
Lively Groups: Shared Behavior in a
World of Objects

Tim Felgentreff, Philipp Tessenow, Lauritz Thamsen

Hasso-Plattner-Institut
Jens Lincke, Robert Hirschfeld

Abstract. The Lively Kernel is a self-supporting, browser-based environ-
ment for explorative development of active Web content. In addition to
object-oriented programming with modules and instances, Lively sup-
ports an object-centric approach for modifying visible objects directly.
However, to share behavior between similar objects, Lively developers
must choose to either abstract concrete objects into modules, to scatter
code between objects, or to copy code to multiple objects. That is, they
must choose between longer feedback loops, tight coupling, or reduced
maintainability.
In this paper, we propose an extension to the object-centric development
tools of Lively to work on multiple concrete objects. In our approach,
developers may dynamically group live objects that share behavior and
manipulate such groups as if they were single objects. Our enhance-
ments scale Lively Kernel’s explorative development approach from one
to many objects, while preserving the maintainability of abstractions and
the immediacy of concrete objects.

Keywords: Web Applications, Interactive Systems, Explorative Develop-
ment, Lively Kernel

1 Introduction

A common goal of development environments is to alleviate development
by providing feedback early. Such feedback mechanisms range from syntax
checking and automatic test execution, to integration of the development en-
vironment and applications into a single runtime. The Lively Kernel [4] is an
interactive development environment for developing Web applications inside
the Web browser. Lively’s development tools allow programmers to change
applications from within the same Web page and immediately see the results.
Developers can either change the modules—as, for example, classes—or spe-
cific objects. The direct interaction with objects allows short feedback cycles [9]
when working on the objects that make up the application.



2

Lively’s object-centric tools only work on one object at a time. To implement
behavior common to multiple objects, developers have three choices: either,
abstract common functionality into modules that define these objects, scatter
code across collaborating objects,or manually repeat code among objects. The
first option reduces feedback immediacy, the second option breaks encapsula-
tion [13], while the third reduces maintainability [7].

To overcome this challenge, we propose an extension of Lively’s object-
centric tools to work on groups as if they were single objects. Developers group
objects by clicking their visual representations, by selecting nodes in the scene-
graph, or by evaluating program queries. Developers may label such groups
according to the role they share and edit all group members simultaneously.
That is, programmers can evaluate statements on and add functions to all
group members. Our approach manages shared behavior without dictacting
the program decomposition, while maintaining the immediacy of live objects.

The remainder of this paper is organized as follows. Section 2 gives a short
overview of the Lively Kernel environment, demonstrates its object-centric
development approach with an example, and identifies challenges that arise
when concrete objects share behavior. Section 3 introduces our approach to
sharing behavior between groups of objects, while Section 4 describes our im-
plementation in Lively. Section 5 identifies current limitations and proposes
future work. Section 6 presents related work, while Section 7 concludes this
paper.

2 Object-centric Development in the Lively Kernel

The Lively Kernel allows browser-based, object-centric development of Web
applications, including direct manipulation, object specific behavior and ob-
ject serialization. To exemplify this object-centric development approach, we
present a game built entirely with objects.

2.1 The Lively Kernel

Lively’s main characteristics include the integration of design-time and run-
time, object-centric development tools, the implementation of the Morphic
User Interface Construction Environment [11], and a serialization mechanism
to store objects persistently. It further supplies a module system that includes
classes with single inheritance, traits and context-oriented layers [8]. The Ker-
nel itself and applications are based on these modules, however, developers
can create new applications as, for example, development tools, by compos-
ing and editing concrete objects without creating modules. As first explored
in the Self programming language and environment [16], this directness and
livelyness shortens the development cycle [15].



