Online Object Observation

Connecting Interactions with Code

Tim Felgentreff

End-User Development, Software Architecture Group, Hasso-Plattner-Institut,
Universitat Potsdam, D-14482 Potsdam, Germany,
tim.felgentreff@student.hpi.uni-potsdam.de

Abstract. Interactive, graphical systems offer rich opportunities to ma-
nipulate and program with graphical objects. Oftentimes, in systems
such as Squeak or the Lively Kernel, end-users are able to “program”
or “script” said objects through simple, graphical interactions, drag and
drop gestures, and drawing connections between objects. In this paper,
we explore online object observation as a means to ease the transition
from graphical interaction to code. We argue that tools to observe objects
can ease the transition from casual scripting to real program. Along the
way, we experiment with different techniques to filter and refine tracing
as well as help the user to find exactly the calls he is looking for with
minimal overhead.

1 Introduction

Enabling non-programmers to employ computers for their specific means has
driven the IT industry since the beginnings of widespread personal computing [1].
The IT industry is still young, and the sudden and dramatic increase in users
in the late nineties [2] has left the industry vastly understaffed. Since that time,
efforts to incorporate means for the end-user to extend and tailor software to
their needs through “programming” have increased [1]. Today, 12 million people
in the U.S. say they “do programming” at work, using spreadsheets, databases
and other systems for end-user development [3] (EUD). Yet, there are only 3
million actually working as programmers within the U.S.

For non-programmers, languages with weak, dynamic typing have proven
easiest to master, as can be seen especially recently with the rise of JavaScript [4].
In addition, most EUD is being conducted using simple, accessible concepts
such as loops or declarative expressions, rather than more involved concepts.
Recursion, model-view-controller or inheritance come to mind.

Sometimes, however, simple “programming” interactions become too limited
to express the user’s intent, and the underlying programming system has to be
used directly.

As EUD technologies have evolved, the underlying systems and programming
languages have become more advanced. This comes at a price, however. Where
previously the step from scripting frequently used views into a financial database
systems to writing actual code to store and retrieve data and connect to other



databases was but a minor one, today’s systems hide so much of the underlying
details that a user cannot gradually “outgrow” the controlled, scripting world
and program on the metal. Even motivated individual might be discouraged
when they discover that to advance beyond a certain point, they suddenly have
to understand classes, inheritance and calling conventions. At this point, a user
experienced with the interactive scripting system will have to re-learn how to
create many of the interactive effects in code.

In modern environments geared towards EUD, the translation of manual
steps into runnable code is not straightforward. In this paper, we explore object
observation as a means to help users in this translation process.

2 Interactive Scripting Environments

In this paper, we will focus on systems for rapid-prototyping, that enable users
to express reasonably complex ideas and build graphical tools to aid with daily
tasks. Two such systems are the Lively Kernel [5] and the EToys [6] system build
into Squeak/Smalltalk [7].

2.1 Squeak/EToys

The EToys scripting system runs on top of the Squeak/Smalltalk implementa-
tion. Development originally started at Disney in 1996 [7], and is now at View-
points Research Institute (VPRI). The primary goal of the language is to enable
children to explore powerful scientific and mathematical ideas in an interactive,
“life” environment. Today, it has grown into a full-featured media 2D/3D au-
thoring environment.

EToys has been used successfully in different schools [6]. Especially for science
experiments, teachers can provide pupils with a recording of an experiment and
the children can try to deduct the laws that govern it by re-creating the essentials
in EToys. They can import the video into their environment and draw shapes
over it to represent the important objects. They can assign “scripts” to the shapes
using simple drag and drop interaction. Those scripts can, for example, cause
the shapes to move about the screen.

If children play with the parameters to their scripts, they can match the
behavior of their shapes to the frames of the video backdrop and thus build an
actual simulation of the real-world environment.

Furthermore, EToys can be used cooperatively over a network connection,
allowing for immersive teaching experiences. Finally, as EToys builds on top of
the Squeak system, the Smalltalk programming language is available for those
who want to dive deeper into actual programming.

The Smalltalk system consists of a large class library, however, and for users of
the EToys system the sheer number of classes and methods can be overwhelming
— not to mention the widespread use of object-oriented patterns throughout the
system, like observers, commands and method hooks.



2.2 Lively Kernel

The Lively Kernel is a Javascript environment that runs off a web page. It was
originally developed at Sun Microsystems Laboratories. It consists of a Morphic
based UI, a Smalltalk inspired IDE and provides rich shape composition and
scripting facilities.

