Some key rules are:

– it contains legal properly-encoded Unicode characters only
– there is only one single root element containing all the other elements

Exception Visualization 135

– element tags are case-sensitive; beginning and end tags must match exactly

Besides being well-formed, XML documents can be valid. To be valid an XML
document has to contain a reference to a Document Type Definition [25]. A DTD
defines which entities and attributes are allowed within an XML document.

Figure 3 shows a shortened orchideo trace which is written as an XML docu-
ment. As we are not discussing if the document is valid or well-formed, the DTD
is not regarded and we focus on the document content itself. The document
contains two kinds of entities: levels and items. Levels, in contrast to items, may
contain further levels or items as child entities. Both may have attributes like
name, or parameterHash as indicated in Figure 3.

The XML notations makes it easy to separate different levels and items.
Furthermore it enables us to see the hierarchical structure of the trace.

Comparison Both representations could be used as direct replacements for the
current trace as they can be used within the same workflow. They are both
a lot more readable and processable than the current solution as they have a
well defined and documented structure with existing parsers available [97][98].
Generating XML or JSON output with the given engine state is possible as there
are existing libraries and tools available for that case [99][100].

When it comes to readability both formats have their drawbacks as they pro-
duce potentially long traces (with XML using two lines per level and one line per
item, which is as long as the current trace, and JSON using even more lines). So
both text representations do not fulfill the requirements stated above, but never-
theless provide a slightly better handling than the current trace. For example it
is possible to use such traces as input for existing visualization tools [101][102],
because they follow widely accepted standards.

2.3 Tree View

Traditional windows explorer like tree views are commonly known because most
people use them in their file browser or other programs. This view shows levels
as a label with a preceding �-icon. A click on this icon unfolds the tree to show
sub-levels. Items appear in the same way as levels, except for their icon.

The traditional tree view is known as a very competitive visualization tech-
nique when it comes to user experience [73]. Most users know this kind of tree
representation. Therefore it is hard for other visualizations to have a better user
experience, even if they perform slightly better in some cases.

Figure 4 shows a Tree View containing an orchideo trace. Level have their
usual �-icon. Both, levels and icons, have additional icons that indicate to which
kind of orchideo-action they belong: root, before, after, or around. Text, which
gives further details about a level or an item, is available in a separate tool-tip
window if the mouse hovers over the item. The tool-tip’s text is used as a label
for each level/item in a truncated form.

Each item and each level consumes a configurable number of lines (the pref-
erence is set to three lines in Figure 4). The old orchideo trace needs a minimum

136 Philipp Tessenow

Fig. 4: An orchideo trace shown in a standard explorer-like Tree View. Levels are
displayed as nodes and Items as leafs. A tool-tip shows further information for
a certain item or levels when the mouse hovers over it.

of two lines per level. With the Tree View only using up to one line per level
and the ability of the tree to collapse unused or uninteresting branches the Tree
View shortens the displayed trace a lot. This helps in gaining an overview of the
trace.

Another benefit is that it is easy to separate different items because of their
background color. Levels get a random gray color (having approximately equal
brightness at the same level within the hierarchy). The item’s color depends on
which action they represent. A MarkConstraintViolation for example has a light
blue color. This makes the whole trace more readable.

Overall, we are able to hide parts of unimportant information (collapse
branches), highlight common errors (e.g. MarkConstraintViolations have their
own color), and we are able to show the information within a smaller space.
This fulfills some key requirements for a good error visualization of orchideo
traces. However other requirements, such as the integration of the visualization
in a developers workflow, still need improvement.

Despite the advantages of the Tree View, there are some restrictions. An
orchideo trace containing fourteen thousand levels and items is common. To
display such a trace with the Tree View requires less space compared to the
former solutions, therefore it increases readability. Nevertheless, we still need to
scroll to see the whole trace. Furthermore finding a specific item through folding
and unfolding the tree is not convenient. This makes it hard to get an overview
over the orchideo trace at a glance.

2.4 Linear Trace

The Linear Trace is a mutant of the former discussed Tree View. We designed
it to combine advantages of the Tree View with the ability to hide unimportant

Exception Visualization 137

Fig. 5: This is an orchideo trace shown in a Linear Trace view. The Linear Trace
view is a mutant of the Tree View, which shows only important items and their
path to the root level.

information. It shows only important items of the orchideo trace and their path
to the root element. Important items are defined via a search pattern, which can
be modified by the user.

This modification, in contrast to the Tree View, hides information while
maintaining the ability to highlight important parts of the trace. This modi-
fication improves the hiding of information compared to the Tree View while
maintaining the ability to highlight important parts of the trace. We lose infor-
mation as we specialize on displaying only a subset of the trace. Therefore the
Linear Trace support enables the finding of errors, for example by searching for
MarkConstraintViolations. On the other hand it hinders the user to explore the
full trace, which makes it harder to locate specific problems, such as incorrect
orders of levels and items.

2.5 Tree-Map

A Tree-Map is another tree visualization technique, which was originally pre-
sented by Ben Schneidermann et.al. in 1991 [103]. It is a two-dimensional space-
filling approach which is capable of displaying the whole tree in a given space
without scrolling. It makes use of the humans ability to recognize different ele-
ments in a picture and the relationship between the elements. This allows people
to gain information much faster from a picture compared to scanning and un-
derstanding text [104]. Some of the main objectives of the Tree-Map’s design,
which match our requirements, are:

138 Philipp Tessenow

Fig. 6: This is a Tree-Map showing an orchideo trace. Levels and items are drawn
as rectangles. Their size depends on their importance (which is whether they fit
certain search criteria). The color is gray for levels and colored for items.

– the screen space is used effectively by using 100% of the available display
space

– interactivity by offering responsive control over the presentation of informa-
tion

– facilitate the rapid extraction of information with low perceptual and cogni-
tive loads.

To understand how a Tree-Map decodes a tree, further explanation is nec-
essary. Each node of a tree is a rectangle whose size is proportional to some
attribute of the node. Its color also depends on an attribute of the node. This
enables the Tree-Map to visualize two different criteria in the same space.

The rectangle representing the root-level of our orchideo trace gets all of the
available space. Each sub-level or item of this level is drawn within that rectangle
using an amount of space proportional to one attribute and a color depending
on another. Then the drawing process continues recursively for each sub-level.

Figure 6 shows a Tree-Map which visualizes an orchideo trace. The size of each
item is calculated on their importance. We calculated the importance depending
on whether an item matches a certain search expression. In Figure 6 we search
for MarkConstraintViolation as those violations are the most common reasons
for an orchideo trace. The items and levels are colored analogous to the Tree
View. Levels get a random gray color with nearly equal brightness for levels of
the same depth in the trees hierarchy and a larger difference in their brightness
if their depth in the tree is different. This enables the user to see the depth
of different levels and items through their gray surrounding. Equal to the Tree
View, items are colored differently if they represent different kinds of actions of
the orchideo trace.

Exception Visualization 139

Fig. 7: The left image shows an orchideo trace using hyperbolic space. The root-
level is placed in the center. Sub and sub-sub-level are placed in circles around the
root-level. The right image shows a Cone Tree, a three-dimensional visualization,
as it was presented in the paper of Robertson et.al. [106]. The root-level is
the topmost cuboid. Sub-levels are placed below their parent level in a circular
manner.

A disadvantage of Tree-Maps is that it feels uncommon to most developers
to read Tree-Maps. Furthermore it is hard to see the detailed structure of the
trace. Despite the possibility to enlarge certain items through adapting the search
pattern, it is not possible to see all items at the same time (with the uncommon
exception of small traces displayed on a large screen).

Nevertheless, Tree-Maps are a promising technique for displaying orchideo
traces. They enable us to get a fast overview of the whole trace while making
it easy to spot the error through giving certain items more space on the screen.
As less important items and levels get a relatively small space—going as far
as hiding items which would be too small—this visualization naturally hides
unimportant information.

2.6 Tree Visualization using a Hyperbolic Space

The traditional way to draw trees is a rooted, directed graph with the root
element at the top of the figure and sub-nodes below the parent nodes. Each
node is connected with a line to its parent node [105]. The hyperbolic space
approach modifies this visualization by laying out the tree on a hyperbolic plane.
This plane is mapped on a circular two-dimensional space to be displayed.

This special layout has several interesting consequences. Because the hyper-
bolic plane is a non-Euclidian geometry, parallel lines diverge from one another.
Furthermore this causes the available space to grow exponentially with the dis-
tance from the center [107], thus causing the visualizations to resemble a fisheye
view [108].

140 Philipp Tessenow

Initially the root node is displayed at the center, which conveys an overview
over the first levels of hierarchy and the general structure of the tree. Navigation
through the tree is done by clicking on a node to move it towards the center.

Figure 7 shows an orchideo trace on a hyperbolic space, which is visualized
using the JavaScript InfoVis Toolkit [101]. Levels and items look similar with
the only difference that levels are linked to sub-levels or other items, whereas
items are always leaf nodes.

As none of the nodes are highlighted in a special way, it is hard to find a
specific action which may have caused the orchideo trace. It feels easy and natural
to browse through the trace, but as a trace contains several thousand levels
and items it is difficult to find any particular item. Due to this, unimportant
information should be hidden in anyways. The hyperbolic space layout consumes
only a well-defined amount of space and displays its information without the
need to scroll. However, this visualization does not give any hint on the error
location. This leads to a situation where a programmer manually searches the
tree without having any hint about which branch has already been visited.

2.7 Cone Tree

Cone Trees are three-dimensional tree visualizations to maximize effective use of
the available screen space. Furthermore it uses animations to shift some of the
users cognitive load to the human perceptional system [106].

The root-node is drawn near the ceiling of the visible three-dimensional room.
Sub-nodes are drawn in a layer below their parent nodes layer. Each node which
is in the same depth of the trees hierarchy is placed on the same layer. The
sub-nodes are placed in a way that they build a cone with their common parent
node as the apex. The whole tree is scaled to fit into the available room. Each
cone is partly translucent so that each cone is visible, but does not block the
view on cones behind it.

If the user clicks on a node, the Cone Tree rotates the target node to the
front. Simultaneously all nodes on the path from the targeted node to the root-
node are moved to the front, too. The animation reliefs the user from rescanning
the image as it uses their perceptual system to track the rotation [106].

Figure 7 shows a Cone Tree as it was originally presented by Robertson
et.al. [106]. Due to its tree structure the orchideo trace would fit naturally in
a 3D-space using this visualization. Cone Trees have the advantage that we
get a quick overview over the whole structure of the tree, as it always scales
into the available screen space. This however makes it hard to understand trees
with a high level of nesting. Fortunately orchideo traces have a relatively low
level of nesting—in all likelihood the depth is lower than twelve [?]. Cone Trees
use their depth to store the several thousand levels and items orchideo traces
have. Therefore Cone Trees excel in showing the trace in a relatively small space
through hiding less important nodes in the depth of the image. Common errors
like MarkConstraintViolations could be drawn in a similar color as in the Tree-
Map. In contrast to the Tree-Map, it is not possible to show further information
giving details for each node. In general placing labels for each node is a problem

Exception Visualization 141

in Cone Trees because of the amount of items being displayed at the same time
overlapping each other. This is solved by only displaying labels for the currently
selected path. Unfortunately this may result in wild clicking through the tree to
get information for different nodes.

2.8 Which Visualization to Choose?

We presented multiple ways to visualize the orchideo trace: text representations
like JSON or XML, the Tree View,the Tree-Map, hyperbolic space representa-
tions,the Cone Tree, and the Linear Trace. As we need to find the best visual-
ization technique for our purpose, we briefly compare them with focus on the
requirements listed in Section 2.1.

Integration into the Current Workflow. All the presented visualizations can be
realized as an Eclipse plug-in within a new view. The actual implementation
of the plug-in defines the quality of the integration into a developers workflow.
Therefore drag and drop or similar methods for handling incoming traces are
features that do not depend on the actual visualization technique.

Give a Hint which Part of the Application Code may have Produced the Error.
Hints for the cause of an engine crash are hidden at different places within the
orchideo trace. When the ExecutionInterruptedException is thrown, it prints its
execution stack. An engine developer can use that stack dump to find at which
point within the engine the error was thrown. An application developer on the
other hand needs to skip the engine part of the stack dump (as well as other
parts of the dump added by third party frameworks like SWT) to find where
his code calls the failing engine. As our visualizations do not provide support in
showing and analyzing the execution stack, we implemented the feature to jump
to the failing code in our Eclipse plug-in.

As an application developer often finds enough information in the execution
stack of the engine to see where the crash originated from, an engine developer
needs more information. It is possible that Java error-traces are attached to
levels and items [?]. These traces need further investigation as they, if they
occur, encode probably the reason for the engine crash. Here Tree-Maps and
the Linear Trace provide good support in highlighting Java error-traces through
giving them an important level and therefore hiding other items.

If a developer finds the error causing item, he needs to know the path from
that item to the root level. An example path could look like that:
Commit >> CheckConstraints >> CheckConstraint >> CardinalityViolation
We see that the path to the root level gives important meta information about
the item. It says that there was a failure during the commit action caused by a
failing constraint due to a wrong cardinality of some attribute. Apart from the
path from the item to its root level, we need further information on the item itself
like which constraint failed on what object. Here all our graphical visualizations
except for the Tree-Map and the hyperbolic tree provide good support as they
show the path from an item to the root level at a glance. Our textual trace

142 Philipp Tessenow

representations fail, because they require too much scrolling to see the path or
do not provide enough separation between different levels and items.

Show the Necessary Information in as Small Space as Possible and Hide Unim-
portant Information We wanted to integrate the error visualization into the or-
chideo development workspace. Therefore the required space should be as small
as possible while simultaneously ensuring usability while looking at the visual-
ized orchideo trace. The Tree-Map, Cone Tree, Linear Trace and hyperbolic tree
layout provide good support for that scenario. They hide unimportant informa-
tion and set focus to important items in the trace.

Unfortunately the Cone Tree has some problems when it needs to display a
lot of information as it scales the tree. This makes it hard to separate particular
items and levels. As all the items and levels overlap each other, it is difficult to
find a specific node because of the sheer mass of nodes being displayed.

As discussed above, hyperbolic trees have the problem that it is uncomfort-
able to navigate through large trees, especially since most users are not used to
this kind of visualization. The Linear Trace and the Tree-Map suit this require-
ment very well but have some usability issues. Using the Linear Trace the user
still needs to scroll vertically and horizontally in most cases. They do not need
to scroll using the Tree-Map, but most users told us that they find it hard to
read. Apart from that the Tree-Map gives an overview of the trace even if it is
displayed on very small spaces.

Find and Highlight Common Errors. It is possible in all graphical visualizations
to give some nodes a specific color that indicates that this item may be of
interest. Furthermore some search functionality can be implemented for all of
them. Again the Linear Trace and the Tree-Map shine, because they highlight
and display common errors even at first glance.

Enable Engine Developers to Find Uncommon Problems in the Engine Trace. It
is not possible to foresee every possible kind of error that is hidden in an engine
trace. Most visualizations that support good information hiding are specialized
on common errors as they can highlight important items for that error and hide
others.

To enable engine developers to find uncommon problems, like a wrong order
of executed actions or wrong sessions used in different actions, we needed to pro-
vide a visualization that displays the whole trace without hiding information.
Furthermore the order of actions should be the same as in the original trace and
all possible information available for any specific item or level should be reach-
able. The Tree View provides the best support for that case, as most developers
are able to use a Tree View intuitively. Furthermore the Tree View allows us to
reach every node of the tree while giving the option to fold and therefore hide
certain branches.

