
Felgentreff,
Debugging Distributed Applications

Comparison, Replay, and Refinement of
Communication Traces for Debugging

Distributed Failures

from

Tim Felgentreff

A thesis submitted to the
Hasso-Plattner-Institute for Software Systems Engineering

at the University of Potsdam, Germany
in partial fulfillment of the requirements for the degree of

Master of Science in Software Engineering

Supervisors

Prof. Dr. Robert Hirschfeld
Michael Perscheid

Software Architecture Group
Hasso-Plattner-Institute

University of Potsdam, Germany

August 20, 2015

Abstract

An increasing number of companies build their business on distributed Web
applications. Hosting providers respond to that demand and made it easier to
deploy systems that spread across multiple services. However, this trend has
outpaced the development of adequate debugging tools and developers still have
to rely on an improvised patchwork of symbolic debuggers and printf debugging
to find failure causes.

Consequently, observing and debugging failures in distributed applications
is laborious and time consuming. As multiple processes execute in parallel,
developers cannot systematically stop and inspect the entire system. Although
processes are implemented in different languages, and often tightly coupled,
debugging tools that span across processes and languages are practically non-
existent. Instead, developers have to use different debugging techniques to
inspect each process sequentially. This makes it hard to reason about causality,
because the network communication changes when debugging a process. That
may lead to failures that occur in deployed systems, but that developers cannot
reproduce locally.

This work presents an integrated method to support debugging of distributed
systems in four steps: First, we continually trace network communication to
have accurate data about event order if a failure occurs in a deployed system.
Second, we compare communication patterns heuristically to identify anomalous
differences and guide developers in search of failure causes. Third, we replay
failing network schedules to reproduce failures in a local test environment.
Finally, we refine the traced data during replays and connect network events
to code locations. We present network events and code within one tool, so
developers can use both levels of abstraction for debugging.

We show how our approach can be used to inspect failures in distributed
systems that would be hard to debug with traditional approaches.

v

Zusammenfassung

Die Zahl der Firmen, die als Teil ihres Geschäftes verteilte Web Anwendungen
entwickeln, nimmt zu. Anbieter zur Bereitstellung von Servern bedienen die
steigende Nachfrage, und erleichtern den Einsatz von Systemen die sich über
mehrere Dienste hinweg erstrecken. Dieser Trend jedoch schreitet schneller voran,
als die Diagnoseprogramme für diesen Einsatzbereich weiterentwickelt werden,
weshalb Entwickler noch immer mit symbolischen Fehlersuchwerkzeugen und
Protokollierung arbeiten müssen, um Fehler zu finden.

Folglich ist das Beobachten und Beheben von Fehlern in verteilten Systemen
noch immer mühselig und zeitaufwendig. Da mehrere Prozesse parallel laufen,
können Entwickler nicht das gesamte System zur Untersuchung anhalten. Ob-
wohl Prozesse in mehreren Sprachen implementiert, und eng gekoppelt sind,
gibt es praktisch keine Werkzeuge, die über Prozess- und Sprachgrenzen hinweg
funktionieren. Stattdessen müssen Entwickler verschiedene Fehlersuchtechniken
für jeden Prozess einzeln anwenden. Das erschwert es ihnen, kausale Zusam-
menhänge zu verstehen, da sich das Kommunikationsverhalten ändert, wenn
einzelne Prozesse untersucht werden. Das kann dazu führen, dass Fehler, die
im Produktivsystem auftreten, von Entwicklern lokal nicht reproduziert werden
können.

In dieser Arbeit wird eine Methode zur Fehlersuche in verteilten Systemen
präsentiert, welche die folgenden vier Schritte umfasst: Zunächst wird fortwäh-
rend die Kommunikation im Netzwerk aufgezeichnet, um im Falle eines Fehlers
im Produktivsystem den Entwicklern akkurate Ereignisdaten bereitzustellen.
Daraufhin werden diese Daten mithilfe einer Heuristik auf Anomalien in den
Kommunikationsmustern hin untersucht. Weiterhin werden diese Daten zur Wie-
dergabe der Kommunikation in einem Entwicklungssystem genutzt. Schließlich
werden die aufgezeichneten Daten während der Wiedergaben verfeinert, und so
die Netzwerkdaten mit dem Quelltext assoziiert. Beides wird in einem Werkzeug
präsentiert, sodass Entwickler beide Abstraktionsebenen zur Fehlersuche nutzen
können.

Wir zeigen wie unsere Methode genutzt werden kann, um Fehler in verteilten
Systemen zu finden, die mit traditionellen Ansätzen nur schwierig untersucht
werden können.

vii

Contents

1 Introduction 1
1.1 Approach . 3

1.2 Outline . 4

2 Request-based Distributed Applications 5
2.1 Motivating Example . 6

2.1.1 System Description . 6

2.1.2 Failure Scenarios . 7

2.1.3 From Bug Report to Failure . 8

2.2 Challenges when Debugging in Distributed Environments 10

2.2.1 Observation and Logging . 12

2.2.2 Understanding and Classifying Observations 13

2.2.3 Reproducing Failures . 14

2.2.4 Connecting Server Events to Code Locations 14

3 Replay-driven Fault Navigation 17
3.1 Live System Observation . 17

3.1.1 Logical Communication Schedules 18

3.1.2 Continuous Logging . 19

3.1.3 Mixed Environments . 20

3.2 Communication Analysis . 21

3.2.1 Differencing between Schedules 21

3.2.2 Associating Variations and Assertions 22

3.3 Replay and Reordering . 23

3.3.1 Re-ordering Scheduler . 24

3.3.2 Fault Navigation Over Multiple Runs 25

3.3.3 Online Replay . 27

3.4 Debugging at Different Levels of Granularity 30

3.4.1 Connecting Network Events to Code 30

4 Implementation 33
4.1 Tracing Communication Patterns . 34

4.1.1 Distributed Context-oriented Computing 35

ix

Contents

4.1.2 Tracer Entry Points . 36

4.1.3 Trace Format . 36

4.2 Communication Diffing . 36

4.2.1 Difference Format and Visualization 37

4.2.2 Correlating Variances and Failures 37

4.3 Reordering Access to Network Resources 38

4.3.1 Constraints on the Networked Systems 39

4.3.2 Entry Points . 39

4.3.3 Scheduling Execution . 40

4.3.4 Probable Replay . 41

4.4 Connecting Network and Object Communication 41

5 Evaluation 43
5.1 Tracing Overhead . 45

5.2 Case-Study: Reporting System . 47

5.3 Scheduling Accuracy . 49

5.4 Events to Code Mapping . 51

6 Related Work 53
6.1 Record and Replay . 53

6.2 Replay-driven Fault Navigation . 55

6.3 Debugging at Different Levels of Abstraction 55

6.4 Distributed Debugging . 57

7 Conclusion 59

x

List of Figures

2.1 Flight Meta-Crawler Demo Setup . 7

2.2 Flight Meta-Crawler Demo System 8

3.1 Activity Prior To Successful Diagnosis 22

3.2 Variations Failing Diagnosis Runs . 23

3.3 FlowChart [10] of Re-ordering Scheduler 26

4.1 Interactions in the Prototype . 33

4.2 Communication Schedule Overview 34

4.3 Captured Communication Logs . 35

4.4 A Simple Differential Between 2 Schedules 37

4.5 Hue Mapping For Events . 39

4.6 The Path Finder Network Extension 42

5.1 Reporting System . 48

6.1 Causeway Message Debugger . 56

xi

List of Abbreviations

api application programming interface
clr Common Language Runtime
com Component Object Model
cop context-oriented programming
http the Hypertext Transfer Protocol
iaas Infrastructure-as-a-Service
ipc Inter-process communication
jdi Java Debugger Interface
jvmti Java Virtual Machine Tools Interface
jit just-in-time
json JavaScript Object Notation
jvm Java virtual machine
lcs longest common sub-sequence
osi Open Systems Interconnection
paas Platform-as-a-Service
rest REpresentational State Transfer
soa Service-oriented Architectures
tcp Transmission Control Protocol
udp User Datagram Protocol
uml Unified Modeling Language
uuid universally unique identifier
vcs version control system
vm virtual machine
xhr XMLHttpRequest

xiii

1 Introduction

From its beginnings in the 1990s, the Web has become an important application
platform in less than one and a half decades. Industry surveys indicate that
an increasing number of companies develop distributed Web applications as a
core part of their business [23, 14]. However, many of those applications are not
written with distributed systems middleware to handle communication between
services. Instead, developers improvise their own communication interfaces. This
is error-prone and complicates integration [29].

Distributed applications are especially prone to software failures. Recent stud-
ies [6, 39] show a relative increase in code problems, hidden dependencies, and
accidental complexity when integrating multiple systems. Different systems may
provide different network interfaces and developers need to understand their
utilization and implicit assumptions. Different systems also run different frame-
works and programming languages, so that developers need help to associate
observed network communication with code locations. This additional complex-
ity makes it harder for developers to reason about the system as a whole, thus,
they are more likely to introduce defects [42]. Debugging the resulting failures is
hard, and we have identified four primary problems that developers face with
current approaches and tools.

First, reliably reproducing failures is hard. Since distributed systems execute
in parallel, a global event order is difficult to establish and may vary non-
deterministically across executions [25]. Such variance depends on the physical
connections between the servers. The development setup will differ from deploy-
ment and, thus, network delays and probabilities for non-deterministic behavior
also differ. Consequently, developers may not be able to trigger some failures
during development that occur in deployment, or such failures may occur so
rarely that it is impossible to debug them effectively, because developers cannot
reliably reproduce them.

Second, developers cannot easily distinguish between causes and effects. Many
developers rely on systematic logging to understand failures that only occur
during deployment [42]. However, isolated event logs are poorly suited to create
a global view on the events in a distributed application. The ability to reason
about global event order is necessary for humans to understand causality in a
system [25]. Understanding the cause of a failure is essential for fixing it correctly.

1

1 Introduction

Third, developers cannot easily inspect execution on servers in the system.
With symbolic debuggers, programmers inspect execution state and behavior
to find anomalies that may have caused a failure. Symbolic debuggers enable
them to stop execution and interactively inspect the program’s state. However,
in a distributed system, developers need to inspect state across multiple servers,
which execute in parallel. Symbolic debuggers are tailored towards systems
under developer control, but not all parts of a distributed system provide that
kind of control. Stopping servers with a debugger to inspect the execution state
is not feasible during deployment and external services may not provide any
debugging mechanism.