While not meant for children, it can be used to rapidly prototype graphical
concepts or web mash-ups, and has been used to such ends [8]. Shapes can be
combined and referenced by name, connections can be drawn to other shapes
and those connections can be extended with scripts, to transfer and convert data
between the different widgets.

This, and the fact that such “applications” can then be saved as a web-page,
makes it very easy to create and distribute a simple application. Integration
with existing Javascript libraries is also possible, and the step from scripting to
full-on Javascript development is not quite as far as EToys is from Smalltalk.
However, the environment is different from what developers are used to in a
browser. Graphical widgets can be much more complex in Lively than the native
widgets the browser offers. The inner workings of Lively widgets are not trivial
to understand for casual Javascript developers.

3 Online Object Observation

To alleviate the aforementioned problems — wading through a large implemen-
tation trying to find a specific feature or trying to figure out the workings of a
particular object — we explored live tracing in the Squeak environment.

Requirements Our first goal was to create a simple, intuitive way to observe
a graphical object. We opted for a tool in the Parts Bin, an object repository
users of the EToys systems are familiar with. The tool can be dragged out of
the Parts Bin and be dropped onto the morph of interest. Because the morphic
system uses the composite pattern to build complex shapes from simpler ones,
we opted to not only trace into the morph that received the drop, but also its
submorphs.

Secondly, we wanted to make sure that interactions and method activations
could be correlated in a time-based manner, i.e., the instant in which a method
is triggered through user interaction, the user should be able to see it printed to
the tracer log.

Finally, we made it a requirement to keep the overhead of the tracing as small
as possible, in order to allow it to be used in any situation, without sacrificing
the interactivity of the Squeak system.

To sum, our goals were, in that order of importance:

1. Familiar, intuitive user interface
2. Interactivity
3. Small overhead



3.1 Tracing in Squeak

The usefullness of tracing for understanding the dynamic flow of a program has
been well established. There exist a variety of solutions for tracing in Squeak
already.

MessageTally The MessageTally tool is built into the Squeak core. It allows
to trace code execution and presents the program flow as a callgraph after
the code has finished running, together with the time spent in each node.
MessageTally is specifically made to find performance bottlenecks in software
and as such is only moderately useful for understanding the inner workings
of a program or framework, as it provides only a textual call graph with the
time spent in each message. Overall, MessageTally does not meet any of our
initial requirements.

ContextS Tracing and logging is one of the classic motivations for context-
oriented programming. ContextS allows to wrap methods and execute ad-
ditionaly code before and after a message send, allowing to not only record
execution time, but also message names, parameter- and return-values.
Due to the dynamic properties of contexts, ContextS is a very good canditate
for building the drag and drop interface for tracing a particular, graphical ob-
ject we had in mind. Recording different properties of the executed methods
in before and after advice is easy, and providing life-output as well. Contexts
have a fairly high execution overhead [9].

MethodWrappers The wrappers are the basis for ContextS. A Method Wrap-
per can be installed in place of a method, providing the ability to execute
code around the actual method invocation, just as ContextS does. A sin-
gle MethodWrapper is easily installed, and since MethodWrappers are just
normal Objects (different from CompiledMethods, for example), we can sub-
class them to add additional behavior, which is why we based our evalution
on this framework.

3.2 Usage Scenario in Morphic

We looked at different problems people might try to solve when working with
Squeak. The focus has been primarily on programmers who are new to the
Squeak environment and the graphic framework Morphic.

Students who are introduced to Squeak during their studies at HPI often
wonder how to reproduce effects they see in the environment. One particular
example of this was an attempt to reproduce the behavior of a code holder
morph as seen in the code browser.

Code holders allow scrolling their content, highlight contained source code,
and recompile the method into the system. Triggering those actions happens
through mouse and/or keyboard shortcuts, so it’s not immediately clear how to
find out what is going on under the covers.

Usually, we tell students about the event system in Morphic, so in order
to find out how a code holder scrolls its contents, they might start by looking



at the code for mouse events. If the look at the different implementations for
the mouse event hooks through the code holder’s inheritance chain, they learn
how keyboard focus and selection works, but they will not find anything about
scrolling. That is, because the Squeak VM translates scrollwheel input into the
key combinations Ctrl-Up and Ctrl-Down, so the place to look at is in the
keyboard event hooks, not the mouse events.

3.3 Motivating our Goals

The requirements set in section 3 were motivated with the above use case.