Because none of the visualizations fully suits all requirements, we decided to
implement a plug-in that combines three techniques: the Tree View, the Linear

Exception Visualization 143

Trace, and the Tree-Map. Once a trace is loaded using one of these visualizations,
it should be possible to switch to every other visualization we offer without
loosing context. That enables us to benefit from the advantages of each of these
visualizations.

3 Implementation of the Trace View Plug-in

We presented several methods to visualize the orchideo trace and discussed which
combination of visualization techniques serves us best. Furthermore we decided
to use the Tree View as it is a general purpose tree visualization with very
good performance in terms of task completion and user satisfaction[109]. The
Linear Trace was taken as a mutation of the Tree View, because it offers better
information hiding while having the same interface as the Tree View. Finally
we decided to include a Tree-Map visualization into our trace view plug-in as it
gives an overview of the trace with minimal space requirements.

In this section we present how we integrated those visualizations into the
orchideo suite. We discuss the overall architecture of our plug-in as shown in
Figure 8 and how it is integrated in an orchideo developers workflow. Afterwards
we explain the implementation details of each of the different visualizations and
common features among them.

3.1 Trace View as an Eclipse Plug-in

To support a developers workflow we directly integrate our visualizations into
their development environment—orchideo. As orchideo is based on Eclipse [4] we
implemented an Eclipse plug-in that can read and analyze an orchideo trace [?]
and is able to visualize it. Our plug-in adds a new view to the orchideo suite
called trace view. Initially it opens the Linear Trace view we presented earlier.
As there is no initial orchideo trace to be displayed, it shows a text explaining
that copy and paste or drag and drop may be used to give a new trace to the
view.

Technically we distinguish two views only: the Tree-Map and the Tree View.
This is because the Linear Trace is equivalent to the Tree View, except that
it applies a filter to the tree which hides unimportant items as described in
Section 2.4. Both views use the same input which is given by the orchideo trace
parser described by Tim Felgentreff [?]. The parser generates a tree containing
Level and Item objects, which have the same semantics as the levels and items
we described earlier. Both Level and Item are subclasses of the abstract class
StackNode, which implements some common behavior. This includes for example
the following methods:

getActionName() returns the name of the action this StackNode represents. If
the StackNode is a Level it returns the value for the levels root action for this
method and all methods listed below.

getFields() returns all optional name-value pairs which are given by the rep-
resented action as a HashMap.

144 Philipp Tessenow

TreeLabelProvider

getText(node : StackNode) : String
getImage(node : StackNode) : Image
getColor(node : StackNode) : Color

TreeContentProvider

importantText : String

getImportance(node : StackNode) : long
getChildrenImportance(node : StackNode) : long

OrchideoTraceView

AbstractTreeViewer

1viewer

1
view

TreeViewer

EllipsingTreeViewer

TreeMapViewer

StackNode

getActionName() : String
getFields() : HashMap
getParameterHash() : String
getJavaTrace() : String
getSessionInformation() : String

0..1
parent

0..*

child

Level Item

root0 1

root0 1

labelProvider0 1

contentProvider0 1

Fig. 8: A class diagram showing the relation between our plug-in
(OrchideoTraceView) and our viewers. Each of our viewers knows the root node
of the tree it displays. A viewer may get further information for a specific node
through their content provider and label provider.

getParameterHash() returns the parameter hash which is given by each item of
the orchideo trace.

getJavaTrace() returns any text which was placed within or after an item, but
does not belong to the item itself. Usually this is a Java error-trace of an
exception that was thrown within the orchideo|engine.

getSessionInformation() returns an object that holds the information which
session was used by the orchideo|engine while executing the action this item
represents. The information includes the session name and an id identifying
the session.

Further methods like getChildren() and getParent() have an obvious mean-
ing and are used by both the Tree View and the Tree-Map to gather the re-
quired information to display the tree. The standard SWT tree view requires to
get information by a ContentProvider, which offers information about the tree
structure, and a LabelProvider, which gives information about the appearance of
a specific node[45]. We added a TreeLabelProvider and a TreeContentProvider,
which are used by the Tree View and our Tree-Map.

Our TreeContentProvider, additionally supports retrieving the importance of
an item or a level. The importance is used by Linear Trace and Tree-Map to
decide which items to show. We define the importance of levels or items as a

Exception Visualization 145

non-negative number, which is the sum of the importance of the object itself
(local importance) and the importance of all its children, where 0 indicates the
lowest importance. The content provider provides methods to get the importance
of an object (getImportance()) or the importance of the objects children only
(getChildrenImportance()).

Levels contain information about the structure of the orchideo trace. The
Tree View, which we proposed to analyze details of the structure of the trace,
ignores importances. But the Tree-Map and the Linear Trace need levels to be
important if they contain important items. Therefore we give each level the
local importance of zero, which means its importance is defined by its children
only. This lets a level’s importance increase with the importance of its items.
The Tree-Map and the Linear Trace view can thus enlarge/display levels if their
items are important.

To boost the importance of certain items, the user may define a text pattern.
If an item matches this pattern it will be given a higher importance. The user
may use patterns analogous to the class search functionality of Eclipse. If the user
wants to highlight items which contain the text MarkConstraintViolation (the
default search pattern as most errors are hidden in items with those violations),
he may search e.g. for “MarkConstraintViolation”, “MaCoVi”, or “ma*on*ion”.
We built a RegexHelper class that is able to generate a regular expression when
given such a pattern as input. Additionally items and levels get a higher impor-
tance if a Java error trace is attached to them. This is useful for orchideo|engine
developers, because sometimes—when there is an error in the implementation
of the orchideo|engine—the Java error is the reason for the trace. The imple-
mentation of the orchideo|engine makes certain Java errors appear often in the
trace. We give only one of these errors a higher importance, to avoid flooding
the visualization with copies of one and the same Java error.

3.2 Implementation of the Tree View

So far we have discussed the theoretical background of our plug-in. Now we want
to present parts of our implementation that are actually involved in displaying
the tree visualization techniques discussed in Section 2.

We reused the JFace TreeView, which uses an SWT tree widget to display
tree structures [110]. It is the Tree View that handles the details of expanding
and collapsing items as shown in Figure 9. We extended the standard Tree
View implementation to support highlighting items. This should be done by
ensuring that the item is visible (ensure that all branches up to the item are
expanded and the view is scrolled to a position where the item is visible) and
selected. Furthermore we had issues concerning the non-uniform way item labels
are displayed on different operation systems. The labels of our items usually
have more than one line of text. On Windows machines this was not a problem
as the windows SWT tree implementation only displays the first line. However
the Linux implementation displays all lines of the text, which made the view
difficult to understand due to each item taking up a lot of space on the screen.
Since Linux is the main development platform at ex|xcellent solutions, we made

146 Philipp Tessenow

Fig. 9: This is a Tree View showing an orchideo trace. The numbers À and Á
are referring to different parts of the visualization, while the Â to Æ refer to the
tool bar of our view.

the maximum number of lines an item may consume a preference to enable the
user to decide which implementation suits him most.

We subclassed the JFace TreeViewer to extend it with the new functionality.
Unfortunately the tree viewer comes with some restrictions which are stated in
the Eclipse documentation [111]:

”This class is not intended to be subclassed outside the viewer frame-
work. It is designed to be instantiated with a pre-existing SWT tree
control and configured with a domain-specific content provider, label
provider, element filter (optional), and element sorter (optional)“.

Therefore we used custom tree and content provider, as discussed in Section 3.1.
We ignored the restriction and subclassed the viewer, to extend it as intended.
This lead to some less elegant parts in our code (e.g. some instanceof-checks to
ensure we have our custom viewer). However, it made our Tree View implemen-
tation support highlighting items and added support for adjustable multi-line
labels for items on Linux systems.

Our label and content provider make the tree structure that the trace parser
produces accessible to our modified TreeViewer. Finally our plug-in supports the
Tree View visualization as presented in Section 2.3: The line of the Tree View
which is marked as number À in Figure 9 shows a currently expanded level.
Through collapsing and expanding levels we are able to explore the orchideo trace
in detail to find items which point to errors in the application code. The item

Exception Visualization 147

shown near Á refers to a cardinality violation, which is a common error hidden
in orchideo traces. We instantly see that the last name cardinality constraint
failed on a customer. To get further information we can hover over this item
to see a tool-tip with a more detailed description. Numbers Â to Æ refer to
the views tool bar, which we discuss in Section 3.5. The Tree View is the first
visualization technique for which we discussed the implementation. We want to
present the implementation of the Linear Trace view and the Tree-Map in the
following sections.

3.3 The Linear Trace as a Simplification of the Tree View

The Linear Trace we presented in Figure 5 basically has the same functionality as
the Tree View but only shows a subset of the items. It shows only important items
and their levels up to the root-level. The JFace TreeViewer, which we subclassed
as described in Section 3.2, supports hiding elements through filters [111]. This,
along with our content provider offering information about the importance of
items, enabled us to hide less important items.

We added an action to our TraceView which provides support to enable and
disable a LinearImportanceViewerFilter. The action is accessible through an
iconic button and a menu entry in our plug-in view. If the filter is applied, our
tree viewer asks the filter for every item whether it should be displayed or not by
calling the select() function. This function is intended to return true if a given
object should be displayed on the viewer. The filter selects an item if a node (or
one of its subnodes) has a higher importance than a specific base importance or
matches a search pattern, which can be set in the preferences.

Developers using orchideo may now load traces into the Linear Trace view and
are not confronted with thousands of items anymore. They can see items they are
looking for by defining a search pattern. This pattern is predefined to show the
most common errors hidden in orchideo traces, which are cardinality violations.
They can explore the actions showing the error and actions that caused the
execution of erroneous actions, because orchideo-actions are expressed as items
in the visualized trace. If it is necessary to get more information about a specific
item, again the information can be accessed through a tool-tip that appears
when hovering over the item.

Furthermore the user may decide to switch to the Tree View to get additional
information about surrounding (yet hidden) items. Alternatively he can switch
to the Tree-Map view if he wants to continue his work but simultaneously wants
to have the orchideo trace at hand displayed on a small part of his screen.

3.4 Implementation of the Tree-Map

There was no predefined view for the Tree-Map visualization, which is why we
decided to implement it ourselves. The Tree-Map view, which is shown in Figure
10, is a graphical visualization of the orchideo trace. As explained in Section 2.5,
a Tree-Map consists of a rectangle for every node in the tree. Each rectangle
contains the rectangles for its child-nodes within its bounds. Furthermore we

148 Philipp Tessenow

Fig. 10: This is a Tree-Map showing an orchideo trace. The numbers refer to
different parts of the visualization.

wanted to display an icon and a description within large items of the tree. The
icon indicates whether the item represents a before-, after-, around-, or root-
action. The description is a text as seen in Figure 10, Ã for cardinality violations
(the large light blue rectangles).

We implemented a class TreeMap, which is a subclass of the SWT canvas
widget. Objects of that class, when given an appropriate root-node, a content
provider, and a label provider, are able to draw Tree-Maps. To that end they
instantiate TreeMapRectangles and pass them the StackNode (which is a level or
an item, as discussed in Section 3) the rectangle shall represent. The sequence
diagram in Figure 14 shows the Tree-Map drawing process.

The TreeMap creates a new TreeMapRectangle and gives it the root StackNode
to be displayed. After setting the label and content provider, it calls the
drawTree() function. The newly created rectangle attempts to draw itself within
the given bounds. Therefore it asks the label provider for the color in which
it will draw itself on the screen. To give it a better visual experience, a slight
highlight is added to the plain color of the rectangle. In the second step the
rectangle asks the content provider for the children of the current StackNode.
The rectangle calculates the space each of its children will be given depending
on their importance. The more important a child is, the more space may it have
to draw itself. For each child the rectangle creates new TreeMapRectangles which
recursively continues the drawing process.

Exception Visualization 149

Fig. 11: An orchideo trace displayed in a modified Tree-Map. This Tree-Map
does not switch between vertical and horizontal orientation while drawing its
rectangles.

Each TreeMapRectangle draws its sub-rectangles with a different orientation.
When a horizontal orientation is applied, the child rectangles will be drawn
from left to right, whereas they are drawn from top to bottom on a vertical
orientation. The rectangle with the red border near À in Figure 10 draws its
children with a horizontal orientation applied. It is crucial for the Tree-Map
that the orientation switches between vertical and horizontal orientation with
each recursive step. We do the orientation switch within the calculateBounds()
method seen in Figure 14. What happens if the orientation switch is not done is
shown in Figure 11, where we applied a horizontal orientation for all rectangles.
Here the two constraint violations dominate the picture occupying the same
space as before, but leaving the rest of the picture as an undefined gray area.
This visualization does not display any structure of the trace, and leaves valuable
space unused.

The recursion will stop when items with no further sub-rectangles are drawn.
When there is enough space available, the rectangle representing the item con-
tains additional information about that item. As seen in Figure 10 near Â we
print a small icon that indicates the kind of action (before, after, around, or
root) along with the background color of the rectangle. If there is even more
space available, we print a description of the item, which we parsed and an-
alyzed out of the orchideo trace. An exemplary description can be seen near
Ã. Those descriptions are different for every kind of action that is parsed. For
MarkConstraintViolations, we are able to say which kind of constraint violation
triggered the violation. In Figure 10 the violation was triggered by a cardinality

150 Philipp Tessenow

violation. Another possible constraint violation is the OCL violation. In addition
to the kind of violation we can print the reason for the violation, which is for
example a title cardinality violation of a customer object. Furthermore we print
a hint, which helps to find the causing error in the application code.

Even with limited screen space, the Tree-Map offers a visualization which
shows the structure of the trace, highlights errors that the users is searching for,
and gives a detailed description of the error. Nevertheless it has some weaknesses.
The Tree-Map hides some items with low importance, which would be too small
to be displayed. This makes the Tree-Map less useful to explore the orchideo
trace in detail. We noticed that the Tree View serves this scenario best, so we
implemented a handy shortcut to switch to the Tree View while keeping the
focus on a specific item. If the user double-clicks an item (or a level) in the
Tree-Map it switches to the Tree View and highlights this specific item. This
enables the user to rapidly locate an item or a level in the Tree-Map and then
switch to the Tree View to examine the items neighborhood.

3.5 Shared Features of the Visualizations

The visualizations we discussed earlier are distinct, but nevertheless share some
functionality. As we wanted to integrate our plug-ins into the workflow of the
orchideo developer, we provide drag and drop and copy and paste support, which
we briefly discuss in this section. Furthermore we want to discuss some details
of the previously mentioned tool-tip and search support.

Our TraceView plug-in adds a new view to the orchideo suite, which is imple-
mented by the class OrchideoTraceView. This class is responsible for switching
between our visualizations. Furthermore it shows a tool bar and implements
other visualization independent behavior. It uses the Eclipse plug-in API to reg-
ister paste support and drop support for files. Both the drop handler and the
paste action forward their input to the content provider. In turn the content
provider starts a new parser thread [?] to retrieve our tree structure to display.
The parser however is able to handle files as well as text from the clipboard.
That way the content provider only needs to take the parsed output or handle
errors like parsing errors or file not found errors. As the content provider knows
the view it is connected to, it can call refresh() on the view to update it.