Finally, different frameworks and programming languages on several servers
force developers to apply multiple debugging tools. Consequently, developers
cannot debug and inspect the distributed system as one. Instead, they have to
treat each system separately, because current debugging tools cannot connect
and synchronize with others. Support for debuggers that work across multiple
servers and languages is virtually non existent.

Due to these problems, debugging failures in distributed systems, especially
non-deterministic failures, is a time-consuming task. It usually consists of aggre-
gating various forms of log files, debug output, and application programming
interface (api) documentation for the employed services, and then debugging on
an equivalent, local system to infer possible problems. Symbolic debuggers can-
not be used in distributed applications, because they only support independent
analysis of individual processes and require full control over those.

Tool support for network observation, log aggregation and debugging across
different systems is virtually non-existent. Yet, to improve programmer produc-
tivity, providing adequate debugging tools is a key ingredient, as without them,
debugging is a manual, time-consuming task [12].

We argue that there is a need for debugging tools that target distributed,
heterogeneous systems which are not entirely under developer control. Ar-
chitectural patterns for the these kinds of systems, such as Service-oriented
Architectures (soa) and REpresentational State Transfer (rest); and hosting ser-
vices, such as Platform-as-a-Service (paas) and Infrastructure-as-a-Service (iaas),
are relatively new phenomena—the first comprehensive description of soa was
in 2005 [15]. For that reason, much of the work in this area is still not aimed at
the specific challenges of debugging distributed applications. Developers of these
systems need tools that provide a means to record and replay events consistently
across multiple servers. The tools should furthermore guide developers towards
anomalous differences across multiple executions, so developers can reason about
causality in the system. Finally, such a tool should allow developers to cope

2

1.1 Approach

with multiple frameworks and languages, as they are common in distributed
applications.

1.1 Approach

In this work we present an approach for integrated debugging in distributed
applications, targeted specifically at Web development, but extensible to other
kinds of applications with similar problems. Our approach—Replay-driven Fault
Navigation—combines state of the art techniques in the area of record and
replay to eliminate of non-determinism, distributed program comprehension,
and statistical debugging.

To allow debugging of non-deterministic failures, we present a tracing ap-
proach for unified monitoring of systems. We continuously monitor the live
system and record enough data to allow reproducing relevant program state
at a later time. Our monitoring imposes little overhead so it does not disturb
execution unduly and can stay enabled during deployment. We analyze the
recorded data and correlate it to failures to determine causes and effects. Net-
work schedules are treated as sequences of send and receive events between
pairs of servers. Our heuristics assign cause probabilities to sub-sequences of the
recorded network schedules, to guide developers during debugging. Developers
can replay such event sequences with our network scheduler and iteratively
refine recorded execution data for inspection. The scheduler is an intermediate
layer that controls how network events pass between the application code and
the framework. It blocks or stalls events to change the order in which they pass
in and out of the application to match the recorded sequence. We correlate the
network data with source code and present both in a unified debugging tool,
so developers can debug at either level of abstraction and correlate source code
across servers and languages.

The advantages of our approach over traditional stop-the-world symbolic
debuggers are: the impact on the runtime behavior is kept at a minimum, the
technique can be applied to the live system, eliminating the need for a test setup,
and the debugging tools can help developers to logically connect source code
locations across different servers.

To our knowledge, the presented approach is unique in that it explicitly tries
to support debugging across different languages and system with one integrated
approach. Work on understanding and debugging distributed systems has been
on-going for some time [30] and the state of the art has solutions for each part
of Replay-driven Fault Navigation, but no integrated solution exists that we are
aware of.

3

1 Introduction

1.2 Outline

This work is structured as follows: in chapter 2, we discuss the problem domain
on a small example. We highlight challenges faced by developers when working
with current debugging techniques. In chapter 3, we present our four-step
approach to those challenges, and how that approach could work in different
languages and deployment scenarios. In chapter 4, we discuss an implementation
of Replay-driven Fault Navigation in Smalltalk. Finally in chapter 5, we use the
initial example and a larger application adapted from an industrial system to
evaluate our tool in comparison with contemporary techniques. In chapter 6, we
discuss related work and present our conclusions in chapter 7.

4

2 Request-based Distributed
Applications

A distributed application consists of a number of processes running on one or
more servers that are communicating over a network, for the purposes of this
work, the Internet. Such applications are especially prone to software bugs [6].
Software bugs are defects in a program that developers introduce through an
error in thinking. If the defective code is executed it causes an infection of the
execution state. If this infection propagates to other states, it may eventually
become visible in form of a failure [42]. In this work we focus on debugging
distributed Web applications, but our approach is applicable to other distributed
applications as well.

Web applications are applications accessible through a Web browser, with, at
least, a client-side component for interaction and a server-side component for
data storage. Clients are written in JavaScript to run in the browser, and the server
components may use any programming language. Many Web applications use
the Hypertext Transfer Protocol (http) as transfer protocol, with event-loops to
handle asynchronous communication. The reason for this is the single-threaded
nature of JavaScript in modern browsers. In the absence of multiple threads or
processes, event loops are the only option to process multiple network events
in parallel on the client. However, developers increasingly employ event loops
for server implementations as well. Event loops avoid spawning large numbers
of threads or processes that are—due to the potentially high network latencies
across wide-area network—waiting for IO most of the time. Web applications
have at least a client and a server component, but both often communicate
with other services. These, asynchronous request-based, distributed, multi-language
applications, are the subset of applications this work is aimed at.

The communication patterns of many distributed systems on the Web can be
described using Unified Modeling Language (uml) sequence diagrams [35]. In
a sequence diagram, each server is an entity with a lifeline for request hand-
ling, and receives and sends asynchronous requests. Even though http is a
synchronous protocol, if we regard both requests and responses as asynchronous
requests, we can treat servers that handle parallel request using any mechanism
as a single thread with only asynchronous request-handling using event-loops.

5

2 Request-based Distributed Applications

2.1 Motivating Example

We now present an example system that uses asynchronous communication
between multiple servers. Meta-crawlers are a type of Web search engine that
connect to other search engines. Meta-crawlers combine information from other
sources and provide a unified interface to interact with that information. For ex-
ample, flight booking systems that offer multiple airlines connect to the systems
of the different airlines and provide a unified search and booking interface to
customers. Meta-crawlers such as these offer more than just search across multi-
ple providers, they provide additional services for comparing prices, comparing
seating options, or booking flights.

2.1.1 System Description

We have built a system that implements such a meta-crawler and is connected
to a service providing fake airline data. It consists of a Web site that allows
the user to search for and reserve flights from an origin to a destination on
a specific date. The server serving the Web site communicates with a cache.
That cache provides flight information and caches it for a certain amount of
time. Such flight information includes flight numbers, origin and destination of
flights, information about intermediate airports for a flight, as well as pricing
and available seats. This cache, in turn, connects to a flight-data generator service
that stands in for the airlines providing information about their scheduled flights.
All communication is done via JavaScript Object Notation (json)1. The setup for
this system is shown if Figure 2.1, with the arrows indicating data direction.

An intermediate query and cache service is an optimization that meta-crawlers
use, which avoids having to query the data sources directly on each user request.
Querying on each request is undesirable due to network latencies and because
data providers usually limit the number of queries per time unit that meta-
services can send to save bandwidth and processing time. However, caches
introduce the problems of stale data and cache invalidation. Prices for seats on
airplanes usually rise as the flight date approaches, and as increasingly fewer
seats are available. Consequently, in order to create a reservation, flight booking
systems either cannot guarantee the exact prices for their results, or they have to
invalidate their caches and query for current data at the time of reservation.

1JavaScript Object Notation
http://www.ietf.org/rfc/rfc4627.txt

accessed July 25, 2012

6

http://www.ietf.org/rfc/rfc4627.txt

2.1 Motivating Example

Figure 2.1: Flight Meta-Crawler Demo Setup

2.1.2 Failure Scenarios

Consider two customers on the meta-crawler Web page at the same time. Both
are looking for flights from Berlin to Amsterdam, as shown in Figure 2.2. The
results of their search will be served from the cache, and may not be the most
recent data from the respective airlines. If both customers try to reserve seats on
flight LH1009 at roughly the same time, different things may happen.

First, depending on the geographical location of both users with respect to
our system, the request for reservation may take some time to reach the server.
Depending on the time difference, one reservation may complete entirely before
the other request even arrives at the server. As we have said above, in order to
create a guaranteed reservation, the Web server has to query the airline data—
or, in our case, the fake airline data generator—for the most recent rates and
available seats. Let us assume that the cache data was current and the first
reservation request can be fulfilled at the displayed rate of 156 EUR. By the
time the second request for reservation arrives at the Web server, the number
of available seats has thus gone down to one, which means the prices has gone
up as the airline adjusts pricing depending on available seats. Thus the second
reservation can also complete, but only at a higher rate.

Second, it may be that both requests for reservation arrive at our server at
the same time, and are served in parallel. This leads to a race condition for
which we cannot deterministically decide which one of the users receives the
lower rate and which one the higher rate. Either way, we, as the provider of the
meta-service, do not want to end up reserving two seats and receiving only the
lower rate from both customers, because in that case, depending on our and
the airlines’ terms of service, we may have to pay the price difference or a fine,
which may not be a sustainable way to make business. At the same time, as a

7

2 Request-based Distributed Applications

Figure 2.2: Flight Meta-Crawler Demo System

customer, we do not want to create a binding reservation at any other rate than
the one shown on the Web site at the time of our click on the Reserve Seat link.

There are a number of challenges for the developers of such a system. First,
they have to understand the communication patterns that may arise in produc-
tion, with parallel access to the Web site, cache, and airline data. They have to
implement ways to deal with data races and non-determinism caused by network
delays. To do that, they have to understand how non-determinism may lead
to undesired states in their application, such as making a wrong reservation.
To verify their solutions, they need a way to reliably reproduce problems and
test them. Finally, they need to understand how communication between two
systems tightly couples them at the implementation level, which means they
have to understand how changes to the code in one system may impact that
systems’ ability to communicate with the others.