3

The Morphic architecture allows programmers to directly manipulate and
compose Morphs. It provides handles for basic graphic modification as resiz-
ing, repositioning, and rotating Morphs, but also ways to add them as children
to other Morphs. Developers can add object-specific behavior to Morphs and
try out changes to objects with immediate feedback. During development, the
edited object provides a concrete context for the code. Lively’s object-centric
code editor is called Object Editor, shown in Figure 1. It shows all scripts of
a certain object and allows developers to add and alter scripts. It enables de-
velopers to experiment with these scripts, as all statements that do not de-
pend on parameters or temporaries can be evaluated directly on the editor’s
target object. Finally, Lively’s object serialization enables a Web-based object
repository [10], called Parts Bin, into which developers publish their Morphic
creations. Such published Parts are available to other developers, effectively
making the Parts Bin a library of visual components that developers can use
and reuse.

Fig. 1: Lively’s Object Editor modifies a test runner built from Parts.

2.2 Object-centric Development by Example

Our game, shown in Figure 2 and developed entirely with objects, features
a two-dimensional map where a player character 1© and several non-player
characters (npcs) can move about. It supports terrains and obstacles, some of
which—like water 2© or trees 3©—are impassable. The goal of the game is to
talk to all npcs on the map 4© and defeat them in debates by choosing the best



4

insults from multiple-choice menus and, thereby, bringing the morale meter 5©
of the opponent down to zero.

Fig. 2: Freedom of Speech — A debating adventure game built from Parts.

Each feature of the game is implemented on basic Morphs in one of three
ways: functionality that is required once, belongs to one object. If functional-
ity is required on various different Morphs, however, we implemented it on a
central component. For example, the game object implements an image load-
ing function available to all objects of our game. If functionality is required by
various similar Morphs, we implemented it by composing multiple Morphs,
some of which are invisible and use visible Morphs as costumes, as in Squeak
Etoys [5]. The invisible Morphs contain the shared behavior, while the visible
Morphs implement distinct functionality and provide individual appearance.
For example, each character is built from a transparent Morph that provides
path-finding, user interaction, and debating, while three visible Morphs—a
morale bar, a character picture, and a speech bubble—implement distinct be-
havior.

2.3 Problems Found

The implementation of the game’s features exemplifies challenges in object-
centric development of many objects that share behavior. Multiple of our ob-
jects require shared as well as distinct functionality. In these situations, we
recognize four different implementations:



5

Duplication Developers can copy the shared functions to all characters. While
this approach maintains immediacy and concreteness, it duplicates code.
This duplication impedes maintainability, as developers have to remem-
ber all occurrences when editing copied functions. Additionally, experi-
menting on functionality will only change one object with no convenient
mechanism to propagate experiments to all similar objects.

Abstraction Developers can abstract common functionality into modules that
define shared behavior. This necessitates integrating existing objects into
a module system and reduces feedback immediacy, as the code no longer
has a concrete context in form of a specific instance.

Externalization Developers can implement procedures required by multiple
objects at an external location. Objects call those routines and pass them-
selves as arguments. This impedes code comprehension as it trades Mod-
ular Understandability [12] for code re-use.

Scattering Finally, developers may choose the costume approach, in which
they implement common functionality on invisible Morphs that compose
visible Morphs to customize their appearance and functionality. However,
this scatters the code belonging to one logical domain entities across multi-
ple objects and the scene-graph. Additionally, costumes are highly coupled
to their invisible base Morphs. That is, while Lively developers expect each
object in the Parts Bin to be self-sufficient, costume Parts are not usable by
themselves.

The identified implementations impose a choice between unmanaged du-
plication, reduced immediacy, diminished code comprehension, or scattered
code. We need an approach to share behavior in a world objects that scales
Lively Kernel’s explorative development approach from one to many objects,
while preserving the maintainability of abstractions and the immediacy of con-
crete objects.

3 Object Groups Approach

Different objects implement overlapping responsibilities. Developers modular-
ize such responsibilities to share behavior between objects, however, multiple-
inheritance, traits, and layers require either upfront planning or subsequent
refactoring. Either way, developers loose the immediacy of concrete object de-
velopment and reason on a more abstract level.

In our approach, developers can combine concrete objects into concrete
groups. Each group represents a specific responsibility. Objects can be assigned
to groups dynamically, allowing programmers to develop objects with imme-
diate feedback, and modularize them on-demand to improve maintainability.