To make the clipboard paste-support explorable, we additionally added an
icon to the views tool bar to paste orchideo traces into the view. This icon is
shown in Figure 9 near Ã. Other icons on the tool bar are: an icon for toggle
between the linear trace and the Tree View Â, set the search pattern Ä, toggle
to Tree-Map Å, and a text based menu offering the same options Æ. The toggle
to Tree-Map icon is replaced by another icon when the Tree-Map is displayed
(Figure 10, Ä), which switches back to the Tree View.

Along with the other icons, we added an icon for search support to the tool
bar. A click on this icon, as well as the keyboard shortcut ctrl-f, opens a small
input window as seen in Figure 12 near À. Changes in this window change the
search pattern which is used to calculate important items. As changes are applied
while typing, the user gets a fast response on his search for the visualizations that

Exception Visualization 151

Fig. 12: An orchideo trace displayed using the Linear Trace view. The user cur-
rently edits the search pattern À.

apply information hiding based on the importance of nodes. When the changes
are applied by hitting the return-key or a click on the nearby button, the next
item or level that matches the search pattern will be selected and scrolled into
view. When doing the same search again or pressing the keyboard shortcut ctrl-
k, the following item matching the pattern will be highlighted. Of course, this
only works in the Tree View and the Linear Trace, as the Tree-Map does not
support scrolling and separate highlighting of items.

In addition to the previously discussed functionality we extended the or-
chideo|engine to print some additional information into the trace [?]. When
an ExecutionInterruptedException is dumped into a log file or the Eclipse er-
ror console, the engine prints the code location where the error was thrown
just before the original trace. Our trace parser is able to read this optional
part of the trace. We visualize this execution stack, that was printed when the
ExecutionInterruptedException was constructed, in our Exception Constructor
Stack view as seen in Figure 13. With the Exception Constructor Stack it is
possible to see where the exception causing the orchideo stack was thrown with-
out browsing through SWT, JUnit or other framework code. The view explicitly
shows the orchideo|engine part of the stack to support orchideo|engine developers
who want to see where the error occurred in their engine. To support application
developers using orchideo each line of application code in the execution stack is
marked with a red background color and an arrow. This enables the application
developer to immediately see where in his code the error was caused. In Figure 13
we can see that the error was thrown in the Activator class of the TeltowCar [?]
application.

152 Philipp Tessenow

Fig. 13: This information window shows where the orchideo trace was originally
thrown. Our plug-in marks the part of the potentially long execution stack where
application code was executed.

4 Evaluation

We discussed our approach to visualize the orchideo trace in detail in the previous
sections. Our goal was to extend the orchideo suite with an error visualization
technique, that enables orchideo developers to better read and understand or-
chideo traces. In this section we discuss the applicability of our implementation
in consideration to the requirements we defined in Section 2.1. Furthermore we
discuss future work to improve the performance of the trace view plug-in.

4.1 Our Implementation in Consideration to the Requirements

In order to evaluate our implementation, the requirements that were defined in
Section 2.1 are reviewed. For each requirement we discuss whether our plug-in
suits the users needs. Subsequent to the discussion, we evaluate if we reached
our goals as intended.

Integration into the Current Workflow. Our extension to the orchideo suite in-
tegrates seamlessly into the programming environment. An additional view can
be added to the developers workbench, when our plug-in is loaded. The Trace
View could be placed for example at the place where the Outline view is located.
In this way it occupies a minimal amount of space while still being able to give

Exception Visualization 153

valuable information about the trace. For further investigation, a developer may
switch to the Tree View in full-screen mode, which Eclipse provides for every
view.

orchideo traces usually exist in the form of log files on production systems,
or as text such as in the orchideo error console. Our plug-in supports both cases
as it is possible to drag files into the Trace View from the users file manager,
or just paste a trace from the clipboard into the view. The latter case could be
optimized, however, as the trace is printed in the orchideo error console and a
developer needs to manually feed our view with that trace. A better solution
would be that the plug-in discovers and visualizes the trace in the error console
without any interaction of a developer.

To solve that problem, we implemented an additional plug-in
called Runtime Rescue [?], which is able to automatically detect
ExecutionInterruptedExceptions. If the exception is thrown, the plug-in
halts the execution of the program just before the exception would be thrown
and automatically jumps to the application code that was executed just before
the orchideo|engine was called. Simultaneously the trace that would have been
thrown by the exception, is displayed in our Trace View. With the help of
the Runtime Rescue plug-in a developer can skip several manual steps which
were required previously to debug orchideo applications. In combination, both
plug-ins enable real-time debugging [75] of orchideo traces, allowing a developer
to see the error in the visualization and still check the live objects.

Give Hints as to which Part of the Application Code may have Produced the
Error. With the old orchideo trace it was hard to find the part of the developers
source code that was responsible for the trace. We implemented a mechanism
that handles the given execution stack to find the code that caused the trace.

In order to do so, we slightly modified the part of the orchideo|engine that
dumps the trace to add the current execution stack to the top of the trace.
This execution stack can be viewed by the Exception Constructor Stack win-
dow shown in Figure 13, which points to the code that may have caused the
trace. When debugging an orchideo application, the functionality provided by
the Runtime Rescue plug-in is faster as it automatically jumps to the code in
question instead of indirectly referring to it. Nevertheless the Exception Con-
structor Stack window is useful in post-mortem situations, especially when the
trace comes in the form of log files from a remote production system.

Show the Necessary Information in as Little Space as Possible. The Linear Trace
view and especially the Tree-Map view requires only little space on a developers
screen. Both views are able to display several thousand lines of orchideo trace
within the space used by the Eclipse Outline View. The views accomplish this
by hiding unimportant information. As information hiding always comes with
a loss of information, we added the functionality to switch to the Tree View
without loosing track of a specific item. This allows the Trace View to show all
the necessary information while using as small space as possible.

154 Philipp Tessenow

Find and Highlight Common Errors. Referring to our project partners at
ex|xcellent solutions, constraint violations are the most common cause of an
orchideo trace. Our default search pattern, which is applied when opening the
view, highlights constraint violations. This enables a developer to find such vio-
lations easily.

Another kind of error in the orchideo|engine that occurred sporadically is re-
lated to a lot of Java exceptions being included in the trace. As we give nodes
with those Java exceptions attached a higher importance, they can be spotted
with the Tree-Map or the Linear Trace view. If there are multiple nodes contain-
ing the same Java exception, we only raise the importance of one of these nodes.
This prevents us from flooding our views with too many highlighted items.

If the order of executed actions is important, the error can be found using
the Tree Views search functionality. Consequently all common errors, which are
the errors listed above, can be found using our visualization with far less effort
needed than reading through the original orchideo trace.

Hide Unimportant Information. Through calculating the importance of every
item and level, the Linear Trace view and the Tree-Map are able to hide unim-
portant items. The importance of items can be changed by setting a flexible
search pattern, which enables a developer to only see items he wants to see.

Enable Engine Developers to Find Uncommon Problems in the Engine Trace. As
the Tree View does not hide any items of the trace, every possible information
which is encoded in the trace can be found. This enables a developer to even find
errors in the trace that we have never thought of. However we can not evaluate
if it is convenient to spot those errors.

Overall, our implementation suits the requirements listed above in most cases.
But especially when orchideo developers want to live-debug their application, our
implementation does not provide optimal support to their workflow. We have
implemented some more plug-ins during our project, which are not presented in
this paper, such as the Runtime Rescue or the Session View plug-in [?]. As these
plug-ins specialize more on live-debugging, they can provide optimal support,
where the Trace view plug-in flags.

4.2 Future Work

Even though our implementation suits the requirements, we see potential to
improve certain details. For example we currently show session information for
every level and item in the trace. This session information includes the name of
the active aspect configuration at the execution time of the represented action.
Furthermore it includes an id referring to the actual configuration object stored
in the orchideo|engine. During a live-debug session, it would be useful to link the
aspect configuration part displayed in the Trace View to the actual object in
the Session View [?]. Unfortunately the performance of the trace parser is not
sufficient [?], which possibly leads to undesirable latency when re-parsing the

Exception Visualization 155

trace is needed. On the other hand there are often few different configurations
active, which makes it an easy task to instantly see which configuration was
used. Because of the poor cost-benefit ratio we actually do not concentrate on
further optimizations on this issue.

Another detail concerns the Tree-Map visualization, as the majority of devel-
opers we interviewed were not instantly able to understand the Tree-Map. They
were confused due to the unusual visualization. But after an explanation most of
them were able to use it—some of our interviewees were even enthusiastic about
the higher information density. We can support the process of understanding the
Tree-Map by implementing some further functionality: we want the Tree-Map
to highlight those rectangles that the mouse is hovering over, which would pos-
sibly help the user to explore and understand the tree structure displayed in the
Tree-Map. With that modification it would be easier to trace which sub-levels
and items belong to the level at the mouse location.

4.3 Influence on the orchideo Developers Workflow

When we initiated the project, we interviewed orchideo developers about their
current workflow. A widespread problem was that developers are often con-
fronted with an orchideo trace. These traces occur during the development process—
while debugging—or when the software is deployed and orchideo|engine crashes
are found in the log files. The usual workflow to handle orchideo traces was to
forward those traces to an orchideo|engine developer, who is able to understand
the traces. This led to a major slowdown of the development process, as an
engine developer’s time is highly occupied.

We interviewed orchideo developers again, after they tested our plug-in and
got throughout positive feedback. The feedback proved that the orchideo devel-
opers workflow has already changed. Using the plug-in we developed to visualize
orchideo traces, developers are able to identify the problem that caused the trace.
As it does not matter if the trace was created with or without our modifications,
or if the trace was created on a developers machine or remotely, our plug-in
offers a post-mortem analysis of traces which even works with older versions of
orchideo.

orchideo developers now handle traces by themselves. The error finding pro-
cess is much faster, since the application developers can work independently of
the orchideo|engine developer. The plug-ins are in active use at ex|xcellent for
developing orchideo applications.

5 Conclusion

We presented several tree visualization techniques and discussed whether they
provide good support for error visualization based on the example of orchideo
traces. Furthermore we implemented a plug-in for Eclipse containing a combina-
tion of three visualizations we considered optimal for our case: The Tree View,
the Linear Trace view, and the Tree-Map. The visualizations are displayed within

156 Philipp Tessenow

a new view our plug-in provides for the orchideo workbench. Additionally we dis-
cussed the implementation of the plug-in and the visualizations in detail. The
evaluation showed that the combination of these three visualization techniques
suits our requirements. Finally we have seen that our implementation is already
used in a production environment by our project partner ex|xcellent solutions.

We conclude that the error visualizations we provide actually helps in under-
standing orchideo traces. In combination with other plug-ins and enhancements
we implemented for orchideo [?][?][?], we believe that the trace View plug-in effec-
tively supports orchideo developers writing their applications and orchideo|engine
developers who extend orchideo.

Exception Visualization 157

Fig. 14: The basic drawing algorithm of TreeMapRectangles. First the rectangle
draws itself and then recursively each of its child rectangles.

Bachelor Thesis

Continuous Integration For
Eclipse Plug-ins

Frank Schlegel

Supervisors:

Dr. Michael Haupt, Malte Appeltauer
Prof. Robert Hirschfeld

Software Architecture Group
Hasso Plattner Institute,

Potsdam, Germany

June 25, 2010

Continuous Integration For Eclipse Plug-ins

Frank Schlegel

Hasso Plattner Institute
Potsdam, Germany

frank.schlegel@student.hpi.uni-potsdam.de

Abstract. In our project work we developed plug-ins that extend the
Eclipse ide in various ways. To reduce integration risks we wrote unit and
ui tests and set up a continuous integration system. Unfortunately exist-
ing ci solutions for Eclipse plug-ins do not meet all of the requirements
we identified especially in term of ui testing. Therefore we developed
an own ci solution that meets these requirements and we suggest it to
everyone who develops Eclipse plug-ins. In this paper we describe this
solution in detail.

1 Motivation

The orchideo|suite [4] is an extension to the Eclipse ide [112] which brings support
for aspect-oriented programming (aop) and model-driven software development
(mdsd) as described in paper [?]. The purpose of our project work was to extend
orchideo with plug-ins to improve the debugging support for the aop and mdsd
implementation of orchideo. These are mainly extensions that contribute to the
Eclipse ide user interface including views, preference panes and buttons. The
plug-ins are discussed in detail in [?], [?] and [?].

The use of continuous integration (ci) [113,114] in other projects convinced
us of its benefits [115,116]. Hence we decided to setup a ci infrastructure for
the Eclipse plug-ins we wanted to develop as well. After we became acquainted
with the Eclipse Plug-in Development Environment (pde)1 and gathered some
experience with orchideo while developing the demo application TeltowCar [?],
we defined requirements on a ci system for Eclipse plug-ins.

As we tried to setup a ci server that meets our requirements we soon reached
a point where existing tools were too restricted for our purposes. Therefore we
decided to use the extensible Hudson ci server and customize it by writing own
plug-ins for it. As we furthermore needed Eclipse to run automated on the ci
server to test our plug-ins, we also decided to write plug-ins that enables Eclipse
to be controlled remotely by Hudson.

As the requirements we defined are strongly driven by the principles for
a continuous integration system laid down by Martin Fowler [117], Section 2
will give a brief introduction in these principles and the benefits of continuous
integration. The requirements we defined are introduced in Section 3 followed
1 http://www.eclipse.org/pde/

mailto:frank.schlegel@student.hpi.uni-potsdam.de

162 Frank Schlegel

by an introduction on existing continuous integration tools with a discussion on
their advantages and drawbacks in Section 4. In Section 5 we present the tools
we developed for our ci setup to meet our requirements and demonstrate an
example work flow in Section 6. In Section 7 we evaluate our solution followed
by a comparison with related work in Section 8. Section 9 forecasts some possible
extensions to the proposed setup and on future work. In Section 10 we finally
give a short conclusion of our work.

2 An Introduction to Continuous Integration
The term “Continuous Integration” has emerged in the Extreme Programming
community and was established by Martin Fowler [117] and Kent Beck [118]
in 2000. Continuous Integration stands for quality improvement, rapid bug de-
tection and decrease of integration time. Since Extreme Programming becomes
more and more popular in software development, the use of continuous integra-
tion systems becomes more self-evident. Along with a source code management
system it is an essential part of most development setups.

This section gives a brief introduction to the key practices of continuous
integration introduced by Martin Fowler [113] and points out the benefits of
using continuous integration systems.

2.1 Practices of Continuous Integration
Maintain a single source repository. The basis of every continuous integration
system is a single source repository, in most cases managed by a Source Code
Management (scm) tool like Subversion [119] or Git [120]. This repository must
be a well known place for everyone involved in the project. It should contain
everything needed to perform a build, but nothing actually built to avoid conflicts
of system specific binaries and to reduce the amount of data in the repository.
It should be possible to do a checkout on a clean machine and fully build the
system.

Automate the build. The build process of the project should be fully automated.
There should be one single command to build and launch the project on a clean
system. There are several common automated environments for builds, like GNU
Make [121] and Apache Ant [122], that are designated to that job. They also
offer the possibility to build alternative targets for different cases, for example
different binaries for different platforms. This is especially useful for performing
staged builds (see below).

Make the build self-testing. A program may run after successfully building the
executable, but that does not mean it fulfills its requirements. To ensure the
correctness of the code, automated tests should be performed with every sin-
gle build [123]. The failure of a test should cause the build to fail. Suites for
automated tests, like the xUnit family [124], provide the possibility to run auto-
mated tests with a simple command. They also provide detailed reports of the
test results and integration in a lot of ides like Eclipse.