Intuitive Usage New users use the malleability and interactivity of the system
to discover its features. They use the tools provided to get an intial idea of what
is possible. We believe adding an easy to use tool for them to point at a particular
feature will help them to understand the system quickly. Making the tool easy
to apply by drawing on the familiar drag and drop interactions users know from
other systems should lower the barrier to use the tool freely and frequently.

Livelyness of Observation The above example is very typical when building
graphical systems. We questioned different Squeak/Smalltalk programmers and
most of them said that they feel comfortable reading up on some frameworks
API, but are often at a loss when it comes to event systems, oberservers and
other implicit connections between some action and its result.

In real life, if the connection between an action and a result is unclear, we try
to repeat that action and observe the surroundings of the system in question, to
find hints as to what goes on when we interact with it [10]. Adding immediate
feedback to our tool helps users to connect their actions with the execution of
code in the system. When something is not immediately clear, the interaction
can be repeated to form theories on what is going on specifically, and these can
be verified simply by repetition and observation of the call log feedback.

Low Overhead In the example in 3.2 we expressed the desire to observe com-
pilation and highlighting of code. Both can be fairly slow in the Squeak system,
especially when looking at long (maybe generated) methods. We could just tell
our users to try a different methods, but we felt there will be other use cases
where similar performance considerations might be an issue. Additionally, if the
tool we provide had enough overhead to make the system feel even slightly slug-
gish, users might refrain from using it freely.

4 Tracing Systems

Having set our goals and after deciding on MethodWrappers for the foundation
of the tool, we looked at the specifics of tracing in the Squeak system.



4.1 Particularities of our Tracing approach

Naively tracing in Squeak with Method Wrappers is slow. Squeak methods are
held in method dictionaries, which are shared among all instances of a class. Per
default, when wrapping a method, all calls to this method will be routed through
the wrapper. For oft-called methods, especially in the UI framework, this means
that most of the environment might end up being wrapped, slowing the Ul to a
grinding halt.

Luckily for us, Squeak provides an easy to use API to pick a particular object
and decouple its method dictionary from other instances of that class. This way,
we only trace the object(s) the user is interested in, and not all objects in the
system that have the same type.

How do we decide what to trace? The Morphic Ul draws itself using a scene
graph. The root of this graph is called the World. When a user drops our tracing
behavior onto a graphical object, it can be difficult to decide which root object
to trace from, and if we should trace into the scene graph. Additionally, some
Morphs have associated Models and MorphEzxtensions to which they delegate
behavior. How do we know when to trace those as well?

For simplicity, we opted to restrict ourselves to tracing the immediate object
that received the drop event and all its submorphs. We realise that this heuristic
might not be optimal. A discussion of this can be found further down in section
4.2.

Tracing in circles is dangerous. If we blindly trace connected objects, those
connections might be circular and lead to multiple levels of method wrappers
installed on the same object. To side-step this issue, we currently do not allow
multiple traces on the same object. However, this also means that a user cannot
trace the same object twice in different contexts. If, for example, someone started
by tracing just the code holder in a class browser, and then wanted to trace the
browser itself, the code holder would not show up in the call log for the class
browser, unless the first observation is stopped.

4.2 Evaluation

Trace filtering To reach our goal of low overhead, we had to apply heuristics
to filter our trace and dynamically unwrap methods.

Removing oft-called methods We assume that users are most likely to observe
objects not to get a thorough picture of how they work, but to find a way to
reproduce effects through code, i.e. the (perhaps implicit) API of an object
is more important than how it is executed. API methods are usually called
only once and in turn execute internal methods to achieve their purpose. With
this assumption in mind, we unwrap methods that appear very often during a
trace because they are unlikely to be the most simple, “API-like” entry point
to the functionality. This has the added advantage that the greatest sources
of slowdown are eliminated as well, because often called methods will not go
through method wrappers most of the time of an observation.



Removing “private” calls Similar to the above, calls that are only ever made
to self are not very likely to be meant for outside use. As in Squeak there are
no private methods, it is customary to prefix the method categories for internal
methods with the word “private” to signal that such methods should not be
called from the outside. We use this idiom to trim down our call log further.

Trace selection While the scene graph under a particular morph often includes
interesting enough morphs to find out about some functionality, we currently
ignore any other important connections the morph might have. This should be
made into an option for the user to decide.

To select the root of the traced scene graph, we believe that a selection policy
similar to the morphic halos would work very well, as well as being in line with
the rest of the system. This would make application of the tracer a two-step
process (dropping the tracer and selecting into the morph), but the end user
would know exactly what is being traced.