2.1.3 From Bug Report to Failure

A bug is an expression of a defect as a visible failure in the output of a system. To
fix a bug, developers have to understand the failure, find the underlying defect,
and remove it. Imagine the following bug report for our flight booking system:

Sometimes, when I try to book a flight on your website, it is added to
my cart just fine, but with a different price than what it was in the
list when I clicked it.

This particular bug report is at a high abstraction level, as it describes only
user-facing input and effects. For such bug reports, the first step towards fixing
them is to reproduce them. Second, developers should write a minimal piece
of executable code that reproduces the failure, so they can easily check their

8

2.1 Motivating Example

attempts at a fix. Then the actual process of debugging can begin, which will
eventually make the test case pass.

These steps can be time-consuming, especially for very abstract bug reports.
Tools such as ReCrash [5] attempt to generate test cases automatically, but can
only do so for deterministic failures. The above bug report contains the word
"sometimes", indicating a degree of non-determinism. That non-determinism
may have a number of causes. In this case, it may be that the user attempts to
book flights slightly differently without noticing. There may be conditions in the
environment, from browser bugs to transient hardware failures, that cause the
issue to only appear sporadically. Or there may be non-determinism in the Web
server implementation or the network communication.

To approach non-determinism during debugging, developers have to check
each possible cause and try to eliminate it. Most of these causes, including
network communication, are difficult to reproduce faithfully outside the live
system. Unit tests are likely to be too low-level to expose complex interactions,
and acceptance tests running in a test setup experience different conditions
if the test setup is not similar enough to the live system. Developers cannot
with certainty know whether a test setup sufficiently models the live system to
reproduce a given failure.

Given the above bug report and its possible causes, developers at some point
have to inspect the network communication schedule if no other cause can be
found.

Scripted Diagnoses Instead of acceptance or unit tests in controlled test envi-
ronments, developers may employ system diagnoses as "test cases" to simulate user
input against the live system. Oftentimes those are simple scripts simulating a
browser’s communication with the Web page. This enables developers to include
the circumstances under which the bug occurred in the test. Even if the bug only
occurs "sometimes", repeated execution of the system diagnosis will eventually
reproduce it if it is related to varying network schedules.

This is the approach taken by tools such as iDNA [8] and statistical debugging
approaches. The deployed application is observed over long periods of time,
possibly through multiple occurrences of the failure. If the failure occurs, as
established by the bug report, "sometimes", then the diagnosis is good enough
for Replay-driven Fault Navigation.

9

2 Request-based Distributed Applications

2.2 Challenges when Debugging in Distributed
Environments

In distributed systems such as our flight booking system, developers face a
set of challenges in addition to the challenges of non-distributed systems. The
implementation of each service has to account for the unreliable network, devel-
opers need to understand the services they communicate with, and how data is
represented and shared between those services.

Non-determinism Non-determinism may have different causes: from random-
ness in the implementation, varying shared resource access order, to interac-
tions with other processes and the operating system schedule and transient
faults in hardware. Non-determinism here means that for equal inputs, the
output and execution speed of a program is indeterminate.
For a distributed system, non-determinism may mean that for an equal number
and order of messages sent from one server, another server may produce
different responses. A cause unique to distributed systems for this is network
latency and request re-ordering. Sending a number of http requests in one
particular order does not guarantee its delivery in the same order. This is
an instance of a leaky abstraction. http messages may be broken up into
multiple Transmission Control Protocol (tcp) packets. tcp packets may arrive
out of order, and are collected by the operating system and delivered to
applications in the original order for a connection. If the tcp packets for one
http connection are available, the operating system passes those packets to
the application, which handles them as http request. The application does not
know that another http request is on its way that was sent earlier from the
point of view of the sender. So, if the processing of any request is influenced
by any other, network latency may introduce non-determinism.
Network latency varies across network segments. Usually, during development,
distributed systems are deployed in a test environment in an attempt to
simulate the distribution properties of the deployed system. However, actual
network latency during deployment is hard to predict, and data races across the
network will only randomly be reproduced in a test environment. Furthermore,
during development, click-races—the situation when two or more users try
access a resource simultaneously—can oftentimes not be adequately tested.
Finally, deployed distributed systems, due to ongoing communication, very
rarely enter a globally consistent state, so proving a system correct for its
projected uptime is difficult [17]. The only predictable way to enter consistent

10

2.2 Challenges when Debugging in Distributed Environments

states is to shut down and restart the whole system regularly, which is not
desirable for many systems.

Heisenbugs Failures that occur only during or change during debugging are
called Heisenbugs [18]. They happen because the debugging tool, through its
observation process, changes the runtime behavior of the observed program.
For non-deterministic failures, this means that introducing logging into the
system may cause different failures to happen, or the original failure could
happen much more or much less frequently, or not at all. This makes debugging
non-deterministic failures harder, because the developer cannot be sure that
the observed failure is the same as the original one.
Distributed systems exhibit Heisenbugs more often, because network access
order varies even from slight disturbances, such as the operating system
scheduler or other processes in the system. Most debuggers incur significant
overhead [11], which causes equally great disturbances to network access order,
which in turn may cause Heisenbugs [16].

Languages When systems run on different machines, or even only in different
processes, and they communicate not via the language calling mechanisms,
but rather through foreign-function interfaces, shared memory, or network
communication, connecting call trees in one language to another is a non-trivial
task.
A developer has to find exit and entry points for Inter-process communication
(ipc) in all communicating systems, and relate the input and output data,
to connect events within one system to another. This task is made more
difficult by abstractions from the input and output, for example, while the
operating system will deliver tcp packets in order to a language runtime,
a Web framework will assemble http messages before passing the data on
to the application. If systems use different abstractions, one working on the
transport layer and the other on the application layer, it is hard to determine
the corresponding communication entry points.

Data Representation Different languages represent data differently. Conse-
quently, different kinds of persistent data representation come natural to the
language users. Different data representations have to be converted into each
other, which introduces additional complexity and another source for bugs.
Because the connection between the different systems and the data conversion
is usually hidden behind libraries and frameworks, failures that are caused
by incorrect data exchange are hard to debug, because developers have to
understand multiple systems and how they transform the data.
For example, a web-page will naturally display information to a user in a
visual manner, using nested HTML-DOM elements to express the information
content in a user-friendly way. The JavaScript code running in the browser will

11

2 Request-based Distributed Applications

usually, at least intermittently, store information as JavaScript objects or in json.
json may also be the format used in http requests to transfer data between
the client and the server. On the server, the data may again be transformed any
number of times between different runtimes, backend servers, and databases.

These properties make debugging distributed systems a laborious task. We have
identified the following four debugging activities to be especially problematic
and in need of a solution.

2.2.1 Observation and Logging

The need for observation and logging of program state changes has clearly been
recognized in both research and industry [36, 1, 37]. Most Web frameworks
include logging facilities, different log-levels, and separate logs for access, input,
output, erroneous and successful events. There are full libraries2 and frameworks3

that provide comprehensive logging facilities to applications.
Distributed system are setup differently during development than at deploy-

ment time. Simulation of distributed systems or parts thereof in small-scale
development deployments, as used at development time of such systems, allows
developers to evaluate system behavior in a simple setting, relative to the deploy-
ment setup. In such development setups, developers have full control over each
server, and the power to stop and inspect each process at practically any point
in the execution of the distributed system. Apart from such small-scale setups,
developers use full-scale test deployments to provide a more realistic setting
for stress testing critical aspects of the system. Using setups of varying degree
between fully local deployments and full-scale test environments, developers can
control the amount of realism their code is exposed to.

However, once deployed, distributed systems will over time encounter situ-
ations that could not have been anticipated by the developers, state changes
accumulate, the underlying network topology changes, and, for successful ser-
vices, system load and parallelism increases beyond what could reasonably be
tested [17]. Long-running applications may experience non-deterministic, low-
probability failures that develop over time. Thus, logging data from the deployed
system is indispensable for testing and debugging failures that occur during
deployment.

2Airbrake: The error app https://airbrake.io/pages/home

accessed June 25, 2012

3Apache log4j Logging Services http://logging.apache.org/log4j/1.2/index.html
accessed June 25, 2012

12

https://airbrake.io/pages/home
http://logging.apache.org/log4j/1.2/index.html

2.2 Challenges when Debugging in Distributed Environments

If problems occur, most logging frameworks have settings on how to react, by
sending emails, checkpointing the running application, stopping and saving a
stack-dump of the program state, etc. heartbeat services regularly check accessi-
bility of services, existence of error artifacts, or output of logging frameworks, to
filter and notify developers when a problem occurs in the deployed system.

Logging frameworks and error artifacts are useful for debugging, as long as
only a limited number of frameworks is used. As long as logs are similar in format
and level of abstraction, they can be related to one another. However, although
most frameworks that are used in the context of networked applications offer
logging capabilities, there is no widely accepted standard for logging information
and formats across languages or frameworks.

2.2.2 Understanding and Classifying Observations

Given appropriate logging, developers have to review and understand the logs
to determine how to approach a particular bug. This entails associating parts
of a log or particular log entries with failures. Even for stack traces of single
process applications, this is no easy task, and developers can easily get confused
about where to look first in a trace [19]. For Web applications developers have
to understand and associate parts of logs from different systems with the same
failures. As different logs may expose different aspects of the same problem,
they have to be aligned with respect to their order, so developers have chain of
anomalous log entries to follow backwards. Without such alignment, developers
can only guess which anomaly occurred first, and finding the cause of a failure
is a matter of trial and error. But aligning multiple logs is a difficult task, unless
there is a connected logging facility. Minimal clock skew across systems may
render timestamps unusable for log ordering and parallel events cannot easily
be recognized as such.

Another problem presents itself when the failure is logged at a different level of
abstraction than the anomalies leading up to it. For example, if the log entry with
http status code 500 on the server represents the visible failure, the anomalies
leading up to it may be in form of database access or JavaScript exceptions, but
there may be multiple database accesses or exceptions for only one http request.
Developers have to connect these anomalies and group them at the right level of
abstractions. Thus, understanding which log entries are relevant to a particular
failure is hard to determine as well.