Continuous Integration For Eclipse Plug-ins 163

Everyone commits to the repository every day. The hardest problems are those
which are detected too late. Frequent commits to the repository allow to find
and fix problems quickly. It is important that a developer can correctly build his
code, including passed build tests on his local machine, before committing. The
developer first updates their working copy from the central repository, resolves
any conflicts and builds on his local machine. If the build passes, the developer
may commit to the repository. It is a good idea to commit at least once per day.
So every developer gets changes of the other developers frequently and errors
can be detected almost as soon as they emerge.

Every commit should build the mainline on an integration machine. The main-
line, meaning the main development branch in the repository, should stay in a
healthy state to ensure that each developer can operate on a stable base. There-
fore it is necessary to find and fix problems as quickly as possible. This can be
achieved by building the mainline with every commit. Since the developers are
responsible for their commits, they must be able to monitor the mainline build.
The most comfortable way for achieving good visibility is by using a continuous
integration server that acts as a monitor to the repository. Most of them pro-
vide a web interface with visual feedback of the project’s state which should be
accessible to every developer committing to the project.

Keep the build fast. The purpose of continuous integration is to provide rapid
feedback. A build that takes a long time is very counterproductive. The goal
should be to have a build that takes at most ten minutes. Because tests may
take a long time to run, it is technically not always possible to run a build within
ten minutes.

The common way to bypass long waiting time is the usage of a staged build.
The idea of a staged build is to perform multiple builds in sequence. A commit to
the mainline triggers the first, so-called commit build. It performs all the actions
that are needed to ensure that the build is stable enough for other people to
work on [123]. If the commit build passes, the developer is free to resume his
work; if not, he has to fix all errors occurred. In the meantime, the ci system
performs all the actions that take too long to be performed within the commit
build. If something went wrong in the second build phase, it is a good idea to
add a test for that error to the commit build.

Test in a clone of the production environment. A running system on the inte-
gration server is not always a guaranty for a running system in the customer’s
environment. To eliminate as much error sources as possible it is advisable to set
up the test environment to be as exact a mimic of the production environment as
possible. An emulated test environment, for example provided by virtualization,
can slow down the test process. Therefore it is common to have an artificial test
environment for fast commit tests and a production clone for secondary testing.

Make it easy for anyone to get the latest executable. Validating the final product
is a difficult process. Therefore it is necessary that anyone involved in the project

164 Frank Schlegel

should be able to get the latest executable and be able to run it. This can be
easily achieved by providing a well known place where people can find the latest
executables to pass the commit tests. It is also advisable to put executables of
several versions in such a store to always have a backup.

Everyone can see the result of the last build. Since continuous integration lives
on communication, it is essential that everyone can easily see the state of the
system and the changes that have been made to it. Most CI systems provide
a web interface that provide all the important information like the state of the
builds, or the last changes in the repository. Some teams prefer to hook up a
more recognizable display to the build system, like a traffic light signalizing the
current state of the mainline build.

Automate deployment. Since deployment is a part of integration, there should
also be scripts that will easily allow automatic deployment into any environment.
Each time the application is deployed, the infrastructure will be reset to as close
to the base state as possible. After the application has been deployed to that
clean environment, a suite of simple deployment tests will prove the success of
the deployment process.

2.2 Benefits of Continuous Integration

Continuous integration is primary about reducing risks [115]. By integrating
frequently defects can be found nearly as soon as they emerge and it is much
easier to get rid of them. It turns out that projects using continuous integration
tend to have considerably less defects [125].

It is hard to estimate the time spent for integration if deferred until after the
actual development. By integrating with every commit there is no need to take
care of it. There is always a deliverable, working version of the product built
automatically on the ci server [123].

Modern continuous integration servers provide a clearly arranged web inter-
face, and are quickly installed and configured. The amount of time needed to
install a ci system is probably smaller than the time it takes to integrate after
the actual development. They also deliver an insight into the current state of
development to the stakeholders—which changes were made to the repository,
which features are covered with test cases and which are not, and the quality of
the code.

3 Requirements on a CI System for Eclipse Plug-ins

In our selection of components for our ci setup we specifically regarded the
following requirements. These requirements arise from the principles discussed
in Section 2.1 and from the experiences we made while developing Eclipse plug-
ins.

Continuous Integration For Eclipse Plug-ins 165

From scratch. After every test run, the ci system should be reset to its original
state. This way the testing environment for the plug-ins should be simulated as
realistic as possible. Our plug-ins should be able to run in a untouched orchideo
and thus need to be tested in this environment.

Simulated production environment. The test environment on the ci server should
simulate the actual production environment of the customer as good as possible.
In our case this means running an Eclipse ide on the server that is a copy of
the customers Eclipse instance; in our case it is a virgin orchideo copy. Running
the plug-ins in any artificial Eclipse environment adapted for continuous inte-
gration purposes can not guarantee that they will work in the actual production
environment.

Automated and headless ui tests. The ci system should be able to run the test
suite and log the results. Furthermore the continuous integration server needs to
run the test environment headlessly, that means without a developer controlling
the process. This is not only true for unit tests but also for ui tests. Especially
in our case the plug-ins are strongly anchored in the Eclipse ide and therefore
need tests to prove their correct integration into the ide. These tests also need
to be executed automatically and headlessly on the ci server.

Visual feedback. The ci system need to be able to run ui tests headless, that
means without the observation of a user. Since anyhow problems may occur
during that process, there needs to be an ability to observe the process. The
user should also be able to interrupt the test run, inspect the current state of
the system to debug the test setup and continue the process.

We faced situations where ui integration tests caused errors that force block-
ing popups to appear in the ide which causes the server to break. Although
there is an option to ignore them, we do not use it because we want to be aware
of these errors. Therefore we need a possibility to debug ui tests.

Furthermore, in spite of running headless, the test results should be easy
to access for the developer and displayed in a well-arranged manner without
observing the test process.

Deployment. For distributing plug-ins and updates, Eclipse provides the ability
to generate update sites. These sites can be used to install plug-ins using a wizard
in the Eclipse ide. Eclipse furthermore automatically detects new versions of
plug-ins on an update site and notifies the user about it.

We want to use this feature to deliver new versions of our plug-ins to our
customer. The ci therefore needs to be able to automatically bundle the plug-ins
and generate an update site with the newest bundles.

Configuration. Some continuous integration tools are based on xml files for
configuration. As we do not like to write cryptic xml to configure our ci system,
we want a clean, easy-to-use interface for defining the build steps on the ci
server.

166 Frank Schlegel

4 Existing Build and Integration Solutions

In this section, we introduce the tools we use in our ci setup and point out, why
these tools alone do not adequately meet our requirements.

4.1 Apache Ant
Apache Ant [122] is a build management tool written in Java. In xml files
a sequence of tasks can be defined, which Ant then launches automatically.
Ant ships with more than 150 predefined tasks, for example for building Java
projects, but also custom tasks can be defined. Many tools that use Ant come
with predefined Ant tasks that provide an interface to the tool. This also applies
to some continuous integration servers.

4.2 Buckminster
Many software projects tend to be complex and feature many dependencies to
other projects. This is also true for Eclipse plug-in projects.

The xml based tool Buckminster [126] helps to resolve these dependencies
and creates so called virtual distributions. Those distributions combine compo-
nents which may be located in different repositories and therefore enable to share
components of complex systems. The action Buckminster performs when local-
izing the required components, recursively resolving dependencies and building
and installing the product is called materialization.

4.3 JUnit
JUnit [127] is a popular Java unit testing framework. It is part of the xUnit
family that originated with SUnit proposed by Kent Beck [128]. JUnit allows to
define test cases with assertions and to bundle them in test suites.

JUnit ships with the Eclipse ide as a plug-in in version 4. It is also integrated
into the ide with its own view that provides visual feedback about the results
of the test runs. Furthermore the plug-in provides the ability to create launch
configurations that specify the tests to run. This is especially handy for sharing
configurations with other developers or the ci server.

4.4 SWTBot
SWTBot [129] is an open source Java-based tool for acceptance testing of swt2

and Eclipse-based applications. SWTBot provides a simple api that facilitates
testing of the user interface of Eclipse applications. Hence it is well qualified to
test the integration of Eclipse plug-ins into the ide. The tool comes with several
Ant tasks and is able to be combined with JUnit and is therefore suitable for
integration into a CI system. Unfortunately SWTBot needs a normal Eclipse to
run ui tests and is therefore incompatible with most existing headless Eclipse
solutions.
2 http://www.eclipse.org/swt/

Continuous Integration For Eclipse Plug-ins 167

4.5 Eclipse Headless Support
The Eclipse Plugin Development Environment (pde) [130] is capable of running
in a headless-mode to build Eclipse features and plug-ins. The pde build system
is part of the Eclipse pde Build plug-in. It provides several Ant tasks for building
Eclipse plug-ins without running the Eclipse ui and publishing the results on an
Eclipse update site.

In order to build plug-ins, bundles or fragments in a headless way, pde build
requires the creation of a Eclipse feature listing all the elements to be built.
Furthermore a build configuration file describing the build parameters, like the
build directory or the id if the feature to built, is necessary. A template for such
a property file can be found in the pde plug-in itself.

The property file then needs to be passed to the AntRunner application [131]
together with a build script provided by the pde build plug-in. AntRunner is
part of the Ant Eclipse plug-in. It provides the entry point for running Ant tasks
inside Eclipse.

The pde also provides more advanced tasks, for example for fetching projects
from a source repository. See [132] for more information.

4.6 Hudson
Hudson [133] is one of the most popular continuous integration tools. It was pri-
marily developed by Kohsuke Kawaguchi, a former employee of Sun Microsys-
tems/Oracle 3 who started a company in 2010 named InfraDNA 4 aimed at
supporting Hudson commercially.

Hudson is an open-source Java-based continuous integration tool that sup-
ports a lot of source configuration management tools and is able to execute the
most common build tools. Hudson also provides an easy-to-use but customizable
and therefore powerful web interface with comprehensive monitoring facilities.

Hudson can be extended using plug-ins. They for example allow to introduce
additional scm implementations to Hudson. Hudson provide several extension
points for integrating custom build steps into the build system. A lot of existing
plug-ins can be installed out of the Hudson web interface. Hudson plug-ins are
written in Java and based on Maven5.

Hudson’s strengths lie in its easy installation and configuration. Hudson runs
in any servlet container that supports Servlet 2.4/JSP 2.0 or later, such as
Glassfish or Apache Tomcat. To configure Hudson, there is no need to edit
xml-files—it can be configured entirely from the web interface with on-the-fly
error checks and inline help.

4.7 Evaluation of Existing Solutions
All the tools introduced above meet their demands in excellent fashion, but none
of them—even in combination—meets our requirements.
3 http://www.oracle.com/
4 http://www.infradna.com/
5 http://maven.apache.org/

168 Frank Schlegel

One of our most important requirements was to launch tests on the ci server
automatically and headlessly. This is a self-evident requirement to a ci system,
but it can cause many problems when it comes to integration and ui testing.
The most serious problem is running acceptance tests in a headless Eclipse envi-
ronment. The Eclipse pde and Ant plug-ins indeed provide abilities for running
Eclipse headlessly, but SWTBot needs a real ui environment to run its tasks. It
is therefore incompatible with the normal headless Eclipse approach.

An other argument against the usage of the pde headless Eclipse is the
additional expenses spent for configuration. The headless Eclipse works with
Ant tasks, but the developer just uses launch configurations for defining the test
runs on his local machine. The developer does not want to keep two different
configuration files in sync just because the ci system does not understand launch
configurations. This would be a typical causation for a “Works on my machine”
problem, where the tests run on the local machine but not on the ci server.

An alternative for this is to solely use Ant tasks for configuring and launching
test runs. But this is not that convenient for the developer and has the drawback
that JUnit, when invoked from Ant, provides no visual feedback in the ide. Since
our goal was an easy and seamless integration and configuration of the ci, these
options are unsatisfactory.

Furthermore this headless solution does not reflect the actual production
environment. It was designed only for building purposes and therefore does not
load all the plug-ins loaded in the production Eclipse ide. Dependency errors
may occur on the ci server, but not in the production environment or vice versa.

To summarize, we want a ci server that acts exactly the same way as the
developer does when writing and testing Eclipse plug-ins. We want a real pro-
duction Eclipse controlled and observed remotely by the ci server as proposed
in the next section.

5 Realized CI Setup for Eclipse Plug-ins

As stated above, the existing integration tools alone are not suitable for our
purpose. As we develop plug-ins for the Eclipse ide, we depend on Eclipse as
testing and integration environment. Therefore it stands to reason that we extend
Eclipse in a manner that it can be integrated into a continuous integration
system.

We decided to use Hudson as ci server. We did not want to spend much
time for the establishment of the ci server and therefore searched for a fast
and flexible solution. With its easy installation and good extendability, Hudson
appears to be the best solution to meet our requirements.

In this section, we describe our ci setup in detail. We especially lay emphases
on the plug-ins we developed to customize Hudson and Eclipse and describe their
necessity and their roll in the overall picture.

Continuous Integration For Eclipse Plug-ins 169

5.1 Eclipse Robot

Our solution for running an Eclipse headlessly is the Eclipse Robot plug-in.
This plug-in allows to remotely control the Eclipse instance it is installed in via
sending predefined commands to a socket. We implemented commands that are
necessary to simulate a real developer using the Eclipse ide. These commands
allow to perform actions in the same manner as the developer by using the
same tools and mechanisms the developer would use on his local machine. We
implemented the following commands:

IMPORT <path to projects> When receiving this command, the Eclipse Robot
tries to import and open all projects that it will find recursively in the given
path into the ide. The path can be relative to the current workspace directory
and may contain the wildcard character * as placeholder for any number of
characters. Eclipse will import the projects the same way the developer would
do using the Import Wizard.

OPEN/CLOSE <project pattern> This command causes Eclipse to open or close
the given projects in the workspace. The project pattern may also contain
the wildcard character *. This allows matching more than one project with
one command. Opening and closing projects is particularly useful for testing
dependencies of plug-ins.

RUN <launch configuration> IN <project> This command runs a launch con-
figuration in the specified project. It is useful to create different launch con-
figurations for different test runs (useful for staged builds 2.1) and run them
sequentially using this command.

BUNDLE <project pattern> This command bundles projects into jar files using
the default Eclipse plug-in Export Wizard facilities. The project pattern may
be project names with the wildcard character * for matching more than one
project with one command.

CREATE P2 SITE <name> This causes Eclipse to take the bundles created with
the BUNDLE command and create an Eclipse update site out of them. Update
sites can be used to distribute Eclipse plug-ins via network or Internet. This
is useful for deploying the products.

DEBUG The Eclipse Robot runs sequential through all commands without stop-
ping. The DEBUG command causes the robot to hold the execution and wait
for user input to proceed (in form of an input dialog). While the robot is
waiting, the Eclipse instance is fully usable. This enables the developer to
debug the processes on the ci server via vnc access if something unexpected
happens. When finished debugging, the developer closes the input dialog and
the robot proceeds as normal.

(NO) SCREENSHOTS ON <JUnit result> This command causes Eclipse to take
screenshots every time JUnit produces the given result. A leading NO causes
Eclipse to stop taking screenshots on the given results. JUnit results are OK,
FAILURE, ERROR, IGNORED and UNDEFINED. By giving ALL as parameter, Eclipse
will take screenshots on every JUnit result. Taking screenshots is especially
useful for ui integration tests with SWTBot to reconstruct the test run and

170 Frank Schlegel

CommandHandler chain = new LaunchConfigurationCommand ().
append (new ImportCommand ()).
append (new ExitCommand ()).
append (new BuildBundleCommand ()).
append (new CreateP2SiteCommand ()).
append (new OpenCloseProjectCommand ()).
append (new DebugCommand ());

Fig. 1: The chain of CommandHandlers

find possible sources of errors. Another use case is to automatically take
screenshots for documentation.