The first two heuristics work very well for our particular use-case, but might
be innapropriate and surprising for many users. Because we want the tool to be
intuitive, we believe that adding a small UI, like a “control-panel”, when tracing
might alleviate that surprise. In this control panel we can show these heuristics
(thus telling the user about them when he uses the tool for the first time) and
allow the user to (de-)activate them, if he is interested in private methods or
methods that are being called more often. Additionally, we should allow the user
to enter the parameters for these heuristics, e.g. how many calls per second is
“often-called”, what should the ignored prefixes be and so on.

One could also imagine opening the tracer heuristics up to the users in the
spirit of open implementations. Exposing all the information we collect while
tracing, the users themselves could add conditions under which methods could
be unwrapped, or displayed more or less prominently, to ease visually associating
methods with interactions.

5 Related Work

Scoped Method Tracing [11] implements a very similar tool for the Lively Kernel.
The focus is less on understanding how to use a system, instead focusing on
understanding how the system actually works. The other goals, however, a very
similar to our approach, from low overhead to livelyness.

Macro Recording tools can be found in editors like Vim [12] and Emacs [13],
the operating system Mac OS X ships with the Apple Automator [14], and
the Microsoft Office suite [15] has macro recording abilities as well. While the
secondary goals from section 3 are similar to ours, the primary goal is not in
understanding how to reproduce an interaction in code, but simply in recording
it to be able to replay it later.



Callgraph Analysis , while similar in its primary purpose, is inherently “post-
mortem”. The lack in livelyness however, allows for better filtering capabilites
and more structured analysis. Instead of repeating interactions with different
filtering strategies, users can record once and then filter multiple times with
different heuristics, without having to redo the steps.

6 Conclusion

Without conducting a user story, we cannot say whether our approach is useful
for a significant part of the possible users. We were able to put our prototype
to use in different private and university projects, and were able to successfully
solve the motivating use case as well as a few others. Judging from the feedback
we have gathered, the fundamental ideas seem good for our purpose, and the
ease of use is a big plus compared to the current tools that ship with the Squeak
IDE.

The major remaining issue, seems to be that users have no way of knowing
how the heuristics applied to the call trace work, or how to change them, a
problem to which we have proposed a solution in section 4.2.

References

1. Eisenberg, M., Fischer, G.: Programmable design environments: Integrating end-
user programming with domain-oriented assistance. In: Proceedings of the SIGCHI
conference on Human factors in computing systems: celebrating interdependence,
ACM (1994) 431-437

2. Kanellos, M.: Pcs: more than 1 billion served (June 2002)

3. Lincke, J.: Eud lecture slides. Lecture slides during End-user development lecture
at HPI, Summer 2011 (May 2010)

4. Miller, R.: End user programming for web users. In: End User Development
Workshop, Conference on Human Factors in Computer Systems, Citeseer (2003)

5. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web browser as an ap-
plication platform: The lively kernel experience. Sun Microsystems Laboratories
Technical Report SMLI-TR-2008-175 (2008)

6. Kay, A.: Squeak etoys, children & learning. online article 2006 (2005)

7. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: the
story of squeak, a practical smalltalk written in itself. In: ACM SIGPLAN Notices.
Volume 32., ACM (1997) 318-326

8. Nyrhinen, F.; Salminen, A., Mikkonen, T., Taivalsaari, A.: Lively mashups for mo-
bile devices. In: Mobile Computing, Applications, and Services: First International
ICST Conference, MobiCASE 2009, San Diego, CA, USA, October 26-29, 2009,
Revised Selected Papers. Volume 35., Springer Pub Co (2010) 123

9. Appeltauer, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A compar-
ison of context-oriented programming languages. In: International Workshop on
Context-Oriented Programming, ACM (2009) 6

10. Perscheid, M., Steinert, B., Hirschfeld, R., Geller, F., Haupt, M.: Immediacy
through interactivity: Online analysis of run-time behavior. In: Reverse Engi-
neering (WCRE), 2010 17th Working Conference on, IEEE 77-86



11.

12.
13.
14.
15.

Lincke, J., Krahn, R., Hirschfeld, R.: Implementing scoped method tracing with
contextjs. (2011)

Moolenaar, B.: Vim, the editor (July 2011)

FSF: GNU Emacs (July 2011)

Myer, T.: Apple Automator with AppleScript Bible. Volume 662. Wiley (2009)
Cornell, P.: Using macros to speed up your work (July 2011)