13

2 Request-based Distributed Applications

2.2.3 Reproducing Failures

Many debugging guides emphasize that the ability to reliably reproduce a failure
is crucial in the attempt to fix the underlying defect, because it is the only way to
make sure that an attempted fix is successful [28, 42, 19]. This can be difficult
for single-process applications, however, distributed applications exacerbate this
problem. The global state in a distributed system is hardly ever consistent, unless
the whole system is restarted. That means that there is little opportunity for
checkpointing the system for running through a failure from the checkpoint.
To checkpoint a process, it needs to be in a consistent state, so it can restarted
later. For multiple processes, this means that all nodes—and thus the complete
distributed system—have to be in a well-known state before a checkpoint.

Provided a consistent checkpoint can be established before a failure occurs,
reproduction may still fail. Non-deterministic failures caused by network latency
or transient inconsistency in the global state will not manifest each time the
defective code is triggered.

To deal with this problem, there are approaches to log http traffic on-demand,
when a failure occurs [24]. During replay, instead of just running the complete,
distributed system, only one node is actually run, and interaction with external
services is replayed from records.

This is useful if the developer knows on which node the defect is most likely
to find. If that is unclear, however, the developer can only replay and debug
on each node, sequentially, until the defect is found. For large numbers of
communicating nodes, or if the error is not on any node the developer can access,
this is a time-consuming process that may not lead to success.

2.2.4 Connecting Server Events to Code Locations

Provided a useful log and a replay mechanism exist, and developers have identi-
fied server events and servers that contribute to a failure, they have to change the
level abstraction from network communication and servers to communicating
processes and source code to find and fix the defect. In distributed systems, it is
not possible to set a breakpoint on a network event, and stop all services that are
communicating at the time to inspect them.

In order to deal with this problem, developers use logging in different ways.
Simple logging mechanisms or frameworks can be used to determine the exe-
cuted code around a particular network event. This increased logging can be
enabled on-demand, and log, for example, method activations, arguments, and
the data that is sent and received over the network [5]. Another approach is

14

2.2 Challenges when Debugging in Distributed Environments

to save a full continuation of the running program when a particular event
occurs [13]. This continuation can later be inspected with a symbolic debugger.

The problem with these approaches is that they only provide a one-to-one
connection between a network event and a code location. Yet, code locations are
connected across servers via the network, so multiple code locations contribute
to the same request. Developers need to identify the same network events as they
are logged on different servers, to find those connections, and the debugging
tools have to provide this identification.

Working with Multiple Call Trees

Debugging across communicating processes is similar to debugging across multi-
ple threads. First, in both cases it is impossible to stop all execution in one atomic
step. Second, all processes and threads have a separate stack as well. However,
in contrast to multi-threaded applications, distributed applications cannot com-
municate through shared memory and have to use an ipc mechanisms instead.
In the case of Web applications, http apis are the ipc mechanism.

Consider again the sequence diagram for expressing the runtime behavior
of distributed systems. As per the uml standard, nested calls can be expressed
using nested lifelines. Generally, that would be the case if a method call from one
object to another causes the receiver to call another method on itself or a third
object. For distributed applications, this can describe the relation of network
messages and call trees. An http request will trigger some code to be executed
on the receiver. While the level of abstraction is different, in effect, this is equal
to communicating threads and their interleaved call trees.

Each node executes code in one language, on one or more threads. The
language runtime takes care of delivering calls to and return values from call-
sites. On the network, the http layer has that responsibility. This means, that in
distributed systems there are multiple, nested layers of runtimes, each with their
own call mechanism.

Developers of multi-threaded programs need to be able to move between call
trees freely. The same applies for developers of distributed systems. While thread
call trees within one runtime are at the same level of abstraction, network call
trees and different language runtimes are not. There is very little support for
connecting those layers within debugging tools, and methods for doing so are
still being researched [37, 17].

15

3 Replay-driven Fault Navigation

With Replay-driven Fault Navigation, we address four challenges when debug-
ging distributed applications: observing and logging failures, classifying and
connecting logs, reproducing failures, and associating server events with code
locations. More specifically, our approach consists of the following four steps:

1. We employ a lightweight record or logging mechanism on each server, to collect
information about communication in the network. We combine the separate
logs into one, by means of partial ordering using Lamport clocks [25]. This step
provides an improvement over the heterogeneous and unordered logs developers
have to deal with today.

2. We identify failing and passing runs among logged events by connecting assertion
failures in the execution with observed network traffic. We compare failures and
passes to infer critical regions in the systems’ communication patterns. Using
this information, developers can focus on the relevant sections of the logs.

3. We use recorded communication as patterns to replay failing network schedules
and check the replays for assertion failures. If the defect is related to a network
scheduling problem, the failure will reproduce reliably. In that case, developers
gain confidence that the failure is indeed caused by variance in the network
communication schedules. Additionally, developers gain a means to reliably
reproduce the failure for further debugging.

4. Finally, we use failure replay for debugging. We refine recorded data during
replay to associate network events with code locations. We present both in a tool
that allows developers to move between the two abstractions freely [37]. This way,
developers can inspect network events presumably corresponding to infected
state at the program code level, an use additional replays to inspect execution
state at this point.

3.1 Live System Observation

In order to understand a bug, developers iterate over the same code paths,
inspecting different aspects of the program state. In order to do so, they need
some notion of logical event order, to infer causal relations between events. In
subsection 2.2.1, we also argued that it is important to have data from the live

17

3 Replay-driven Fault Navigation

system to debug distributed applications, because only the live system may
exhibit the specific timing behavior to produce a sporadic bug.

3.1.1 Logical Communication Schedules

Communication schedules in distributed systems can only be established for
subsets of all gathered network events, because communication between servers
in a distributed system is truly parallel, and some events may thus happen at the
same time, or so close in time as to have no effect on one another. To understand
causes and effects in a distributed system, we have to establish the order of
events in the communication.

Network communication events occur at different levels of abstraction, corre-
sponding to layers of the Open Systems Interconnection (osi) model [43]. We
chose to establish schedules at the application layer of the osi stack, so they may
be easily correlated to the code that created them. Previous work has mostly
focused on recording events on the transport layer, i.e. tcp and User Datagram
Protocol (udp) events [17, 24]. However, network and Web development frame-
works usually work at the application layer, sending, for example, http requests
or sql queries. These high-level events may correspond to multiple events on
the transport layer. These transport events have little meaning for a developer
working on the application layer, but combining the transport events back into
application layer events is very difficult in a user space library that does not have
access to e.g., tcp sequence numbers. Recoding schedules at the application layer
allows us to provide a user-space solution at a, for developers, meaningful level
of abstraction.

Partial Ordering of Events

In most systems, the order in which events occur is fundamentally important to
our way of reasoning [25]. We say that event A happened at 3:15 if it happened
after our clock read 3:15 and before it read 3:16. We call this order the logical
schedule [24] in which the events occurred. The actual timing information (whether
the event happened at 3:15, or between 1 and 59 seconds later), the physical
schedule, is only a more specific representation of that ordering.

However, for systems capable of parallel execution, such as the distributed
systems, a universal before relationship is not easily obtainable and may not
physically exist. To solve this problem, logical, or Lamport clocks [25] are used to
establish a partial ordering. Lamport clocks provide a logical schedule that can
be implemented in a parallel system. Central to logical schedules is the causality

18

3.1 Live System Observation

between events. If we know that an event A triggered an event B, we know that
A must have happened before B, even in the absence of a clock.

The original implementation idea by Lamport, also implemented in this work,
is still widely used [24, 37, 17, 1] and extension such as Vector Clocks [26], Version
Vectors [30], and Interval Tree Clocks [31] exist for more specific scenarios.

3.1.2 Continuous Logging

The traditional stop-the-world debugging approach is ill-suited for a live sys-
tem that only exhibits the erroneous behavior sporadically. We have argued in
subsection 2.2.4 that developers cannot stop processes on different machines at
the same time. First, this is technically impossible, because there is no way to
perfectly synchronize all processes. Second, it is also impractical, as stopping the
live system will make it unavailable for users.

Other debugging approaches observe the live system and gather enough data
to allow inspection of the relevant program state at a later time. One approach is
to log all execution state [37], so developers can inspect that information offline at
a later time. However, such logging imposes a significant overhead, which makes
this approach unsuitable for continuous logging in the live system. Other ap-
proaches [24, 17] have shown that it is possible to record just enough information
to guide the system down the right path during subsequent executions. These
latter approaches have little overhead and are suited for continuous logging.

We assume that each server in the network is in itself deterministic, and that
any non-determinism is introduced by access-races to shared resources, i.e. the
network and other servers. If each node is indeed deterministic, that means that
if network requests arrive in the same order, the same class of output—correct or
incorrect—is produced. Furthermore, we assume that nodes and the network are
well-behaved, meaning, that nodes do not suddenly change their IP addresses,
and network segments do not suddenly disappear, making nodes unreachable.
We realize that this may preclude usage of our approach for less dependable
networks.

This means we only have to record the order and type of http requests
between any two communication partners to faithfully reproduce communication,
applying only traffic shaping. Compared to recording the request contents or
partial execution traces, this is little information, with little space overhead.
Indeed, [17] has shown that the necessary information overhead encoded into
the request packages may be as little as adding an 8 byte Lamport clock. Since
we do not store the message contents, these 8 byte plus identifiers for the two
communication partners are all our storage requirements for network events
at runtime. As identifiers, IP addresses and port numbers may suffice, adding

19

3 Replay-driven Fault Navigation

4 byte for the port and 16 byte for the address, in the case of IPv6 addressing.
For an application that keeps the last 1,000,000 requests stored in its logs before
rotation, this costs about 26 MiB in storage space.

Adding logging to an existing application will change its execution behavior.
The additional execution steps impact performance and thus timing and mem-
ory behavior. Even slight changes can have a large impact if they increase the
likelihood of, for example, cache misses in the CPU.

Nevertheless, choosing a lightweight logging mechanism is worthwhile to
minimize disturbance. Furthermore, by enabling the logging facility in the de-
ployed system, the overhead of logging is no longer a sporadic disturbance that
only occurs when running a system diagnosis. Instead, the disturbed behavior
becomes the normal behavior.

Minimizing disturbance for debugging is particularly useful for non-deterministic
failures, but is a generally desirable property of debuggers. It minimizes the
potential for failures that occur only during debugging, so-called Heisenbugs.

3.1.3 Mixed Environments

With continuous logging in a distributed system one has to consider orga-
nizational and practical boundaries. To introduce generalized logging into a
distributed system we need to extend services on different nodes. Not all these
nodes are under developer control, or have source code readily available to
extend them. Our tool thus has to function in a mixed environment. For http

communication, this is easily possible by adding custom headers, which will be
ignored by non-logging clients. We do not regard lower levels of communication.
Ways to deal with services at the transport level have been covered in other
work [17, 24].