EXIT This typically is the last command in the execution session. It closes the
Eclipse instance.

If the robot receives an unknown or misspelled command, the robot will post
an error massage on the socket. The same is true if invalid arguments were given
with the commands.

Implementation Details The Eclipse Robot plug-in is composed of three main
components: The LaunchServer, the EclipseRobot itself and several CommandHandler.
Their roles are now discussed in detail.

The LaunchServer is a server that runs in its own thread. It is responsible for
establishing a socket connection on port 4243. It than listens to commands
arriving at a socket and forwards them to the EclipseRobot. The server also
provides the possibility to post back status feedback with the title ERROR,
INFO or WARN on the same socket. CommandHandlers may use this feature to
inform the user. The LaunchServer is started when the Eclipse Robot plug-
in is activated which happens with the start of the Eclipse ide. The server
signals whether the plug-in activation was successful or not on the standard
output stream.

The EclipseRobot is responsible for handling the incoming commands. It holds
a chain of different CommandHandlers in the form of a singly-linked list as seen
in Figure 5.1. It is a typical chain of responsibility: When the EclipseRobot
is told to execute a command, it asks the first CommandHandler in the chain
to handle the command. If the first CommandHandler cannot handle the com-
mand, it asks its successor to handle the command and so on.

The CommandHandler is the abstract base class for handlers that act on com-
mands sent to the robot’s socket. It holds a reference to the next CommandHandler
in the linked list as well as the method append to append new CommandHandler
to the list.
It also provides the method handle to handle the given command passed in
form of a string. handle checks the pattern of the command it can handle

Continuous Integration For Eclipse Plug-ins 171

against the given input string. If it matches, it invokes the method run. Else,
it tells the next CommandHandler in the list to handle the command.
Specific commands have to subclass CommandHandler and override two meth-
ods:
getPattern() Should return a regular expression pattern that should match

the input line the command will understand and react on. It is possible to
define groups within the pattern that are later accessible via the group()
method of the CommandHandler. This is useful to get parameters given
with the command. For example the IMPORT command described above
has the pattern "^IMPORT (.*)". The name of the project to import given
with the command is then accessible by calling group(1).

run() The method that is executed if the pattern matches. It is possible to
access parameters (regular expression groups) given with the input line
using the group() method as mentioned above. The actual functionality
of the specific command will be implemented here.

We already implemented special CommandHandlers to handle the commands
listed above.

5.2 JUnit Logger

The JUnit Logger is a plug-in which supplies the ability to provide the results
of the JUnit test runs to the Hudson ci server. Our goal is to run an Eclipse
ide, control it remotely from Hudson and also monitor the results of the run in
Hudson.

Hudson comes with a JUnit interpreter plug-in (5.5) able to read JUnit test
reports stored as xml files. Unfortunately JUnit does not provide the possibility
to write test results in xml files. The Ant tasks for JUnit enables to log the test
results, but as motivated in Section 4.7 we do not want to use Ant to trigger the
JUnit tests. So we are forced to write our own logger for the JUnit results. We
accomplish this by writing a plug-in for Eclipse that logs the JUnit test results
into a file that will later be evaluated by Hudson.

Implementation Details JUnit provides the ability to register a TestRunListener
that gets notified about JUnit events. The events we are interested in are listed
below.

– sessionStarted is triggered when JUnit starts a new test run. We then ini-
tialize the xml writer.

– testCaseFinished is signaled when one test case within a session has finished.
We then tell the writer to log the results of the test case.

– sessionFinished is triggered when JUnit finishes the current test session.
We use it to log a summary of the test run containing the elapsed time and
write the output file furnished with a time stamp.

The plug-in can write output as xml, but also in Json or Yaml format and
is therefore flexible to be modified for other purposes.

172 Frank Schlegel

5.3 Traffic Light Plug-in

As both, Kent Beck [118] and Martin Fowler [113] state, it is useful to have a
direct display to the CI server, like a light signal or a lava lamp. So we decided
to install a traffic light in our office that shows the current project state. We
also take that as an occasion to learn about the Eclipse Plug-in Development
Environment (pde). We therefore wrote a plug-in to control the traffic light out
of Eclipse to be used by our ci server.

The traffic light is connected to a server which reacts on simple control se-
quences of one Byte size incoming on a socket. We wrote an Eclipse plug-in
that registers a JUnit TestRunListener. Every time JUnit produces a result, our
plug-in sends a command according to the JUnit status to the traffic light server.

So every time JUnit produces new results, we see it directly on the traffic
light without watching the ci process on the server. If the light is red, the build
failed; if it is green, everything is fine. It also strengthens the motivation to keep
the build green, because everybody can immediately see the test results.

5.4 Hudson Builder for Eclipse Robot

We decided to use Hudson as ci server. There are a lot of plug-ins which make
Hudson flexible and future-proof. Hudson is also customizable because it provides
the ability to write own plug-ins for it. Furthermore we like Hudson’s ability to
execute downstream job builds, that means the ability to define jobs to run after
the current job. This is for example useful for staged builds or when developing
multiple plug-ins in one project. We configured jobs for building and testing each
of them and one job for building and testing all together. The all-in-one job is
triggered after each single plug-in job. In this way we guarantee the correctness
of each plug-in alone and in cooperation with the other plug-ins.

As stated above (4.6), Hudson brings the capability to introduce custom build
steps. This is accomplished by writing own builders as plug-ins. We developed
a builder that starts an Eclipse ide instance on the ci server and allows to
send commands to the Eclipse Robot plug-in (5.1) running in that instance. The
builder contributes a simple interface to the project’s configuration page in the
Hudson web front-end as presented in Figure 2.

It provides a Command line field where commands to the Eclipse Robot can
be entered—one command per line. Path to eclipse executable should point to
the Eclipse installation that should be launched.

5.5 JUnit Interpreter

Hudson comes with native support for reading JUnit reports and displaying
them in the web front-end. All we need to specify is the location of the file our
JUnit Logger plug-in (5.2) writes. Hudson can provide useful information about
test results, such as historical test result trends (see Fig. 5), a web ui for viewing
test reports, failure tracking and so on. So the developer can see the progress of
the project at a glance.

Continuous Integration For Eclipse Plug-ins 173

Fig. 2: Screenshot of the Hudson Builder user interface

The JUnit report evaluation can be enabled in the Post-build Actions of a
job by enabling the Publish JUnit test result report switch and specifying the
directory of the test report xml files written by the JUnit Logger.

5.6 VNC Access

As defined in our requirements, we wanted to enable the developer to follow the
test and integration process live on the ci server. Therefore the ci server should
provide a vnc display. Fortunately there is already the Hudson plug-in Xvnc 6

that meets this demands. For Xvnc to work the ci server must run a configured
vnc server.

6 Workflow

In this section we describe the installation, configuration and testing process we
have in mind for the continuous integration system mentioned above that is able
to run a project as described below. Furthermore we describe how the different
parts of the system as described in Section 5 interact.

Initial Situation Given there is an Eclipse Plug-in Project. This project has
several test-cases, which can be run as simple JUnit tests, as well as some front-
end tests using SWTBot in a separate test project. To run all tests at once, a
launch configuration has been created that calls the functional test-suite as well
as the front-end tests. The results can be seen directly within the Eclipse JUnit
View. This launch configuration has been saved to a .launch file and checked
into the repository to make sure every developer is running the tests with the
same settings.

The project depends on a few other packages available from the web. Buck-
minster tasks have been created to download all dependencies to the local
workspace and set things up so the dependencies can be bundled into the lib
folder in the deployment jar.
6 http://wiki.hudson-ci.org/display/HUDSON/Xvnc+Plugin

174 Frank Schlegel

Typically, when setting up a new workspace, a developer would checkout the
sources, import the existing projects (the plug-in and the test project) into the
workspace and run the Buckminster task to retrieve all dependencies. Then the
developer can make his changes and later run the test-suite to make sure no
regressions were introduced. Afterwards, the new feature is deployed in a jar.

Installation To setup a continuous integration server using the proposed ci
system, not much has to be done. On the ci server, Hudson needs to be installed
and running. As Hudson is deployed in a single jar, this should not be much of
a problem. Additionally our Hudson Builder plug-in for the Eclipse Robot (5.4)
needs to be installed.

The next step is to install a copy of the Eclipse ide on the ci server. This
Eclipse instance will then be used for unit and ui testing on the ci server. To
simulate the production environment as realistic as possible, we simply take a
copy of the Eclipse ide the customer will finally use and add the Eclipse Robot
(5.1) and the JUnit Logger plug-ins (5.2) to it. As for our ci setup, we also
installed our Traffic Light plug-in as described in Section 5.3.

Finally, to support the observation of the test process, the Hudson Xvnc
plug-in 5.6 needs to be installed and an Xvnc server should run on the ci server,
for example by installing the tightvnc package on the server.

Configuration Introducing the project described above to Hudson is now easy:
We create a new job in Hudson, of type free-style software project. In this job,
we insert the repository url to check out. After that, we add a new build step
to run Buckminster tasks which will download the required dependencies into
the workspace.

As we want to be able to observe the Eclipse instance while running, we use
Hudson’s capabilities to provide a vnc display by checking the Run Xvnc during
build switch. Now every developer can observe the build process by using a local
vnc client that connects via network to the ci server.

The next step is to configure the Eclipse Robot in the web interface. Therefore
we add a new build step to the project and choose Invoke robot script. In this
interface to our Hudson Builder, we can specify the path to the Eclipse executable
and the commands that the Eclipse Robot plug-in in that Eclipse instance should
execute (see Fig. 2). In this case, we set the robot to import our project and run
the launch configuration for us. Optionally Hudson can be configured to send
out e-mails to all developers or just the developer who did the last check-in after
running a job.

After running the tests, we want Eclipse to bundle the plug-in into a jar-file
to have a deployable version of the plug-in after every run. To finally deploy the
latest binaries, we tell the robot to cause Eclipse to create a new Eclipse update
site out of the latest created bundles. This update site can then be shared with
all stakeholders to keep them up-to-date. A final command tells the Eclipse ide
to close and finalizes the build job on Hudson.

Continuous Integration For Eclipse Plug-ins 175

IMPORT directory / exampleProject /
RUN exampleLauncheConfiguration IN de. example . project
BUNDLE *
CREATE P2 SITE example
EXIT

Fig. 3: A sample command line to the Eclipse Robot

Repository

Developer

JUnit Interpreter

Update
Site

Plug-in
Bundle

JUnit Test
Report

Eclipse Robot
Builder

Eclipse Robot
Traffic Light

Plug-in

JUnit

SWTBot

Project Launch
Config

1. commit

3. checkout

JUnit Logger

6. send commands

7. import 8. run

9. invoke

use

10.1. listen to

10.2. update

11.1. listen to

11.2. write

11.3. interprete

12. Bundle

13. create

Web Interface
2. trigger job

11.4. display results

4. invoke

CI Server

Workspace

Eclipse

Hudson

14. Exit

5. start

Fig. 4: Operation of the ci system

Figure 3 shows a sample command line for the project mentioned above. It in-
structs the Eclipse Robot to import the project in the directory/exampleProject/
directory, and run the launch configuration named exampleLaunchConfiguration
in the de.example.project project that includes the tests for the project. After
that, the robot should bundle all imported projects and create an Eclipse update
site named example out of the created bundles. Finally, the robot should exit
the Eclipse instance.

Operation Figure 4 gives an overview of the activities taking place on the ci
server. This section refers to this figure and explains these activities in detail.

Given a developer has made changes to the projects and he commits them to
the repository (1.). Then he opens the Hudson web interface, navigates to the
corresponding job’s page and triggers a build (2.). Hudson then checks out the
new sources from the repository into the Eclipse workspace (3.).

Hudson now starts the Buckminster task to give Buckminster the chance to
download new dependencies of the project to the local platform. Furthermore
Hudson starts the Xvnc server and provides a display the developer can use to

176 Frank Schlegel

observe the test run. For the sake of clearness these steps are not mentioned in
Figure 4.

When finished with the first build step, Hudson will trigger the next step—in
this case the Eclipse Robot task (4.). Our Hudson builder will therefore start the
Eclipse installation specified in the interface (5.) and send the given commands
over socket 4243. The Eclipse Robot plug-in running in that Eclipse instance
receives these commands (6.).

The commands will cause Eclipse to execute the actions described above.
It will first import the specified project into the Eclipse ide (7.) and run the
specified launch configuration (8.). This will cause JUnit to launch the tests
specified in the launch configuration (9.). For the ui tests it uses SWTBot.

During the execution of the launch configuration our Traffic Light plug-in
will listen to the JUnit results (10.1) and update the state of the traffic light
with every new test result (10.2.). At the same time our JUnit Logger will also
listen to JUnit (11.1.), logs the test results and writes them as xml file to the
hard drive (11.2.). This xml file’s content will be interpreted by Hudson’s JUnit
interpreter (11.3.) and displayed as graphs with different levels of detail on the
job’s web page (11.4.). The JUnit results will also be used to determine the
status of the build displayed on Hudson’s main page.

After the run of the launch configuration the Eclipse Robot tells Eclipse to
bundle the plug-in (12.) and to create an update site for it (13.). Finally the
robot processes the last command which causes the Eclipse ide to exit (14.).

The developer can now see the results of the job run on the web interface
and act according to them. He can also use the created bundle and update site
to deploy the plug-in to the customer.

7 Evaluation

As seen in the previous section, the introduction of a new project to the ci
system only comprises defining test runs in a launch configuration, creating a
new job in Hudson and configuring the Hudson Builder with, in the example, five
short commands. Precondition is only the non-recurring installation of Hudson
and the desired Eclipse ide on the ci server. As for Eclipse this is only a copy
and paste action.

Beside the fast installation and configuration, this ci approach has other
advantages. By remotely controlling an Eclipse instance that is a copy of the
actual production system, we are able to eliminate as much potential causes of
risk as possible. Our Eclipse Robot virtually simulates a real customer working
with the plug-ins under development in the Eclipse ide he uses every day. This
dramatically reduces final deployment problems because we virtually deploy with
every commit.

The use of Hudson as ci server entails some more advantages. One of our goals
was to always have a clean build, that means a build on a clean system. Using
Hudson we do not need to take care of that. Hudson checks out all the sources
with every build and cleans the workspace after every build. This assures that

Continuous Integration For Eclipse Plug-ins 177

Fig. 5: Screenshot of the Hudson test result trend

the customer is able to work with our plug-ins without the need of dependencies
we are not aware of.

Hudson has also capabilities for visual feedback of the build process. With
Hudson’s web Dashboard the developer is always able to monitor the build pro-
cess and trigger new jobs. Thanks to our JUnit Logger plug-in for Eclipse, Hud-
son is able to evaluate the JUnit results and provide visual feedback for test
results and trends as displayed in Figure 5. It shows a trend of test results for
the last builds. The x-axis shows the number of the build and the y-axis the
count of tests run with that build. Using colors the tests are distinguished in
passed and failed tests.

As for deployment the Eclipse Robot provides a command to automatically
create an update site—the easiest method for providing the newly created plug-
ins to the customers. They can use their Eclipse to browse the update site and
install the plug-ins and their dependencies from there. Furthermore Eclipse will
automatically check for updates on the site and inform the customer about that.
So the customer will always be able to test the latest plug-ins and give fast
feedback on them.