6

3.1 Lively Groups

We provide group operations for Lively’s object-centric development opera-
tions, which include, first, evaluating code-snippets in the context of the target
object, and second, adding functions to the target directly.

Direct evaluation for groups works differently depending on whether the
evaluated code references this or not. Evaluations without a self-reference ex-
ecute only once, but self-referential code snippets execute for each member of
the group. The results of all evaluations are collected into a result set and is the
return value for the developer. This enables developers to change properties
of all members in one action, by referencing this.

Interactive evaluation of code snippets may throw errors. When editing a
single object, uncaught errors abort the computation and the runtime unwinds
the stack. However, in a group, the computation may fail for a subset of the
objects. So, for group evaluations, we catch intermittent errors and return an
exception object as part of the result set.

In Lively, developers use interactive evaluation to add functions to objects
as well. To add a function to a group, each member of the group receives a
copy of the same function. Even though this duplicates the code, the function
can be edited and modified for all members at once in the context of the group.

3.2 Creating groups

Developers can create groups on-demand using one of the following three
mechanisms:

Direct Selection Developers can explicitly point at visible objects to combine
them into a group using multi-selection techniques, including clicking on
multiple objects or dragging a selection rectangle around objects.

Scene-graph Selection As some members of a group may be off screen, in-
visible, obstructed or too small, direct selection is sometimes difficult or
impossible. In such cases, developers may select objects in an alternative
representation of the scene-graph, a textual tree-view.

Programmatic Selection Some groups may include a large number of objects,
making it infeasible to select each member manually. Furthermore, some
groups may be characterized by object properties that may not be visible.
In such cases, developers can define groups through code snippets that
yield lists of objects.

Programmers may use groups transiently, or assign labels to persist the
connection from member objects to the group. To examine the parts of a group,
developers can highlight all members from the editor, adding a colored overlay
to their visual representation in world.



7

4 Implementation in the Lively Kernel

We evaluated our approach with a tool-based solution that extends the Object
Editor of Lively. Our Object Editor allows to define groups visually and pro-
gramatically. It stores the group as property on all group members and edits
them simultaneously.

Defining Groups Our extended Object Editor, shown in Figure 3, supports all
three selection mechanisms of our approach: direct, scene-graph, and pro-
grammatic selection.

Fig. 3: Extended Object Editor includes a scene-graph browser and an object selection
tool.

For the direct selection, the editor provides a tool 1© to enter selection mode,
in which developers define groups by clicking on the visual representation of
objects. Furthermore, we modified the edit button of Lively’s selection tool to
open our editor on the selected morphs. To select from the scene-graph, we
added a tree-view 2© that shows the composition hierarchy of the world. De-
velopers can browse the scene and click to select. For programmatic selection,
we modified the global function edit, which opens an editor on the argu-
ment, to treat collections of targets as a group. The global edit function is also
invoked by Lively’s shortcuts, providing convenient access.



8

Saving Groups Defined groups are initially anonymous and transient. Naming
a group persists it. In our prototype groups are tags. When developers name
a group, the editor attaches the name to the group members. Lively serializes
this property as part of the object and, thereby, stores group membership, for
example, in the PartsBin. The editor collect groups available in a world by
iterating over visible objects and offers the set of unique group names Figure 4

to developers.

Fig. 4: Our Object Editor shows a list of available groups.

Editing Groups When developers open groups in the Object Editor, it deter-
mines the common group functions by comparing their code and omits all
other functions from its script list. When developers evaluate code in the edi-
tor’s script pane, we check the code for occurrences of this. If there is none,
the code is evaluated once, otherwise for each object in the group. We guard
such group evaluations with a try/catch statement to continue evaluations
on subsequent group members even on intermittent errors.

Similarly, saving a function executes addScript on each object, effectively
duplicating the function.

5 Future Work

We propose to implement our approach for other Lively tools as well. More-
over, we want to explore first-class groups, functions owned by groups, and
automatic group discovery.