Servers that are part of our distributed system, in the sense that communication
with them contributes to the purpose of the system, can be either cooperating
or non-cooperating. During normal execution, non-cooperating servers simply
ignore the additional headers for Lamport clocks. To combine the logs at a later
time, any discovery mechanism, from a well-known port to ZeroConf1 can be
used. Incoming and outgoing events for sent and received requests, respectively,
can then be added for non-cooperating servers by means of inference.

This will necessarily create incomplete logs in the presence of non-cooperating
servers, but this can be safely ignored if no state is shared with other, third-party,
distributed systems accessing the same non-cooperating servers. These systems

1ZeroConf Internet Engineering Task Force (IETF) Internet Draft
http://www.watersprings.org/pub/id/draft-ietf-zeroconf-reqts-12.txt

accessed July 21, 2012

20

http://www.watersprings.org/pub/id/draft-ietf-zeroconf-reqts-12.txt

3.2 Communication Analysis

are common in practice, because rest and soa encourage cooperating systems
without shared state. However, this also means that our approach is not well
suited for shared, "cloud" database services and other stateful systems.

3.2 Communication Analysis

In Replay-driven Fault Navigation, recording communication events provides
data from the live system. Continuous logging will capture correct and anoma-
lous communication events. Developers need to understand the difference, why
one particular log ends with a failure, where another ends without one. There is
little tool support to find such variances in server logs, consequently, this is the
next step in our approach.

3.2.1 Differencing between Schedules

To create a tool to find variances in communication schedules, we need a model
of such schedules. We argued in chapter 2 that sequence diagrams are well
suited to both model network communication as well message passing between
objects. Consequently, network schedules also form a call tree, with requests and
responses representing message sends and returns.

However, network events occur at the higher abstraction level than message ex-
change between objects, and differences to single-threaded objects. In distributed
systems, a single server serves more than one request in parallel, using event
loops or multi-threading to process and send out responses as they become ready.
Thus, we cannot assume a causal relationship between two requests arriving at a
server one after another, and not between two responses leaving the server. The
temporal relationship alone does not imply a causal relationship.

For non-deterministic failures caused by network schedules, however, we know
that variances in the order of events influence one another. We can use our a
diagnosis script to create multiple schedules that all yield the same result, but
vary slightly. Comparing these schedules, we can find possible causal relation-
ships between events. For sub-sequences of events that vary frequently across
executions, these events can be assumed to have little or no influence on one
another. Sub-sequences that vary only rarely or not at all are indicative of causal
relations between those events.

Consider our flight meta-crawler bug report in section 2.1. We can assume
that the discrepancy between the price displayed before and after reservation
is due to a data race between another user reserving a seat on the same plane,
and the user filing the bug report. If we run a system diagnosis it may pick
up a number of users using the system, leading to activity as in Figure 3.1.

21

3 Replay-driven Fault Navigation

Figure 3.1: Activity Prior To Successful Diagnosis

Users booking other airlines prior to the diagnosis may reserve other flights
without causing the diagnosis to fail. A variance in the reservations prior to the
actual diagnosis—in the shaded area—is thus inconsequential to the result of
the diagnosis. Only variations in the order of clients booking the same flight as
tested in our diagnosis script have an impact on the result.

3.2.2 Associating Variations and Assertions

The diagnosis script is useful not only for producing similar schedules, it also
includes assertions that test the outcome of the tested behavior. If the diagnosis
reproduces a bug, those assertions will fail.

Variances between passing and failing schedules can be used to reduce the
entry points that need to be checked for defects. If we compare all passing
schedules, we find variances that probably have no bearing on the outcome of the
test. If we compare them against the failing schedules, and subtract the variances
within the passes themselves, we may find sequences that vary only between
the passing and the failing schedules. Those may be of particular interest to the
developer, because they are likely to be related to the failure. Such a variance can
occur in the unshaded activity in Figure 3.1. If the second reservation for Airline
A were sent prior to the receipt of the confirmation in the diagnosis script, a
critical race may ensue that causes the diagnosis to fail.

Failing schedules have variances within themselves. We use this to heuristically
mark these variances as less likely causes than others, as these variances then
seem to have no impact on the outcome, since they all produce the failure.
Variances within the failure schedules that also vary against all of the passing
schedules are more likely to be only on the path of the infected state of the
program, not the cause of the defect itself.

Consider Figure 3.2, as an example for variances in failing schedules. The
failures, as the passes, may vary in the order of reservations prior to the actual
diagnosed reservation—the shaded area near the top. However, the failures may

22

3.3 Replay and Reordering

Figure 3.2: Variations Failing Diagnosis Runs

vary also in the order of the requests and confirmations for reservations made by
the diagnosis and the Airline A client—the crossed area below. The only passing
schedule for that part of the communication is the one we see in Figure 3.1. Thus,
the initial variances within the failing schedule that also occur in the passes are
of little interest to the developer and need not be considered. The variances near
the end of the schedule, however, that are only between failing schedules and
do not vary within the passes can be considered likely causes for the failure. We
need to guide developers towards that part of the communication for further
debugging.

Finally events that occur late in the schedule are less likely to be the original
cause of a failure. To express this in our heuristic, we adjust the probabilities
linearly with respect to the sequence number of the event within the schedule.

3.3 Replay and Reordering

Up to this point we have been inspecting the system without knowing whether
varying communication schedules are the cause for a non-deterministic failure.
We can now reinforce this assumption by running failing schedules multiple
times through what we call our re-ordering replay scheduler. The scheduler enforces
a particular order in network communication traces, which means we can replay
a failing trace multiple times with exactly the same order of network events. If
the result is consistently the same, even if the failure occurred only sporadically
before, we have a strong case to believe that it was caused by this particular
schedule, and further inquiry with our method is warranted.

In some cases the outcome may vary even if our scheduler enforces a failure
schedule. An example is an improper implementation of timestamp parsing on
one machine, that causes the bug whenever the timestamp has one of a few
particular value. Such a bug will occur regardless of the network schedule, and
our approach is not suitable to debug these kinds of failures. However, even in

23

3 Replay-driven Fault Navigation

that case the developer will have learned that non-determinism in the network
schedules is not responsible for the failure, and can focus his debugging efforts
on each server in turn, using traditional debugging approaches.

3.3.1 Re-ordering Scheduler

The scheduler itself works as an intermediate layer between the application code
and the network, and effectively acts as a traffic shaper2. It tries to re-order
access to the shared resource—the network—to enforce a particular, prerecorded
schedule. This is done by holding and releasing incoming and outgoing commu-
nication according to the schedule, rather than the order in which they arrive.

Since we want to record application layer events, it is most natural to insert
the scheduler between the application framework code responsible for sending
and receiving, and the underlying language or operating system primitives. This
has the additional advantage that the scheduler can be programmed with some
knowledge about the framework, and thus the ability to communicate its actions
to the developer on the level of abstraction of the framework. This not only keeps
the developer in control of the debugging process, it also allows meaningful
configuration of the scheduler heuristics. Because we record only the partial
order and identifiers for communication partners for events, the scheduler can
only replay scheduled events that occur in the system at the time of re-scheduling.
That means that all servers that were active during record must be active during
replay as well. This may not always be the case, and scheduling on the application
layer allows us to communicate conditions for holding and releasing events to
the developers, so they can take appropriate action, such as choosing another
schedule or ensuring the required servers are indeed online.

As an example, the scheduler can to re-order according to a schedule that
includes communication with a backup server. This backup server may only
be active at particular times of the day, say, at night. Developers debugging a
problem during the day may cause the scheduler to wait for a long time—up
until the backup server is active. The system will seem to hang. Being able to
communicate to the developers the reason for waiting helps them to understand
the possible cause of the failure, and either bring the backup server online for
the purposes of debugging, or choose a schedule recorded at another time.

Generally, such a scheduler has to control all points in a given framework
where application layer requests are received and released. A possible algorithm
for such a scheduler is given in Figure 3.3. Such a scheduler will have to dis-

2Internet standard definition of “Shaper” in RFC 2475

http://tools.ietf.org/html/rfc2475#section-2.3.3.3

accessed July 25, 2012

24

http://tools.ietf.org/html/rfc2475#section-2.3.3.3

3.3 Replay and Reordering

tinguish whether the framework is using multiple threads of execution or just
one.

For our assumption of determinism on each server to hold, multi-threaded
servers need to be synchronized on send and receive events, by using some
kind of synchronization mechanism such as, for example, semaphores. When a
request is received, the scheduler checks whether all requests that are expected
to arrive before this request have been received. If they have, the requests can
be released into the framework. Otherwise, the current thread of execution has
to be suspended until all previously scheduled requests have been received.
Upon release of a request into the framework, all threads waiting on this re-
quest can be released, too. Similarly, for sending responses, the scheduler holds
those responses until all previously scheduled responses have been sent by the
framework.

Single threaded servers as they are used, for example, for event loops, cannot
be stopped if a request arrives too early, as that would prevent any other requests
from being processed. In this case, the scheduler will receive requests into a
buffer, and keep receiving until the currently scheduled requests arrives, which
is then returned. Once the server is ready to process the next request, it may
be released directly from the buffer, if it was previously received, skipping the
network access altogether. In single-threaded mode we can ignore outgoing
requests. Under the assumption that the server works deterministically, it will
send the responses in the correct order if it receives all requests in the correct
order.

3.3.2 Fault Navigation Over Multiple Runs

After reproducing a failure, developers have to inspect the program state. In
section 3.1 we have argued that a lightweight logging approach is preferable
for observations on the live system, both to minimize the performance impact
and the possibility for Heisenbugs. However, this approach prohibits recording
information about the program state at this stage.

With the scheduler, however, we can enforce failure schedules as needed for
further analysis. Based on the initial communication log we can, in a re-run, add
an initial, shallow log of the called methods on each node. This is based on the
earlier work about incremental, online analysis of runtime behavior [33]. Given
the source code running on the servers, this information can be connected in a
debugging tool to present a call tree to the developers.