Beside all the advantages and features stated above there are of course some
drawbacks at this point of development. At the moment the Eclipse Robot is
limited to the given commands and the update site is not automatically deployed
on the desired server. But we have plans for improving our ci solution. See
Section 9 for more details on future work.

8 Related Work

This section introduces tools we also regarded while planing our ci setup, but
which do not meet our requirements for some reason. Nevertheless they are worse
to be mentioned.

178 Frank Schlegel

CruiseControl Auxiliary to Hudson, there exist similar continuous integra-
tion systems that are suitable for our purpose. One of them is CruiseCon-
trol [134,135].

CruiseControl was the first continuous integration system. It was originally
developed by employees of ThoughtWorks 7 to support continuous integration for
projects they were working on. Today it is a open-source Java-based extensible
continuous integration tool which is also ported for .NET and Ruby.

CruiseControl supports the practices of continuous integration as stated in
Section 2.1. It automatically builds projects on code change using a given config-
uration, has support for all popular test frameworks and automatically deploys
the final product if the build succeeded. As there are ports for different plat-
forms, the server can run on a wide range of different production environments.
It provides various abilities to publish the build results and artifacts and show
the build status on a web interface.

We decided to use Hudson instead of CruiseControl because it persuades
us with its easy installation and configuration and with its ability for down-
stream project builds. But it is also imaginable to write a similar builder for
CruiseControl as we did for Hudson and use CruiseControl to drive the ci system.

Cruise Cruise [136] is a commercial release management tool developed by
ThoughtWorks independently of CruiseControl. Cruise pays special attentions
on so called Pipeline Workflows—a concept for easy to configure staged builds
to provide fast feedback for the developer. To speed up the build process, Cruise
supports grid computing with multiple agents on any machine. This also allows
to setup multiple production environments that can be tested simultaneously.

Like CruiseControl and Hudson, Cruise provides a configurable web interface
with a dashboard and access to the central artifact repository. Unlike CruiseC-
ontrol and Hudson, Cruise is not able to be extended with plug-ins and therefore
hard to customize to specific project environments. Beside the financial factor
this is the main reason for us to not use Cruise to drive our ci solution.

Headless Eclipse Builder The Headless Eclipse Builder [137] is an Eclipse
plug-in that allows to start Eclipse headlessly and let it run several build tasks.
The plug-in is invoked from the command line with following command:

eclipse -nosplash -data <workspace_dir> -application
com.ind.eclipse.headlessworkspace.Application [parameters]

Examples for parameters are:

import imports the project found in the current directory.
build for building the imported project.
exportjars for bundling the imported project into a jar file according to

.jardesc files found in the projects root directory.
7 http://www.thoughtworks.com/

Continuous Integration For Eclipse Plug-ins 179

This plug-in fits the purpose of headless building a single project according
to configuration files in the project’s directory. But it does not support building
multiple projects with dependencies, running tests with JUnit and SWTBot and
creating and publishing an update site. Furthermore there is no integration in
Hudson or other ci servers. In summary, it is a good solution for headless builds
similar to the abilities of the pde, but does not meet our requirements.

9 Future Work

9.1 Extensibility

As already mentioned, the Eclipse Robot is limited to the given commands. At
the moment there is no possibility to add new commands without changing our
source code. But we plan to provide and have partially implemented extension
points to our plug-in witch allow to define custom commands.

Eclipse provides the concept of extension points and extensions to allow that
functionality can be contributed to plug-ins by other plug-ins. Plug-ins which
define extension points provide an interface other plug-ins can implement to con-
tribute functionality. An extension point is basically a contract about how other
plug-ins can add functionality. The plug-in which defines the extension point is
also responsible for evaluating the contributions made by plug-ins implement-
ing the extension. Beside the definition of the extension point it therefore needs
some code to evaluate contributions of other plug-ins. Any other plug-in which
defines an appropriate extension contributes the defined extension point. Exten-
sions and extension points are defined in the plugin.xml of the corresponding
plug-in. [45]

We plan to add an extension point to the Eclipse Robot plug-in, that al-
lows other plug-ins to define their own robot commands. We already defined an
abstract CommandHandler base class which the new command have to subclass
including two methods that need to be implemented (see Sec. 5.1).

The problem that we are facing at this time of development is the definition
of the command order. That means how plug-ins implementing our extension
point can define the place the new command should be positioned in the chain
(see Sec. 5.1). Our current approach is that a command extension can specify
another command it should be positioned before, after or instead of in the chain.
If nothing is specified, the command will be placed at the end of the chain.

9.2 Parallel Testing

Testing, especially ui testing with SWTBot, can take a long time in which de-
velopers can not work because they wait for the results. One recommendation of
Martin Fowler [113] was to use a staged build, that means splitting the test run
into different working units with different duration to get fast feedback (see Sec.
2.1). With our current setup, we are able to perform staged builds by running
different launch configurations with different amount of tests in sequence. So the

180 Frank Schlegel

server can run the fast commit tests (see Sec. 2.1) at first, display the results to
the developer and afterwards run the time-consuming ui tests. So the developers
only have to wait for the results of the fast run and may continue working while
the slow run keeps on running on the ci server.

Nevertheless this process can be speed up by parallelizing tasks using multi-
ple Eclipse instances simultaneously. For example if there is one instance running
the commit tests and another one the full test suite including ui tests. It is also
imaginable to test different parts of the projects, maybe from different branches,
at the same time. This will also prevent waiting on project builds of other de-
velopers.

9.3 Convenience

Optimized Hudson Builder Interface. At the moment, the user interface of our
Hudson Builder is rather rudimentary. The user needs to enter the Eclipse Robot
command manually into a multi-line text field. So he needs to know what com-
mands are available and what string pattern they listen to. To improve the
usability, it is imaginable to refine the web interface to the builder. We propose
to display the commands in a queue-like list with Add and Remove buttons at
the bottom of it. When clicking the Add button, a dialog will appear where the
user can choose a command from a drop-down list and can fill in parameters
according to the chosen command. This will reduce errors due to misspelling
and point out all capabilities of the Eclipse Robot.

Preconditions for Commands. At the current state of development, it is not
possible to define preconditions for commands. Preconditions would be especially
useful for commands such as BUNDLE or CREATE P2 SITE. These commands bundle
and publish the current sources—with all errors and malfunctions. Since it is
advisable to always have a stable build, it would be useful to be able to define
preconditions such as “Bundle only if at least 95% of all tests pass” or “Bundle
only if commit tests pass”.

One possibility to implement this is to analyze the results of the JUnit run
before bundling/deploying the plug-in and proceed only if they fulfill the precon-
dition. Another possibility is to define commands like “Proceed only if at least
95% of all tests pass” and launch them prior to the bundle/deploy commands.

Define an Update Site Location. At the moment, the Eclipse update site created
with the CREATE P2 SITE command is published into a default directory inside
the Eclipse workspace. To publish the site in a location which is reachable for
all stakeholders, we currently use a second build step after the robot script to
copy the update site to an online accessible location via command line.

For more convenience, we plan to add an input field to the Hudson builder
user interface for the user to define the desired location the update sites should
be published in.

Continuous Integration For Eclipse Plug-ins 181

10 Conclusion

In our project work we developed plug-ins that extend the Eclipse ide in various
ways. We wrote unit and ui tests to ensure their quality and set up a continuous
integration system for our project.

In this paper we described the requirements we defined for a ci system for
Eclipse plug-ins and the challenges we were faced implementing it. Furthermore
we explained the solutions we found to finally set up a ci system that meet our
requirements.

We developed an Eclipse headless solution that is as close to reality as no
other. By remotely controlling a real Eclipse ide we can be more convinced for
plug-ins to run in there to also run in the final production environment.

As we are very satisfied we suggest our continuous integration system to
everyone who develops Eclipse plug-ins, especially those requiring ci testing.

Summary

In the first phase of our project we developed the application TeltowCar to get
to know the orchideo framework and how the two approaches model-driven soft-
ware development and aspect-oriented programming are realized with orchideo.
We found that orchideo provides good tool-support for model-driven software
development. The aspect model of orchideo is simple and the development of
aspects with the graphical editor feels natural after a short time. But during
this research phase we found some problems as well. Most of them are typical
problems orchideo developers have to deal with.

With a closer look to the aop realization in orchideo we can assess that
some general aop problems apply to orchideo. The impact of aspects were not
visible to the developer. We therefore analyze statically the advice weaving of
the orchideo|enging to provide the developer with information about woven code
while developing object-oriented code. With our plug-in the developer can stay
focus on writing code and must not switching back and forth between files to
get to know aspect impacts.

During our work with the orchideosuite we noticed that it is in the same sit-
uation as other mdsd and aop frameworks: Developers are supported well when
defining their models and program behavior. When it comes to debugging, satis-
factory tool support is missing. We built debug tools that help the programmer
to understand the complex processes in the orchideo framework. We also provide
information that would else be not easily accessible, but that is crucial when
searching for defects in the software.

During our research we have seen that the orchideo|engine throws orchideo
traces when an error occurs. These traces are long and cryptic, which led to a
situation where every trace was sent to the few people who know how to read
them. We built a solution to analyze these traces and convert them to a struc-
tured in-memory representation which can be flexibly queried. In addition we
have enhanced the express ability of the traces and now provide more informa-
tion to developers working on the engine, on aspects and on applications. We
have done this without sacrificing backwards compatibility and our tools are
used with existing applications, today.

Structured data representing a system is difficult to access without knowl-
edge about the underlying system. Our goal was to visualize the orchideo trace
to present it in a way that every developer is able to see the cause of the trace for
himself. Therefore we presented several visualization techniques and discussed
whether they provide good support for error visualization based on the example
of orchideo traces. We implemented a plug-in for Eclipse containing a combina-
tion of three visualizations we considered optimal for our case: the Tree View,
the Linear Trace view, and the Tree-Map. The evaluation showed that the com-

184 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

bination of these three visualization techniques suits our requirements. Finally
we have seen that our implementation is already used in a production environ-
ment by our project partner ex|xcellent solutions. Considering this we conclude
that the error visualizations we provide actually helps in understanding orchideo
traces.

In our project work we developed plug-ins that extend the Eclipse ide in
various ways. We wrote unit and ui tests to ensure their quality and set up a
continuous integration system for our project. We described the requirements
we defined to a ci system for Eclipse plug-ins and the problems we were faced
implementing it. Furthermore we explained the solutions we found to finally set
up a ci system that meet our requirements. We developed an Eclipse headless
solution that is as close to reality as no other. By remotely controlling a real
Eclipse ide we can ensure for plug-ins to run in there to also run in the final
production environment. As we are very satisfied we suggest our continuous
integration system to everyone who develops Eclipse plug-ins, especially those
requiring ci testing.

In this paper we have summarized our experiences with orchideo-based and
aspect-oriented development. orchideo-based applications have major benefits: in
particular they require minimal boiler-plate code to get persistent and decoupled
applications. orchideo is able to cope with the rapid changes in software develop-
ment. Our plug-ins in particular allow application, aspect and engine developers
to change, test and debug code quickly and spend less time fixing error, more
time creating value.

orchideo|debug 185

References

1. des Rivieres, J., Beaton, W.: Eclipse platform technical overview. Whitepaper,
IBM/Eclipse Foundation, April (i) (2006)

2. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann (2006)

3. Wang, K.: Post-mortem debug and software failure analysis on Symbian OS.
(2007)

4. exxcellent solutions: orchideo die effiziente art, software zu entwickeln
5. Budinsky, F., Brodsky, S., Merks, E.: Eclipse modeling framework. Pearson

Education (2003)
6. The Eclipse Foundation: Gmf documentation. http://wiki.eclipse.org/

index.php/GMF_Documentation (June 2010)
7. exxcellent solutions: orchideo documentation
8. Stahl, T., V

"olter, M., Efftinge, S., Haase, A.: Modellgetriebene Softwareentwicklung. Tech-
niken. Engineering, Management 2 (2007)

9. Miller, J., Mukerji, J.: Mda guide version 1.0.1. Technical report, Object Man-
agement Group (OMG) (2003)

10. Object Management Group: Object management group. http://www.omg.org/
(2010)

11. Filman, R., Elrad, T., Clarke, S., Ak?it, M.: Aspect-oriented software develop-
ment. Addison-Wesley Professional (2004)

12. Stachowiak, H.: Allgemeinen Modelltheorie. Springer, Wien (1973)
13. Vlissides, J.: Generation Gap. C++ Report 8(10) (1996) 12–18
14. Voelter, M.: Patterns for Handling Cross-cutting Concerns in Model-Driven Soft-

ware Development. In: 10th European Conference on Pattern Languages of Pro-
grams (EuroPLoP). (2005)

15. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education (2004)

16. Dijkstra, E., Dijkstra, E.: A discipline of programming. prentice-hall Englewood
Cliffs, NJ (1976)

17. Laddad, R.: ApectJ in Action. Manning (2003)
18. Eaddy, M., Aho, A., Hu, W., McDonald, P., Burger, J.: Debugging aspect-enabled

programs. In: Software Composition, Springer (2007) 200–215
19. Concerns, C.: Patterns for Handling Cross-Cutting Concerns in Model-Driven

Software Development. (2005)
20. Group, O.M.: Object constraint language, version 2.2. Technical report, Object

Management Group (OMG)
21. Arthorne, J.: Project builders and natures. http://www.eclipse.org/articles/

Article-Builders/builders.html (2003)
22. Deugo, D.: Foundation Patterns. In: Proceedings of the 1998 Pattern Languages

of Programming Conference, Citeseer (1998)
23. The Eclipse Foundation: Swt documentation. http://www.eclipse.org/swt/

docs.php (June 2010)
24. Bauer, C., King, G.: Hibernate in action. Manning (2004)
25. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible

markup language (XML) 1.0. W3C recommendation 6 (2000)
26. Gamma, E., Beck, K.: JUnit. At http://www. junit. org

http://wiki.eclipse.org/index.php/GMF_Documentation
http://wiki.eclipse.org/index.php/GMF_Documentation
http://www.omg.org/
http://www.eclipse.org/articles/Article-Builders/builders.html
http://www.eclipse.org/articles/Article-Builders/builders.html
http://www.eclipse.org/swt/docs.php
http://www.eclipse.org/swt/docs.php

186 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

27. Irwin, J., Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.: Aspect-oriented programming. Proceedings of ECOOP, IEEE, Finland
(1997) 220–242

28. Rothlisberger, D., Harry, M., Villazón, A., Ansaloni, D., Binder, W., Nierstrasz,
O., Moret, P.: Augmenting static source views in ides with dynamic metrics. In
Proceedings of the International Conference on Software Maintenance (ICSM)
(2009)

29. Tischler, R., Schaufler, R., Payne, C.: Static analysis of programs as an aid to
debugging. In: Proceedings of the symposium on High-level debugging, ACM
(1983) 158

30. Laddad, R.: ApectJ in Action 2nd Edition. Manning (2003)
31. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java (TM) Language Specification,

The (Java (Addison-Wesley)). Addison-Wesley Professional (2005)
32. Foundation, T.E.: Ajdt: Aspectj development tools. http://www.eclipse.org/

ajdt/ (June 2010)
33. Laddad, R.: Aop@work: Aop myths and realities (February 2006)
34. Kellens, A., Gybels, K., Brichau, J., Mens, K.: A model-driven pointcut language

for more robust pointcuts. Proceedings of Software engineering Properties of
Languages for Aspect Technologies (SPLAT’06), Bonn, Germany (2006)