Additional Object-centric Tools Apart from the Object Editor, Lively offers more
object-centric tools, e.g., an Object Inspector, a Style Editor, and a Text Editor,
that all work on one object at a time. Developers would benefit if these can ma-
nipulate groups of objects as well. Furthermore, Lively’s Parts Bin repository
could be aware of groups. This would allow searching for groups and loading
complete groups at once.



9

Groups as First-class Entities In our prototype implementation, there is no direct
representation of a group. Instead, group membership is an attribute on mem-
ber objects and available groups are derived from the available objects. These
group attributes are serialized with their objects, but if a group is edited while
one of its members is not available, that member will not receive the change.
We want to investigate first-class groups that implement group functions di-
rectly, so their members can dispatch to them. Such group dispatch may only
happen if an object has no object-specific implementation of a method. Given
such first-class groups, it is possible to visually associate shared functions with
their groups in Lively tools.

Similarity Based Groups In the current implementation, developers create groups
explicitly. Alternatively, grouping could happen automatically based on the
similarities between objects. Such automatically detected groups would allow
developers to recognize emerging groups and to identify diverging groups.

6 Related Work

Approaches to overlapping shared behavior range from abstract language con-
cepts to tool support. Our approach primarily relates to approaches that allow
injecting multiple distinct collections of methods into single objects. It further
relates to module systems that emphasize concrete objects.

6.1 Multi-dimensional Separation of Concerns

Decomposition along multiple dimensions, as in Aspect-oriented Program-
ming [6], Traits [3], Mixins [3], and Multiple Inheritance [1] structure indepen-
dent concerns of an object independently. Developers compose objects from
such inpedent decompositions. These modularize behavior and can be used
by many objects similar to our groups. However, our groups are less abstract
and enable direct feedback. In comparison to abstractions, the group approach
does not separate concerns, but leaves the required information for execu-
tion and understanding in the object itself. Furthermore, traits require upfront
planning or subsequent refactoring when implementing changes to a program,
whereas object groups can be created on-demand.

6.2 Data, Context, and Interaction

Data, Context, Interaction (dci) is a paradigm, in which objects can occur in
different roles, depending on the execution context. Objects encapsulate only
the domain knowledge, and shared behavior is added on-demand from roles.
Similar to our approach, objects can have multiple roles at the same time.



10

However, in dci, object roles are added automatically at runtime, whereas
groups are defined by the developer as they emerge.

6.3 Dynamic Text

Dynamic Text [2] is a tool-based approach that reduces the effects of duplica-
tion in scattered code. It tracks copies of code and allows developers to edit all
instances of that code simultaneously. It is an alternative to Aspect-oriented
Programming [6], but deliberately does not resolve tangling as concern im-
plementations are sometimes more understandable in conjunction with base
code. This approach relates to our object groups in that both do not resolve
duplications, but rather provide tool support for managing duplications.

6.4 Prototype-based Inheritance

Prototype-based Inheritance [14] is an approach to shared behavior, in which
objects inherit attributes and functions directly from other objects. Languages
that offer prototypical inheritance—such as Self and JavaScript—allow dy-
namic replacement of an object’s prototype, which is used in method lookup.
They offer the concreteness of object-centric development. Compared to our
groups, simple prototypical inheritance does not allow objects to share behav-
ior across multiple prototypes.

7 Conclusion

We propose to extend Lively’s object-centric development tools to work on ob-
ject groups. Developers may group available objects that share behavior either
visually, by clicking their graphical shapes or choosing them from a view of the
Morphic scene-graph, or programatically, by evaluating program statements
that return collections. The object-centric development tools present a group’s
shared functions and allow to specify behavior for all group members. Further,
developers may evaluate statements on groups and, thereby, apply changes to
all members simultaneously.

With our approach, tools manage duplicated code, while developers inter-
act with live objects. That is, developers no longer choose between manual
duplication of code to multiple objects, unnecessary indirection in form of del-
egation, or extended feedback cycles of traditional functional decomposition.

In the future, we want to implement our approach for more of Lively’s
tools. Further, the Object Editor should visually distinguish between object-
specific and shared functions. Moreover, as our current implementations only
considers available members while modifying groups, we want to explore first-
class groups and automatic group discovery.