While developers explore the call tree, it is interactively refined on-demand.
We add one-shot logging at points of interest as needed, without disturbing the
deployed system unduly. Because the the scheduler holds on to parallel requests,

25

3 Replay-driven Fault Navigation

Figure 3.3: FlowChart [10] of Re-ordering Scheduler

the schedule will be consistent with earlier runs and the program state will be a
proper sample.

Recording the Right Data

In order to assume that the observed program state for a particular replay is a
proper sample for this replay, we have to previously record sufficient information
to decide whether or not a given replay is really equivalent to an earlier one.
This means we may have to run multiple replays for any given inquiry by the
developer. Since we record only the partial order and communication partners
there is some initial uncertainty about whether the message content is equivalent.

Before any inquiry, we collect message samples for all communication in a
replay. This diminishes the aforementioned uncertainty, because, on the appli-
cation layer, we can treat message contents as parameters to the remote system.
This way, we can not only define a maximum variance for messages to decide
call equivalence, developers can also review the message contents and decide,
depending on the domain, whether the schedule is correct.

26

3.3 Replay and Reordering

3.3.3 Online Replay

In general our replay and record mechanism works for all the different environ-
ments mentioned in subsection 2.2.1, from local developer setups to the deployed
system. We consider the deployed system to be the superior basis to acquire
information during replay.

A test environment already offers much better control to the developers
for debugging failures, even without the application of Replay-driven Fault
Navigation. Combined with our approach, we could use the test environment
to replace the diagnosis script with a more "‘traditional"’ test, i.e a piece of
executable code that resets the test environment to a known state and then replays
the recorded live-system schedule within the test environment. Communication
partners that are part of the deployed, but not the test system have to be mocked
with prerecorded data.

The advantage of this way of using our approach is the amount of control it
offers. If the setup is sufficiently close to the deployed system, the replay will
inject the deployed system behavior into the test environment. Multiple replays
may be executed in quick succession, as network and processing delays are small
due to the close physical proximity of servers in the test environment, and the
reduced load without live users that the system has to process, too. Yet, those
same variables may cause the test environment to produce rare, non-deterministic
failures at a different rate, or not at all. Additionally, mocking servers that are
not part of the test environment introduces another uncertainty into the system,
which cannot be trivially proven to have no impact on the failure. Thus, we focus
on applying the replay mechanism directly to the deployed systems.

Distributed Recording

Running debugger processes across a network and controlling them from a devel-
oper machine introduces delays that prevent synchronous halt, step, and resume.
We circumvent these delays by using on-demand scheduling and recording, yet,
the question remains how to propagate on-demand record in a synchronized
manner in the distributed system. We have not implemented such a mechanism,
but different designs come to mind, for the open-world case and the closed-world
case, respectively.

Our scheduler can be used to instrument some or all of the servers in the
deployed system, to replay schedules in the same environment in which they
were recorded. The advantage of this approach is the availability of live data and
more faithful reproduction of the failure. It is non-trivial to reproduce the setup
and state of a sufficiently complex distributed system in a local test environment.

27

3 Replay-driven Fault Navigation

It may be easier to replay in the deployed system than to re-create the deployment
correctly enough to obtain the same execution behavior.

In order to recover more data from the live system during replay than we
already have, the scheduler needs a mechanism specify recording on-demand.
This means that, while the developer is debugging, the diagnosis script and
scheduler replay the debugged schedule again and again, each time recovering
one more piece of information, like for example a call stack, values of variables,
and so on. Recovering only one piece at a time means that developers have to
wait until the script has been re-executed and the information was recovered,
but it ensures minimal disruption to the service of the deployed system. This
impedes the fidelity of the approach outlined in approaches such as the Path
Tools [33], which we build upon, but we show that effective debugging is still
possible with this approach (cf. section 5.1).

As mentioned above, our scheduler only works for well-behaved clients in a
functioning network, and in the absence of those, heuristics need to be applied
to ensure continued availability of the distributed system overall. Since the
scheduler cannot do more than wait for the appropriate messages to appear to
shape the traffic into the right order, it depends entirely on network connectivity
and deterministic clients to reproduce a schedule. These constraints are not
always met, as network and server outages may make crucial parts of the
schedule temporarily unavailable. In this case, the scheduler will begin to hold
requests and responses on all nodes until temporary outage is over. This is not
desirable, as it effectively shuts the distributed system down. We think that
configurable heuristics for timeouts, dropping requests or patterns for requests
that should never be rescheduled can circumvent this problem.

Closed-World Case In the closed-world case, all the servers in our distributed
system use our scheduler, and we have full control over the in- and output of the
system, both during record and replay. Also, no servers are added or removed
between record and replay.

During recording, each server generates a universally unique identifier (uuid)
for itself, from any suitable source such as the mac address of the network card
or the uuid of other hardware components such as hard disks. After the first
execution, the log files from different servers are aggregated into one and their
uuids are mapped to their recorded IP addresses. Thus, the server uuid allows
us to associate a server uniquely with events in the schedule.

During replay, the desired schedule is chosen at the developer machine. The
additionally desired information is added in form of queries to the appropriate
schedule event. For example, at the beginning of a debugging session with a

28

3.3 Replay and Reordering

particular schedule, we re-execute the schedule and for each event record the first
few hundred bytes of data sent or received. The schedule is split into parts for
each server that contributed to the original schedule and sent out to those servers,
via the same mechanism used to aggregate the logs (cf. subsection 3.1.3). On each
server the scheduler will then read the log and re-order network access to suit
its partial schedule. Whenever an event with an additional query is encountered,
the scheduler will execute the query and log the result before continuing its
operations. At the end of each re-execution logs are again aggregated from all
participating servers and presented in the debugger.

Open-World Case In the open-world or mixed-world case, not all participating
servers include our scheduler or allow us to record at will—it may be desirable,
for example for Web services, to offer only replay data, but not source code, to
their developers. In the open-world case we can also allow the number servers to
change between record and replay.

In this case we record all message contents between scheduled and non-
scheduled servers. During the replay phase, any network event from a non-
scheduled to a scheduled server is performed with the recorded data, not with
the real network. The wrapped framework call for network access is not executed.
Likewise, any message sent to a non-scheduled server during the record phase
need not be sent again during replay.

Configuration Options

For well-behaved clients in a closed-world setup the scheduler will be able to
perform its operation without problems, because given we start with the right
network event, all required events will eventually be generated and the scheduler
on each server can re-order events as necessary. However, in the mixed-world
case, with non-scheduled servers, or in the face of unreliable network, with
servers that appear or disappear between record and replay—think of Web page
clients that use the deployed system while record and replay are in progress—
developers have to configure the scheduler to work under these circumstances.

A scheduled server may receive events from servers that are not part of the
schedule, or wait to receive events from servers that were available during record,
but are not anymore during replay. We believe this problem cannot be solved in a
general way, and for these cases we offer several settings with which developers
can configure behavior for these cases on each server.
Timeouts Waiting for events may hold requests and responses unduly. A server

that keeps no state between requests does not need to follow a schedule
precisely for the re-execution to be useful. For example, in our flight reservation

29

3 Replay-driven Fault Navigation

service, the Web page server has no state, as all the state is in the cache and
airline databases. It may be useful to release network events after a configurable
amount of time, regardless of their place in the schedule.

Unscheduled Events Non-scheduled servers may send events during replay
that did not occur during record. If dropping these events is an option, it may
be desirable to do so in order to keep the schedule. Otherwise, bypassing
the schedule for these events may also work, depending on the setup—in
our example clients that access the flight search during replay can bypass the
schedule, as the search has no bearing on the reservation bug.

Disruptions It may be desirable to specify a separate timeout to wait for sched-
uled events. In our example the cache, which is queried for searches as well as
rates and reservations, should not wait too long for an event. If a scheduled
event is not generated in the network in time, the schedule should be marked
as disrupted, re-scheduling is aborted, and all pending events are released. In
this case the re-execution fails and has to be restarted.

Message Level Developers know their deployment setup best. If the re-execution
is delayed, because the scheduler is waiting for a specific event to be generated
from a specific server, this information may in itself be useful to the developers,
even if the event never is generated. For example, if a backup is sent to another
server from our flight cache every day at noon, and this caused a failure,
replaying the schedule that includes the backup upload event can only work
around noon, because otherwise the event is not generated. Informing the
developer about this can be enough to provide a clue about the failure, and
is preferable to stopping all network communication until the next backup
network event is generated.

3.4 Debugging at Different Levels of Granularity

We can record and replay network schedules in the deployed system. We use
this mechanism to refining our recorded data during each replay. The kind of
additionally recorded data includes network event contents, call stacks, method
arguments, and return values. Developers can use this information to associate
events at the network communication level to method activations at code level.

3.4.1 Connecting Network Events to Code

To debug asynchronously communicating applications developers need to move
between the different levels of abstraction, from communicating servers to mes-
sage sends between objects. They have to map the observed network behavior to

30

3.4 Debugging at Different Levels of Granularity

the original intentions expressed in the code. In our approach we support this
mapping with a tool that integrates a network events with call trees.

One conventional approach to debugging distributed, communicating appli-
cations is to try and determine likely locations of defects in the code from the
communication log, and the use a sequential debugger to debug each server
process independently to figure out which code segment is responsible for a
given unanticipated or erroneous network event. However, with Web and other
applications increasingly utilizing asynchronous communication and event loops,
mapping from code locations to network events and back is becoming harder.
While outgoing requests can still be identified because they use only a small
number of framework calls for network communication, incoming communica-
tion is increasingly handled by event callbacks. For this style of communication,
a debuggers’ stack view will only reach back as far as the last receive, with no
possibility to look back further to inspect previous communication events.

We propose tool support to provide an integrated view of both network
communication and call tree, synchronized to move freely from code to network
events and back. We argued that debugging across a network of servers is similar
to debugging across threads or communicating objects. It appears natural to
merge the communication trees and view network communication as nested
calls that originate from and return to code. A debugging tool for distributed
debugging may generally support multiple, synchronized call trees, each call
tree may show network events or communicating objects.

Using our approach, developers are free to move through the recorded execu-
tion both on the network level or on the code level. The distributed debugger
provides two synchronized views, one for the global view on the network event
log, and the other for a call tree specific to the currently debugged server. De-
velopers may interact with the network view and, for example through clicking
on an event, a re-execution is triggered. This re-execution adds a query to the
schedule that logs all method activations on the server receiving the event, in case
of a request, or sending the event, in case of a response. With that information,
we can build an execution-specific call tree for this server, and highlight the
method activation that was responsible for generating or receiving the network
event. Since we have recorded the full call tree, the developer is now free to move
up and down the call tree to orient himself in the code.