35. Stoerzer, M., Graf, J.: Using pointcut delta analysis to support evolution of
aspect-oriented software. In: Software Maintenance, 2005. ICSM’05. Proceedings
of the 21st IEEE International Conference on. (2005) 653–656

36. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(2002)

37. Hanenberg, S., Oberschulte, C., Unland, R.: Refactoring of aspect-oriented soft-
ware. In: Proceedings of the International Conference on Object-Oriented and
Internet-based Technologies, Concepts, and Applications for a Networked World
(Net.ObjectDays), Springer-Verlag (2003) 19–35

38. Parnas, D.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12) (1972) 1058

39. Parnas, D.: Information distribution aspects of design methodology (1971)
40. Steimann, F.: The paradoxical success of aspect-oriented programming. ACM

SIGPLAN Notices 41(10) (2006) 497
41. Nagy, I., Bergmans, L., Aksit, M.: Composing aspects at shared join points. In:

Proceedings of International Conference NetObjectDays, NODe2005. Volume 69.,
Citeseer (2005)

42. Zhang, D., Duala-Ekoko, E., Hendren, L.: Impact analysis and visualization
toolkit for static crosscutting in aspectj. Proceedings of the 17th IEEE Inter-
national Conference on Program Comprehension (ICPC) (May 2009)

43. Clement, A., Colyer, A., Kersten, M.: Aspect-oriented programming with ajdt.
In: ECOOP Workshop on Analysis of Aspect-Oriented Software, Citeseer (2003)

44. The Eclipse Foundation: Java Development Tools. http://www.eclipse.org/
jdt/ (June 2010)

45. Eric Clayberg, D.R.: eclipse Plug-ins 3rd edition. Addison Wesley (2008)
46. McDowell, C., Helmbold, D.: Debugging concurrent programs. ACM Computing

Surveys (CSUR) 21(4) (1989) 622
47. Kersten, M.: Tool requirements for commercial development with aspectj. In:

AOSD Workshop on Commercialization of AOSD Technology, Citeseer (2003)
48. Zhang, D., Hendren, L.: Static Aspect Impact Analysis. Technical report, Citeseer

(2007)

http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/

orchideo|debug 187

49. Voelter, M.: Best practices for dsls and model- driven development
50. Rosenberg, J.: How debuggers work: algorithms, data structures, and architecture.

John Wiley & Sons, Inc. New York, NY, USA (1996)
51. Buxton, J.N., Randell, B., eds.: Software Engineering Techniques: Report of a

conference sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct.
1969, Brussels, Scientific Affairs Division, NATO. (1970)

52. Zeller, A.: Isolating cause-effect chains from computer programs. In: ACM SIG-
SOFT 10th International Symposium on the Foundations of Software Engineering
(FSE-10), Charleston, South Carolina (November 2002)

53. Gugerty, L., Olson, G.: Debugging by skilled and novice programmers. In: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, ACM
(1986) 174

54. Stallman, R., Pesch, R., Shebs, S., et al.: Debugging with GDB. Free Software
Foundation (1993)

55. Sun/Oracle: The Java Debugger documentation. http://java.sun.com/j2se/
1.3/docs/tooldocs/solaris/jdb.html (June 2010)

56. Sun/Oracle: Java Debug Interface documentation. http://java.sun.com/j2se/
1.5.0/docs/guide/jpda/jdi/ (June 2010)

57. Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on reliability in distributed software and database systems. Volume 3. (1986)

58. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: Proceedings of the Eighth
Symposium on Operating Systems Design and Implementation (OSDI’08). (2008)
267–280

59. George, B., Bohner, S., He, N.: Towards a Model Level Debugger for the Cougaar
Model Driven Architecture System. Innovative Concepts for Autonomic and
Agent-Based Systems (2006) 86–97

60. Selic, B.: The pragmatics of model-driven development. IEEE software 20(5)
(2003) 19–25

61. Raistrick, C., Francis, P.: Model driven architecture with executable UML. Cam-
bridge Univ Pr (2004)

62. Alexander, R., Bieman, J., Andrews, A.: Towards the systematic testing of aspect-
oriented programs. In: Proc. 27th Annual IEEE International Computer Software
and Applications Conference (COMPSAC 2003), Dallas, Texas. Volume 54. (2003)

63. Ceccato, M., Tonella, P., Ricca, F.: Is AOP code easier or harder to test than OOP
code. In: On-line Proceedings of the First Workshop on Testing Aspect-Oriented
Programs (WTAOP 2005). (2005)

64. Sun Developer Network: JDI StackFrame Class Reference. http://java.sun.
com/j2se/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/StackFrame.html (April
2004)

65. Sun/Oracle: The Mirror interface documentation. http://java.sun.com/j2se/
1.4.2/docs/guide/jpda/jdi/com/sun/jdi/class-use/Mirror.html (June
2010)

66. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-
agent architecture. In: 2004 IEEE International Conference on Systems, Man
and Cybernetics. (2004) 1910–1917

67. The Eclipse Foundation: Eclipse Platform Debug documentation. http://www.
eclipse.org/eclipse/debug/platform/ (June 2010)

68. Jacobs, T., Musial, B.: Interactive visual debugging with UML. In: Proceedings
of the 2003 ACM symposium on Software visualization, ACM (2003) 122

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/jdb.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/StackFrame.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/StackFrame.html
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/class-use/Mirror.html
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jdi/com/sun/jdi/class-use/Mirror.html
http://www.eclipse.org/eclipse/debug/platform/
http://www.eclipse.org/eclipse/debug/platform/

188 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

69. Ko, A.: Debugging by asking questions about program output. In: Proceedings
of the 28th international conference on Software engineering, ACM (2006) 992

70. Mathis, R.: Teaching debugging. ACM SIGCSE Bulletin 6(1) (1974) 63
71. Ritchie, D.: C reference manual. Unpublished memorandum, Bell Telephone

Laboratories (1973)
72. Kortenkamp, D., Milam, T., Simmons, R., Fernandez, J.: Collecting and ana-

lyzing data from distributed control programs. Electronic Notes in Theoretical
Computer Science 55(2) (2001) 236–254

73. Andrews, J., Zhang, Y.: Broad-spectrum studies of log file analysis. (2000)
74. Netzer, R.: Optimal tracing and replay for debugging shared-memory parallel

programs. In: Proceedings of the 1993 ACM/ONR workshop on Parallel and
distributed debugging, ACM (1993) 1–11

75. Glass, R.: Real-time: The “lost world” of software debugging and testing. Com-
munications of the ACM 23(5) (1980) 271

76. Livshits, B.: Turning Eclipse Against Itself: Improving the Quality of Eclipse
Plugins. month (2005)

77. Odekirk-Hash, E., Zachary, J.: Automated feedback on programs means students
need less help from teachers. ACM SIGCSE Bulletin 33(1) (2001) 55–59

78. Gülcü, C.: Short introduction to log4j. http://logging.apache.org/log4j/
docs/manual (04 2007)

79. Crockford, D.: The application/json media type for javascript object notation
(json) - rfc 4627 (2006)

80. Apache Foundation: Apache ant. http://ant.apache.org (2000)
81. Semicomplete.com: Logstash - centralized log storage, indexing, and searching.

http://code.google.com/p/logstash/ (04 2010)
82. Semicomplete.com: Grok - a powerful pattern-matching/reacting tool. http:

//code.google.com/p/semicomplete/wiki/Grok (04 2010)
83. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.

The Pragmatic Bookshelf (2007)
84. Grimm, R.: Rats!–an easily extensible parser generator. http://cs.nyu.edu/

rgrimm/xtc/rats.html (06 2010)
85. Dix, A., Ellis, G.: Starting simple: adding value to static visualisation through

simple interaction. In: Proceedings of the working conference on Advanced Visual
Interfaces, ACM (1998) 134

86. Beck, K., Fowler, M.: Planning extreme programming. Volume ipse. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA (2000)

87. Boehm, B.: Software engineering economics. Englewood Cliffs (1981)
88. Andrews, J.: Testing using log file analysis: tools, methods, and issues. In: Pro-

ceedings of the 13th IEEE international conference on Automated software engi-
neering, Citeseer (1998) 157

89. Apple Inc.: Macos x crash reporter. http://developer.apple.com/mac/
library/technotes/tn2004/tn2123.html (June 2010)

90. Pitt, M., Zimmerman, M.: Ubuntu crash handler. https://launchpad.net/
ubuntu/+spec/automated-problem-reports (June 2010)

91. Thomas, J., Sitter, H.: Kubunut debug installer. https://code.edge.launchpad.
net/~kubuntu-members/kubuntu-debug-installer/trunk

92. Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G.,
Grant, D., Loihle, G., Hunt, G.: Debugging in the (very) large: ten years of imple-
mentation and experience. In: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, ACM (2009) 103–116

http://logging. apache. org/log4j/docs/manual
http://logging. apache. org/log4j/docs/manual
http://ant. apache. org
http://code.google.com/p/logstash/
http://code.google.com/p/semicomplete/wiki/Grok
http://code.google.com/p/semicomplete/wiki/Grok
http://cs.nyu.edu/rgrimm/xtc/rats.html
http://cs.nyu.edu/rgrimm/xtc/rats.html
http://developer.apple.com/mac/library/technotes/tn2004/tn2123.html
http://developer.apple.com/mac/library/technotes/tn2004/tn2123.html
https://launchpad.net/ubuntu/+spec/automated-problem-reports
https://launchpad.net/ubuntu/+spec/automated-problem-reports
https://code.edge.launchpad.net/~kubuntu-members/kubuntu-debug-installer/trunk
https://code.edge.launchpad.net/~kubuntu-members/kubuntu-debug-installer/trunk

orchideo|debug 189

93. Xu, S., Rajlich, V.: Cognitive process during program debugging. In: ICCI ’04:
Proceedings of the Third IEEE International Conference on Cognitive Informat-
ics, Washington, DC, USA, IEEE Computer Society (2004) 176–182

94. Chmiel, R., Loui, M.C.: Debugging: from novice to expert. In: SIGCSE ’04:
Proceedings of the 35th SIGCSE technical symposium on Computer science edu-
cation, New York, NY, USA, ACM (2004) 17–21

95. Northover, S., Wilson, M.: Swt: the standard widget toolkit, volume 1. Addison-
Wesley Professional (2004)

96. Massol, V., Husted, T.: JUnit in Action. Manning Publications Co., Greenwich,
CT, USA (2003)

97. Megginson, D.: Sax (2010)
98. Codehaus: Jackson json processor. http://jackson.codehaus.org/ (June 2010)
99. McLaughlin, B.: Java and XML data binding. O’Reilly & Associates, Inc., Se-

bastopol, CA, USA (2002)
100. Grüneis, J.: Object–XML mapping with JAXB2
101. Belmonte, N.G.: Javascript infovis toolkit - interactive data visualizations for the

web. http://thejit.org/home/ (June 2010)
102. Kyle Scholz, L.H.: jsviz. http://code.google.com/p/jsviz/ (June 2010)
103. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach.

ACM Trans. Graph. 11(1) (1992) 92–99
104. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visual-

ization ofhierarchical information structures. In: IEEE Conference on Visualiza-
tion, 1991. Visualization’91, Proceedings. (1991) 284–291

105. Knuth, D.E.: The art of computer programming, volume 1 (3rd ed.): fundamental
algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1997)

106. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3d visu-
alizations of hierarchical information. In: CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems, New York, NY, USA, ACM
(1991) 189–194

107. Lamping, J., Rao, R.: Laying out and visualizing large trees using a hyperbolic
space. In: UIST ’94: Proceedings of the 7th annual ACM symposium on User
interface software and technology, New York, NY, USA, ACM (1994) 13–14

108. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In: CHI ’92: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, New
York, NY, USA, ACM (1992) 83–91

109. Kobsa, A.: User experiments with tree visualization systems. In: INFOVIS ’04:
Proceedings of the IEEE Symposium on Information Visualization, Washington,
DC, USA, IEEE Computer Society (2004) 9–16

110. Harris, R.: The Definitive Guide to SWT and Jface. Apress, Berkely, CA, USA
(2007)

111. The Eclipse Foundation: Eclipse documentation. http://help.eclipse.org/
(June 2010)

112. The Eclipse Foundation: The Eclipse Project. http://www.eclipse.org/ (June
2010)

113. Martin Fowler: Continuous Integration. http://martinfowler.com/articles/
continuousIntegration.html (May 2006)

114. Duvall, P., Matyas, S., Glover, A.: Continuous Integration (2007)
115. Holck, J., Jørgensen, N.: Continuous Integration and Quality Assurance: a case

study of two open source projects. Australasian Journal of Information Systems
11(1) (2007)

http://jackson.codehaus.org/
http://thejit.org/home/
http://code.google.com/p/jsviz/
http://help.eclipse.org/
http://www.eclipse.org/
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

190 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

116. Farley, D.: Single-Click Software Release. In: The Thoughtworks Anthology:
Essays on Software Technology and Innovation. The Pragmatic Bookshelf (2008)
172–182

117. Martin Fowler: Continuous Integration (original version). http://martinfowler.
com/articles/originalContinuousIntegration.html (2002)

118. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Professional (2000)

119. Collins-Sussman, B., Fitzpatrick, B., Pilato, C.: Version control with subversion.
O’Reilly Media, Inc. (2004)

120. Loeliger, J.: Version control with Git. O’Reilly Media (2009)
121. Stallman, R., McGrath, R., Smith, P.: GNU make: A program for directing

recompilation (1999)
122. Apache Software Foundation: Apache Ant. http://ant.apache.org/ (2010)
123. Su, H., Jodis, S., Zhang, H.: Providing an integrated software development envi-

ronment for undergraduate software engineering courses. Journal of Computing
Sciences in Colleges 23(2) (2007) 149

124. Meszaros, G.: XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR
Upper Saddle River, NJ, USA (2006)

125. Ebert, C., Parro, C., Suttels, R., Kolarczyk, H.: Improving validation activities in
a global software development. In: icse, Published by the IEEE Computer Society
(2001) 0545

126. The Eclipse Foundation: Buckminster, Component Assembly Project. http:
//www.eclipse.org/buckminster/ (June 2010)

127. Beck et.al.: JUnit Project. http://junit.org/ (June 2010)
128. Beck, K.: Simple Smalltalk Testing: With Patterns. http://www.xprogramming.

com/testfram.htm (1994)
129. The Eclipse Foundation: The SWTBot Project. http://eclipse.org/swtbot/

(June 2010)
130. The Eclipse Foundation: Eclipse Plugin Development Environment Website.

http://www.eclipse.org/pde/ (June 2010)
131. The Eclipse Foundation: Platform Ant Project. http://www.eclipse.org/

eclipse/ant/ (June 2010)
132. The Eclipse Foundation: Plug-in Development Environment Guide – Customizing

a Headless Build. http://help.eclipse.org/helios/index.jsp?topic=/org.
eclipse.pde.doc.user/tasks/pde_customization.htm (June 2010)

133. Kohsuke Kawaguchi: Hudson Extensible Continuous Integration Server Website.
http://hudson-ci.org/ (June 2010)

134. ThoughtWorks, Inc.: CruiseControl. http://cruisecontrol.sourceforge.net/
(June 2010)

135. Schluff, S.: Continuous Integration mit CruiseControl. http://www.oio.de/
cruisecontrol.pdf (Feb 2003)

136. ThoughtWorks, Inc.: Cruise – Release Management. http://www.
thoughtworks-studios.com/cruise-release-management (June 2010)

137. Laszlo Varadi: Headless Eclipse Builder. http://code.google.com/p/
headlesseclipse/ (June 2010)

http://martinfowler.com/articles/originalContinuousIntegration.html
http://martinfowler.com/articles/originalContinuousIntegration.html
http://ant.apache.org/
http://www.eclipse.org/buckminster/
http://www.eclipse.org/buckminster/
http://junit.org/
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm
http://eclipse.org/swtbot/
http://www.eclipse.org/pde/
http://www.eclipse.org/eclipse/ant/
http://www.eclipse.org/eclipse/ant/
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_customization.htm
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.pde.doc.user/tasks/pde_customization.htm
http://hudson-ci.org/
http://cruisecontrol.sourceforge.net/
http://www.oio.de/cruisecontrol.pdf
http://www.oio.de/cruisecontrol.pdf
http://www.thoughtworks-studios.com/cruise-release-management
http://www.thoughtworks-studios.com/cruise-release-management
http://code.google.com/p/headlesseclipse/
http://code.google.com/p/headlesseclipse/

Appendix

A Sort the Actions of a Specific Session Configuration

This method is called three times for every advice list (before, after, around) of a
session configuration. After this the actions are sorted the wovenActionsPerJoinPoint
were saved in our advice cache.