11

Nevertheless, our Object Editor already permits developers to work on
groups of objects and, thereby, effectively scales the object-centric development
approach from one to many objects.

References

1. Cardelli, L.: A semantics of multiple inheritance. Semantics of data types pp. 51–67

(1984)
2. Chiba, S., Horie, M., Kanazawa, K., Takeyama, F., Teramoto, Y.: Do We Really Need

to Extend Syntax for Advanced Modularity? In: Proceedings of the 11th Annual
International Conference on Aspect-oriented Software Development. pp. 95–106.
AOSD ’12, ACM (March 2012)

3. Curry, G., Baer, L., Lipkie, D., Lee, B.: Traits: An Approach to Multiple-inheritance
Subclassing. In: Proceedings of the SIGOA Conference on Office Information Sys-
tems. pp. 1–9. ACM (June 1982)

4. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: Self-Sustaining Sys-
tems. chap. The Lively Kernel–A Self-supporting System on a Web Page, pp. 31–50.
Springer (May 2008)

5. Kay, A.: Squeak Etoys, Children & Learning. Tech. rep. (Jan 2005)
6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Proceedings of the European Confer-
ence on Object-Oriented Programming. p. 220–242. ECOOP ’97, ACM (December
1997)

7. Lague, B., Proulx, D., Mayrand, J., Merlo, E., Hudepohl, J.: Assessing the benefits
of incorporating function clone detection in a development process. In: Software
Maintenance, 1997. Proceedings., International Conference on. pp. 314–321. IEEE
(1997)

8. Lincke, J., Appeltauer, M., Steinert, B., Hirschfeld, R.: An Open Implementation for
Context-oriented Layer Composition in ContextJS. Science of Computer Program-
ming 76(12), 1194–1209 (December 2011)

9. Lincke, J., Hirschfeld, R.: Scoping Changes in Self-supporting Development En-
vironments Using Context-oriented Programming. In: Proceedings of the Interna-
tional Workshop on Context-Oriented Programming. pp. 2:1–2:6. COP ’12, ACM
(June 2012)

10. Lincke, J., Krahn, R., Ingalls, D., Roder, M., Hirschfeld, R.: The Lively PartsBin–A
Cloud-Based Repository for Collaborative Development of Active Web Content. In:
Proceedings of the 2012 45th Hawaii International Conference on System Sciences.
pp. 693–701. HICSS ’12, IEEE (January 2012)

11. Maloney, J.H., Smith, R.B.: Directness and Liveness in the Morphic User Interface
Construction Environment. In: Proceedings of the 8th Annual ACM Symposium
on User Interface and Software Technology. pp. 21–28. UIST ’95, ACM (December
1995)

12. Meyer, B.: Object-oriented Software Construction. Prentice-Hall, second edn. (1997)
13. Micallef, J.: Encapsulation, reusability and extensibility in object-oriented program-

ming languages. Journal of Object-Oriented Programming 1(1), 12–36 (1988)



12

14. Ungar, D., Chambers, C., Chang, B.W., Hölzle, U.: Organizing Programs Without
Classes. Lisp Symbolic Computing 4(3), 223–242 (July 1991)

15. Ungar, D., Smith, R.B.: Self: The Power of Simplicity. In: Conference Proceedings on
Object-oriented Programming Systems, Languages and Applications. pp. 227–242.
OOPSLA ’87, ACM (December 1987)

16. Ungar, D., Smith, R.B.: Self. In: Proceedings of the third ACM SIGPLAN Conference
on History of Programming Languages. pp. 9–1–9–50. HOPL III, ACM (June 2007)


	Lively Groups: Shared Behavior in a World of Objects
	Introduction
	Object-centric Development in the Lively Kernel
	The Lively Kernel
	Object-centric Development by Example
	Problems Found

	Object Groups Approach
	Lively Groups
	Creating groups

	Implementation in the Lively Kernel
	Future Work
	Related Work
	Multi-dimensional Separation of Concerns
	Data, Context, and Interaction
	Dynamic Text
	Prototype-based Inheritance

	Conclusion
	References