The debugging tool can use the information about sender and receiver for each
event to show the code that corresponds to the event. That means showing the
sender code for outgoing events and the receiver code for incoming events. If the
source code for a particular server is available, the tool can automatically show the
method responsible for each communication event in the call tree. This provides
additional insight to the developers. They can then inspect method arguments

31

3 Replay-driven Fault Navigation

or local values, which will trigger additional re-executions and recordings as
needed, to find out more about how the event data is generated or processed.

We have decided against adding support to show call trees from multiple
servers side by side, because we think the network event view is more suitable to
navigate from one server’s call tree to another. The interfaces between the differ-
ent servers are encoded in the communication data, rather than the arguments
or local variables in the servers’ methods, so we think that presenting multiple
call trees side by side has no additional value.

Inferring Interfaces Across Languages A consequence of using our approach
is the direct connection our debugger can draw between code in different lan-
guages running on different servers. Through the network events, we can infer
interfaces between those different languages. Those interfaces are implicitly de-
fined, in most rest applications, or have more explicit definitions only in another
language, for example in corba, soap, or other kinds of middleware.

Without such explicit definitions so-called rest interfaces rarely follow a
specific pattern for their communication. Oftentimes, the wire encoding of choice
is json, because it is easy to use in the browser and parser implementations
exist for most languages. However, json as a simple key-value format for data
transfer offers no default interface definition language, and various services3

offer no more than textual descriptions and examples for their rest apis. Such
descriptions are hard to verify against an implementation.

The more immediate issue with informal descriptions of apis is, however, that
outdated information is difficult to update, as this requires checking the source
code and update the documentation with the informal api description. With our
approach, the interface can be determined without access to the source code,
by reviewing recorded message contents for valid communication. If there is
a communication error somewhere in the log, and it is suspected to be due to
improper usage of the api, the event’s message contents need only be compared
against a log of a working communication, to test this hypothesis.

Once such an error is discovered, our approach offers the direct connection
from the problematic events to the source code where the events are gener-
ated and received. Thus, developers can test their hypothesis and move to the
appropriate piece of code to fix a potential problem.

3 Github API v3: http://developer.github.com/v3/
Twitter REST API: https://dev.twitter.com/docs/api
accessed July 25, 2012

32

http://developer.github.com/v3/
https://dev.twitter.com/docs/api

4 Implementation

We evaluated our approach in a prototype for distributed applications using
http to communicate, implemented in Squeak/Smalltalk [21]. In this chapter,
we explain how we hooked into the entry and exit points for network communi-
cation, for which we used ContextS [20], an implementation of context-oriented
programming (cop) for Squeak/Smalltalk. We already mentioned that we built
on earlier work about online analysis of runtime behavior, implemented in the
Path Tools suite, and we have based our debugging tool and visualization on
the Path Tools suite. Figure 4.1 shows how our protoypes’ components inter-
act. Applications are instrumented with ContextS to include a logging and a
scheduler layer. The logging creates trace data that is used by our query engine
to display the network communication patterns with the Path Tools and pro-
vide any recorded call tree data. When the developer chooses a schedule for
re-execution, queries are attached to the schedule events, the prepared schedule
is sent to the scheduler, and the application is re-executed. The scheduler shapes
the communication during re-execution to match the schedule and records any
additional information using the same mechanism as the log writer. The resulting
trace data is again sent to the query engine, which passes the newly recorded
information to the Path Tools for the developer to inspect.

Figure 4.1: Interactions in the Prototype

33

4 Implementation

Figure 4.2: Communication Schedule Overview

4.1 Tracing Communication Patterns

One way to implement the logging of logical communication schedules is tracing
the appropriate code executions in the system. For our application, we identified
the methods in a Squeak image where http requests are received and responses
are generated. Our example application used, besides the standard library http

communication, the KomHttpServer for receiving requests.
Tracing communication at different levels of granularity was vital to verify our

approach in a prototype. We chose ContextS so we could easily add various layers
with different logging mechanics for experimentation. Additionally, ContextS
layers are easy to manage in Monticello, the version control system (vcs) of
Squeak. This allowed us to keep the tracing implementation as a separate project
an thus fairly independent of the traced system.

The combined log includes all events that were recorded between two particu-
lar points in time. These points in time are given by the start and finish of our
diagnosis to reproduce a failure. Re-executing such a diagnosis a number of times
yields different time slices of communication. We present these logs in a diagram
with events as data points and logical time on the x-axis. Because events are data
points, and there may be many events in one schedule, our visualization scales
all events to fit into one window. For many events, this allows developers to get
a high-level overview of the activity throughout the system without swamping
with detail. In Figure 4.2 we see such an overview. While we cannot make out
details, we can see that the service running on localhost port 5001 is active more
consistently than the one below it, running on port 5002. This high-level pattern
communication pattern may already provide some insight as to how the system
works.

Figure 4.3 shows an example of a very small communication schedule. We
show the number of diagnosis runs that yielded this particular schedule (1○), and
how many events there are in this schedule. The color of the box shows whether
there were any errors, such as failed assertions, during the diagnosis’ execution
by turning from green to yellow. The recorded communicating servers (2○) are
presented as IP address labels on the y-axis, with the associated port (if any).
If that address resolves to a host name, it is added in brackets. Lifelines extend
from the endpoints, so events on the right-hand side can be easily associated to
a particular server. Each box represents an event with outgoing events (3○) in

34

4.1 Tracing Communication Patterns

Figure 4.3: Captured Communication Logs

red and incoming events (4○) in blue. The boxes in this visualization represent
a point in time rather than a time span, and their width is simply as wide as
possible to still show all events within the graph. Because each box shows the
first few bytes of captured message data if such has been captured, it is useful to
have boxes as wide as possible.

4.1.1 Distributed Context-oriented Computing

ContextS layers can be dynamically enabled and disabled to extend methods at
runtime. For a distributed system, these layer activations have to be distributed
across the network, so enabling a particular tracing mechanism on one system
carries over to another. This can be achieved in various ways. Because our layers
are implemented for http requests only, we decided to propagate layers in a
custom http header, X-DCOPActiveLayers, an application specific header in
accordance with RFC 2047. This header contains not the names of the currently
active layers, but, as suggested in [34], an ontology describing those layers. This
decouples the layer names on our particular implementation from possible other
implementations and their layer names, by describing what layers do instead.
Those headers will be ignored by conforming implementations that do not use
our tracing package. On systems that do use our tracing, we read the list and
activate the layers globally as required.

Most Web application frameworks employ the inversion-of-control principle,
which does not work well for ContextS. In ContextS, layer activations are valid
for the dynamic scope of the execution, and do not propagate upwards the stack
from the point of activation. This problem with cop in the context of inversion-of-
control frameworks is known and has been treated in recent work [3, 2]. We have
not implemented the mechanism to deal with this problem, so our prototype
is not able to activate layers across the network. Rather, the required layers are
simply active all of the time.

35

4 Implementation

In related work, DejaVu uses a similar mechanism on the transport layer
that involves embedding and, on the remote end, stripping magic bytes in tcp

packages [24] to propagate meta-information for tracing.

4.1.2 Tracer Entry Points

Tracing http requests with ContextS entails finding and layering methods in
frameworks and standard library that create and receive http requests. In our
example, using the Squeak standard library and the KomHttpServer framework,
this included layering only 3 methods.

Extending the implementation to work for other Squeak Web servers or other
application layer frameworks such as relational database adapters is trivially
possible. The actually captured data only includes the local logical timestamp, as
well as the sender and receiver of the message.

4.1.3 Trace Format

To actually implement our approach for different runtimes and debug across lan-
guages, an interchangeable trace format is necessary. We have not implemented
such a format. Our prototype is Squeak-based, so the interchange format consists
of a Squeak store string, which can be recompiled into a collection of trace events.
Each trace event, here, is an object with a logical timestamp, receiver and sender
IP and port.

An interchangeable trace format is trivial to implement, however. To exchange
logs, we only need a way to transfer collections of event 3-tuples that include
strings and integers which almost any data-interchange format should be able to.
json seems to be a natural choice, both because it is widely used and parsers are
readily available for a variety of languages, and because it is the most common
format in Web development.

4.2 Communication Diffing

As per our design (cf. section 3.2), we regard each communication schedule as a
sequence diagram with only asynchronous message sends. To help developers
find differences in the schedule, we want to automatically differentiate traces
to show areas of high and low variance in the schedule. For N servers, at any
one logical time, there are at most N network events. Comparing different
communication schedules can thus be done by comparing each logical time in
order, similar to how a patch algorithm compares files at different versions.

36

4.2 Communication Diffing

Figure 4.4: A Simple Differential Between 2 Schedules

4.2.1 Difference Format and Visualization

The choice of algorithm for automatic differentiation can have a huge impact
on the usefulness of the result. There are various algorithms to differentiate tree
structures [9]. We treat our communication schedules as call trees with only
asynchronous communication. That means they can be transformed into a linear
form, which makes them suited for the linear differential algorithms used for
file comparison. Of those, we chose the longest common sub-sequence (lcs)
algorithm to create differential schedules.

We can assume that schedules will vary in some events or event-sequences, but
will be equivalent for some length around those variances. lcs dynamically finds
the longest matching sub-sequence between two pieces of data. For comparing
two schedules, we choose one as the base and the other as the change. In Figure 4.4
we show such a differential schedule between the base at the top and the
comparison schedule at the bottom.

The differences between the schedules are marked in red. If we compare the
overall number of events, we can see that both the base schedule at the stop
and the comparison schedule at the bottom have the same number of events.
They are equivalent up to the first red marker, where the comparison schedule
sends out a GET request that does not occur in the base schedule. If we follow
the differential, however, we can see that the schedules are equivalent again for
four more events until the second red marker. At that point, a GET request sent
in the base schedule does not occur in the comparison schedule. Afterward, both
are equivalent up to the end.

4.2.2 Correlating Variances and Failures

Not all variances will usually contribute to the failure, yet, for large numbers
of runs we may have more variances than common sub-sequences. Simple
red/white differentials are not very helpful in this case, as they do not signifi-

37

4 Implementation

cantly reduce the search space to aid developers in their search for the problem.
Due to this, we weigh variances according to a number of rules, which have been
in described in subsection 3.2.2.