1

2 /**
3 * Divide all woven actions from a list of advice to their
4 * join points . Thereby transfer the order and kind of
5 * the advice to the actions .
6 */
7

8 private void getActionsPerJoinPoint (Advice [] adviceList ,
Map <Action , List <Action >[] > wovenActionsPerJoinPoint ,
SessionConfiguration sc) {

9

10 Action anyAction =
EngineAspectDescriptor . INSTANCE . getAnyAction ();

11 wovenActionsPerJoinPoint .put(anyAction , new List [] {
12 new ArrayList <Action >(adviceList . length),
13 new ArrayList <Action >(adviceList . length),
14 new ArrayList <Action >(adviceList . length) });
15

16 for (Advice adviceModel : adviceList) {
17 boolean isAnyAction = false ;
18 boolean previousBaseActionFound = false;
19 Action pointcut = adviceModel . getPointcut ();
20 List <Action > wovenActions =

adviceModel . getWovenActions ();
21

22 // any action is woven to every other action
23 if (EcoreUtil . equals (pointcut , anyAction)) {
24 isAnyAction = true;
25 for (List <Action >[] actions :

wovenActionsPerJoinPoint . values ()) {
26 actions [adviceModel . getAdviceKind (). getValue ()].
27 addAll (wovenActions);
28 }
29 }
30

31 //if there is no entry for the current join point
32 //we have to create such entry
33 if (! wovenActionsPerJoinPoint . containsKey (pointcut)) {
34 wovenActionsPerJoinPoint .put(pointcut , new List [] {

192 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

35 new ArrayList <Action >(adviceList . length),
36 new ArrayList <Action >(adviceList . length),
37 new ArrayList <Action >(adviceList . length) });
38

39 // check if base actions of the current join point
40 // exists as a join point in higher - precedence advice
41 // and remember them for the current join point
42 //(action woven to any action will be contained)
43 if (! isAnyAction && pointcut . getBaseAction ()!= null){
44 Action currentAction = pointcut ;
45 // check for more base actions until one is found
46 //as a join point (or no single one is found)
47 // and nothing happens
48 while (currentAction . getBaseAction () != null) {
49 if (wovenActionsPerJoinPoint . containsKey (
50 currentAction . getBaseAction ())) {
51 List <Action >[] wovenActionsFromBaseAction =
52 wovenActionsPerJoinPoint .get(
53 currentAction . getBaseAction ());
54 for (int i=0; i <

wovenActionsFromBaseAction . length ; i++) {
55 wovenActionsPerJoinPoint .get(pointcut)[i].
56 addAll (wovenActionsFromBaseAction [i]);
57 }
58 // actions from higher base actions are already
59 // queued to this found one
60 previousBaseActionFound = true;
61 break ;
62 }
63 currentAction = currentAction . getBaseAction ();
64 }
65 }
66 //if the current join point is not the anyAction we
67 // have to check if there were actions woven to any
68 // action in a higher - precedence advice and remember
69 // them for the current join point
70 if (! isAnyAction &&
71 ! previousBaseActionFound &&
72 wovenActionsPerJoinPoint . containsKey (anyAction)) {
73 List <Action >[] wovenActionFromAnyAction =

wovenActionsPerJoinPoint .get(anyAction);
74 for (int i=0; i <

wovenActionFromAnyAction . length ; i++) {
75 wovenActionsPerJoinPoint .get(pointcut)[i].
76 addAll (wovenActionFromAnyAction [i]);
77 }
78 }
79 }
80 // finally add the woven actions of the current advice
81 //(any actions is already added)

orchideo|debug 193

82 if (! EcoreUtil . equals (pointcut , anyAction)) {
83 wovenActionsPerJoinPoint .get(pointcut)[
84 adviceModel . getAdviceKind (). getValue ()].
85 addAll (wovenActions);
86

87 // check if the current join point action is the base
88 // action from any other existing join point action
89 // and add the woven actions
90 for (Action earlierJoinPoint :

wovenActionsPerJoinPoint . keySet ()) {
91 if (earlierJoinPoint . getBaseActions ().
92 contains (pointcut)) {
93 wovenActionsPerJoinPoint .get(earlierJoinPoint)[
94 adviceModel . getAdviceKind (). getValue ()].
95 addAll (wovenActions);
96 }
97 }
98 }
99

100 }
101 }

194 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

B The orchideo|engine Trace Format

This is the a grammar we have found through analysis of the existing orchideo
logs and the orchideo|engine. We use an extended the BCNF in order to express
some of the ambiguties of orchideo traces.

– Terminals are within apostrophes (“ ’ ”) or as a character group (“ [0-9] ”).
– Whitespace and newlines are ignored unless explicitely specified.
– An exclamation mark (“ ! ”) is used to express a negative look-ahead asser-

tion.
– The tilde symbol (“ ∼ ”) expresses a non-consuming look-behind condition.
– The forward slash (“ / ”) is used to express a look-ahead assertion.
– Brackets are used for precedence clarification

Level ::= ’>’ (Level | LevelContent) ’<’ JavaTrace?

LevelContent ::= ’(’ ActionText ’)’ ’\n’ LevelActions

LevelActions ::= (Item+ RootAction Item*) |
(Item* RootAction Item+)

Item ::= (ActionCount !’ROOT:’ ActionText) | Level

ActionText ::= ActionName ’:’ ActionParameter* ParameterHash

RootAction ::= ActionCount ’ROOT:’ ActionText

ActionParameter ::= ParameterName ’=’ ParameterValue

ParameterName ::= JavaIdentifier

ParameterValue ::= ’"’ .* NestedField* ’"’

NestedField ::= ’(’ NestedKeyValuePair (’,’
NestedKeyValuePair)* ’)’

NestedKeyValuePair ::= FieldName ’:’ FieldValue

FieldName ::= JavaIdentifier

FieldValue ::= .* /((’,’ NestedKeyValuePair) |
(’)’ ParameterHash)

ActionCount ::= ’(’ [1-9][0-9]* ’)’

ActionName ::= JavaIdentifier

orchideo|debug 195

ParameterHash ::= ’[ParameterHash=’ ([0-9]+ | ExceptionText) ’]’

ExceptionText ::= ’<caught exception>’

JavaTrace ::= ~’\n’ (’<’ .* ’>’ ’\n’)? JavaException? JavaAtTrace*

JavaException ::= JavaPackage ’.’ JavaClass (’Error:’ |
’Exception:’)?

JavaAtTrace ::= ~’\n’ ’ ’+ ’at’ ’ ’ JavaPackage ’.’
JavaMethodDefinition ’(’ JavaMethodDefinition
’:’ [1-9][0-9]* ’)’

JavaMethodDefinition ::= JavaClass ’.’ JavaMethod

JavaPackage ::= [a-z0-9]+ (’.’ [a-z0-9])*

JavaClass ::= [A-Z|’$’|’_’] JavaIdentifierTrail

JavaMethod ::= [a-z|’$’|’_’] JavaIdentifierTrail

JavaIdentifier ::= [A-Za-z|’$’|’_’] JavaIdentifierTrail

JavaIdentifierTrail ::= [A-Za-z|’_’|’$’|0-9]*

B.1 Additions To Engine Trace

The following changes were made to the trace by us in the course of the project.

Level ::= ExecutionStackTrace? ’>’ (Level | LevelContent) ’<’
JavaTrace?

ExecutionStackTrace ::= ’[MainExceptionTrace:[’ TraceElement*
’]EndOfMainExceptionTrace]\n’

TraceElement ::= FileName ’:’ JavaPackage ’.’ JavaClass ’#’
JavaMethod ’:’ [1-9][0-9]*

FileName ::= [^/\\:*\?"<>|]+ ’.java’

ActionText ::= ActionName ’:’ ActionParameter* ParameterHash
SessionInformation?

SessionInformation ::= ’(SESSION:’ SessionName ’, ’ ObjectId ’)’

196 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

C orchideo|engine trace example

This is a shortened trace the orchideo|engine, which includes our modifications,
throws on an error. In our TeltowCar application we created a customer without
defining his last name and tried to commit this customer to a database. As there
is a cardinality constraint that checks for the customers last name the engine
throws an ExcecutionInterruptedException with the following content:

de. exxcellent . orchideo . engine . ExecutionInterruptedException
at

de. exxcellent . orchideo . engine .impl. ExecutionContextImpl .init(ExecutionContextImpl .java :93)
at

de. exxcellent . orchideo . engine .impl. ExecutionContextImpl .<init >(ExecutionContextImpl .java :57)
at

de. exxcellent . orchideo . engine .impl. SessionImpl . execute (SessionImpl .java :197)
at

de. exxcellent . orchideo . objects . aspect . persistence . hibernate .impl. HibernateAspectImplBase . commit (HibernateAspectImplBase .java :112)
at

de. uni_potsdam .hpi. bp2009h1 . teltowcar . application . Activator .start(Activator .java :52)

[...]

at org. eclipse . equinox . launcher .Main.main(Main.java :1287)
[MainExceptionTrace :[null:java.lang. Thread # getStackTrace :-1; ExecutionInterruptedException .java:de. exxcellent . orchideo . engine . ExecutionInterruptedException #<init >:31;
ExecutionContextImpl .java:de. exxcellent . orchideo . engine .impl. ExecutionContextImpl #init :93;

[...]

Main.java:org. eclipse . equinox . launcher .Main#run :1311; Main.java:org. eclipse . equinox . launcher .Main#main :1287;] EndOfMainExceptionTrace]
> (Commit : wasCommitted ="null" [ParameterHash =0] (SESSION :

TeltowCarModelConfiguration , 1 d7ce63))
(1) CheckValidity : [ParameterHash =0] (SESSION :

TeltowCarModelConfiguration , 1 d7ce63)
InvalidObjectNetworkError :
Parameter : constraintViolations
ParameterValue :

[de. exxcellent . orchideo . objects . aspect .core. constraint . ConstraintInstance@6665ddda ,
de. exxcellent . orchideo . objects . aspect .core. constraint . ConstraintInstance@83a9a99e]

[no stacktrace available]
(2) >> (CheckConstraints : objects ="null" constraints ="null"

callback ="null" dirtyOnly ="true" [ParameterHash =1231]
(SESSION : [...]))

(1) ROOT: CheckConstraints : objects ="null"
constraints ="null" callback ="null" dirtyOnly ="true"
[ParameterHash =1231] (SESSION : [...])

[...]

(3) >>> (CheckConstraint :
contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "

orchideo|debug 197

constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" result =" false "
[ParameterHash =1733828838] (SESSION : [...]))

(1) ROOT: CheckConstraint :
contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" result =" false "
[ParameterHash =1733828838] (SESSION : [...])

(2) >>>> (GetPropertyValue :
object =" TeltowCarModel .impl. CustomerImpl@5984204e "
property ="de. exxcellent . orchideo . objects .dsl.model.impl. PropertyImpl@66fcd5
(description : null) (name: lastName) (ordered : false ,
unique : true , lowerBound : 1, upperBound : 1,
defaultValue : null , aggregation : false , identity : false ,
transient : false , derived : false)" value="null"
[ParameterHash =1775216870] (SESSION : [...]))

(1) WrapLazyProperty :
object =" TeltowCarModel .impl. CustomerImpl@5984204e "
property ="de. exxcellent . orchideo . objects .dsl.model.impl. PropertyImpl@66fcd5
(description : null) (name: lastName) (ordered : false ,
unique : true , lowerBound : 1, upperBound : 1,
defaultValue : null , aggregation : false , identity : false ,
transient : false , derived : false)" wrappedObject ="null"
[ParameterHash =1775216870] (SESSION : [...])

[...]

<<<<
(3) UpdateConstraintState :

contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" status =" false "
[ParameterHash =1557591902] (SESSION : [...])

(4) >>>> (UnmarkConstraint :
contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" wasUnmarked ="true"
[ParameterHash =1733828838] (SESSION : [...]))

(1) ROOT: UnmarkConstraint :
contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:

198 Felgentreff, Kessler, Palm, Platz, Schlegel, Tessenow

lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" wasUnmarked ="true"
[ParameterHash =1733828838] (SESSION : [...])

<<<<
(5) >>>> (MarkConstraintViolation :

contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" wasMarked ="true"
[ParameterHash =1733828838] (SESSION : [...]))

(1) ROOT: MarkConstraintViolation :
contextObject =" TeltowCarModel .impl. CustomerImpl@5984204e "
constraint ="de. exxcellent . orchideo . objects .dsl.model.impl. CardinalityConstraintImpl@6a60d5
(description : null) (name:
lastNameCardinalityConstraint) (oclExpression : null ,
type: Cardinality)" wasMarked ="true"
[ParameterHash =1733828838] (SESSION : [...])

<<<<
<<<

[...]

(6) IgnoreMandatoryIdViolations : [ParameterHash =0] (SESSION :
[...])

<<
<
InvalidObjectNetworkError :
Parameter : constraintViolations
ParameterValue :

[de. exxcellent . orchideo . objects . aspect .core. constraint . ConstraintInstance@6665ddda ,
de. exxcellent . orchideo . objects . aspect .core. constraint . ConstraintInstance@83a9a99e]

[no stacktrace available]

Erklärungen

Erklärung von Tim Felgentreff

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Tim Felgentreff)

Erklärung von Lysann Kessler

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Lysann Kessler)

Erklärung von Philipp Tessenow

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Philipp Tessenow)

Erklärung von Stephanie Platz

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Stephanie Platz)

Erklärung von Frank Schlegel

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Frank Schlegel)

Erklärung von Christina Palm

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, alle
Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wur-
den, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung
noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Potsdam, den 25. Juni 2010

(Christina Palm)

	Debug Tools for Orchideo
	
	Developing an Application with the orchideo Framework
	Christina Palm
	Static Analysis of orchideo Advice Weaving
	Stephanie Platz
	Debug Support for orchideo
	Lysann Kessler
	Post-mortem Analysis of Debug Traces
	Tim Felgentreff
	Exception Visualization
	Philipp Tessenow
	Continuous Integration For Eclipse Plug-ins
	Frank Schlegel
	Summary
	
	Erklärungen
	