The heuristic probability distribution is mapped onto hue values from zero
to sixty degrees, which corresponds to full red and full yellow, respectively. For
variances that the heuristic recognizes to have no impact on the failure, we assign
the color gray.

To review variances between passing runs, we assign hue values depending
on the amount of variance on each particular network event. The function hue,
below, shows how we map the each event onto a range from 0 to 1. We then map
this range onto a range from 0 to 60, corresponding to the colors from red to
yellow in the hsl color space. We assign alpha values from 0 to 1 accordingly,
which means that events with a hue closer to 60 are hardly visible.

T = set of trace event sets

N(event) = {Ti ∈ T |event ∈ Ti}
P(event) = {Ti ∈ N(event)|Ti is pass}

hue(event) =

(
1−

|N(event)|
|T |

)2
if N(event) = P(event)

12

√∣∣∣0.5− |P(event)|
|N(event)|

∣∣∣ else

The result of this mapping, shown in Figure 4.5, is that high-variance events
from traces that are all passes or all failures show more red, which in return
means that low-variance events have almost no highlighting. In sets of traces that
include both passes and failures, the second branch of the hue function is used to
determine a value that highlights events that occur not in all passes—thus are
not likely to be the cause for passing—but also not only in failures.

4.3 Reordering Access to Network Resources

In our prototype we support re-scheduling network access in the live system. Par-
allel network events inherently cause races, the network transport may transmit
messages at different speeds and the operating system may forward messages to
user space applications as it sees fit. To reorder access to network resources, the
network events have to arrive at the application in order, so network events have
to be re-ordered in a layer between the application and the hardware.

We decided to re-order events in the language, using the same mechanism as
for tracing. We use ContextS to define a scheduler layer between applications and

38

4.3 Reordering Access to Network Resources

Figure 4.5: Hue Mapping For Events

the KomHttpServer framework and the Squeak standard library (cf. Figure 4.1).
This scheduler layer is only active if a schedule was requested.

4.3.1 Constraints on the Networked Systems

Our design is supposed to work for local systems on the developer machine,
in test environments and the live system. However, because we only record
communication partners and the partial ordering of events, in practice, there
are various constraints on those systems. First, hey have to be deterministic in
their communication, which means if we send them messages in the right order,
they return valid responses in right order. This means have to be able to control
the order in which messages are received. However, with systems that employ
load balancing, multi-threading and event loops which are designed to handle
multiple requests in parallel we cannot be sure that for multiple requests the
responses are generated in order. This means we have to control the send order,
too.

4.3.2 Entry Points

According to the design, there are two types of entry points which we need to
control to enable re-scheduling, both for sending and receiving. We only deal
with http requests and, because we use the same context-oriented mechanism
as for the tracer, we only had to create a layer to wrap the same three methods
as for the tracer. Our scheduler layer is always active and the wrapper methods
check whether a schedule was requested. This check simply uses a globally
available singleton object and checks whether it contains a valid schedule. If not,
the scheduler methods do nothing and simply proceed.

39

4 Implementation

4.3.3 Scheduling Execution

Our implementation follows the design shown in Figure 3.3. The framework
we used to implement our example application uses threads to handle multiple
connections, so for simplicity, we have only implemented the threading scheduler
using semaphore queues.

To schedule an execution, the trace that is used as basis for the execution is
copied and transformed into a list of schedulable events. All of these events
contain the identifiers for the original communication partners, the id of the
event and a semaphore in the waiting state. This list is then attached to the
globally accessible singleton object and the first semaphore is signaled. Finally,
the diagnosis script is started to provide the required events.

Receive The KomHttpServer uses a blocking accept call on a socket object to
wait for incoming requests, which the virtual machine (vm) translates into the
accept system call. When that call returns, the operating system socket has data
available. The KomHttpServer framework then spawns a new thread that creates
an HttpRequest object from the received data and passes this into the application.

Before it passes from framework to application code it has to go through our
scheduler. The scheduler uses an atomic operation to find the appropriate event
in the schedule for this request, attach the request object onto it, and return the
event object from the schedule. It then calls wait on the event object’s semaphore.
If the semaphore was already signaled this call returns directly, otherwise this
thread blocks until the semaphore is signaled.

When the wait call to the semaphore eventually returns, the semaphore for
the following event is signaled and the request object is passed back into the
framework, from which it passes on into application level code.

Send Sending of data works similarly. The application manufactures an HttpRe-
sponse object and returns it to the framework. The framework the calls the
writeOn: method with the socket object to serialize the response onto the socket
stream. We wrap this method and use the atomic find, set, and return operation
on the schedule to find the scheduled event corresponding to this response, and
then wait on the semaphore. When semaphore is signaled, we proceed to the
base method which writes the response to the network.

The fact that we have only implemented the semaphore list for our scheduler
means that means it is currently limited by the maximum amount of threads
available to the framework for handling multiple connections. Because each
thread blocks if the event cannot be released directly there may be situations
in which so many threads are blocked that the framework cannot create any

40

4.4 Connecting Network and Object Communication

more threads for incoming requests, at which point the server will deadlock. We
circumvent this problem in our implementation by having the semaphore wait
time out after a configurable amount of time, after which point the re-scheduling
deviates from the desired schedule.

4.3.4 Probable Replay

A goal for a scheduler following our design is to enable consistent replay. Our
design only works for well-behaved clients and stable networks, constraints that
cannot always be guaranteed in a real environment. However, these constraints
may often be met, even if not all the time. A practical re-scheduler may not always
work, but it raises the probability that a specific schedule will be reproduced,
and it will reproduce the schedule if the circumstances permit. If the network
is sufficiently disturbed, either because of misbehaving clients or connection
problems, the scheduler deals with it by deviating from the desired schedule.

As mentioned above, our implementation uses timeouts to make sure that
the distributed system does not lock up, but timeouts include the potential for
releasing events too early and thus deviate from the desired schedule, causing
a re-execution inconsistent with the original trace. Our implementation also
continually checks for disturbances defined in section 3.3.3—unscheduled events,
schedule disruptions by misbehaving clients—and we have implemented config-
uration settings that determine how we deal with them. These settings currently
allow developers to choose to drop unscheduled events, or pass them through
without waiting for a semaphore. Our implementation additionally uses simple
printf logging to communicate to the developers how it is reshaping the network
schedule, i.e. which events have been encountered, which are being waited for,
and which disturbances were encountered and how were they dealt with.

4.4 Connecting Network and Object Communication

Adequate tools are essential for efficient debugging. Previous approaches at
efficient replay for the most part focus on recording and replaying correctly and
efficiently, but use existing debuggers like GDB for interactions with the program
state, and separate tools to review the captured network data. Other approaches,
like Causeway, focus on the tools.

We think that the debugging tool should be integrated, allowing the user
to inspect both object and network communication in one view, as they are in
Causeway. However, efficient replay is required for those tools to be practical, so
a recording and replay mechanism like our scheduler has to be integrated into
the tool.

41

4 Implementation

Figure 4.6: The Path Finder Network Extension

Our prototype extends the call tree view, called Path Finder, which is part of the
Path Tools suite. Our tool, inspired by Causeway, shows network communication
and the call tree for one server in a single window. These views should be
synchronized, so if a user opens a method, the closest network event should
highlighted. Inversely, clicking on a network event should open the call tree on
the method that is closest to the network event. If the network event was sent or
received on the server to which the call tree belongs, it should show the method
responsible for the event.

For this prototype, we have only implemented moving from the network to
the code view, not vice-versa. If a user clicks on a network event, the scheduler is
instructed to record the stack at the time of the network event and the test case
is re-executed. We then search for a method on the stack that is part of our call
tree, and open that method for inspection. In Figure 4.6 we show the result of
clicking on the third network event 1○. In the lower part of the window, the call
tree is expanded to the method which sent the event.

A full implementation should support full synchronization between the two
views. We have also not implemented additional queries of the program state. A
fully implemented tool should support queries of single variable values, method
arguments and other program state in the scheduler, to allow further inspection
of the program state.

42

5 Evaluation

We have presented the example of a flight search and booking system in sec-
tion 2.1. For this system, we presented a possible bug report. In the report, a
client searches for connections and the service returns a list of flights on the
given date, with available seats and pricing. When the client clicks on the link to
make a reservation, the reservation goes through, but possibly at a higher price.

Our flight search interface uses ajax requests to keep prices and available seats
up to date while the client is viewing Web site. However, the inherent problem in
this system is the possibility for data races between price updates, the responses
to the ajax requests of the Web site, and the click on the link to reserve a seat
on a flight. These data races cannot be eliminated in a distributed system, and
thus have to be dealt with. In order for developers to be able to deal with them,
however, they have to understand that these races may occur.

Traditionally, to prevent these kinds of failures, the developers would reason
about possible event orders and their effects on the global state of the distributed
system. That means the developer may use network diagrams and the docu-
mentation of the various services—in this case, the airlines’ flight information
and booking systems—to think of scenarios that may deviate enough from the
default (the price does not change in the, on average, short time between search
and reservation) that data races with undesired results may happen.

In this example, some amount thinking will lead to the recognition of the
data races that incur the discrepancy between the price for the search result
and the reservation price. Some more thinking will lead to the conclusion that a
transactional lock, in effect a reservation with an option to back out without cost,
may not be possible with at least some of the airlines. A possible solution to this
problem may be to inform the client about an intermediate price change before
going through with the reservation.

Given this solution, a developer with knowledge about the implemented
system has to map this high-level description of a data race onto concrete code.
In this example, a reservation request has to check the current price against the
price returned for the search result. The code for the reservation is shown in
Listing 5.1. The system receives a post request to reserve a seat on a particular
flight. It will forward this reservation request to the airline gateway on behalf
of the client. If the reservation is not entirely successful, indicated by a status

43

5 Evaluation

code other than 200, the failure code is forwarded to the Web client, together
with the contents of the airline gateway’s response. To fix the above defect, this
method has to be changed to accept not only the flight id for reservation, but
also the desired price. The request can then be forwarded and if the price is not
the expected, an additional confirmation Web page can be returned instead of
the content of a successful reservation.

1 reserveSeat: flightId
<post: �/flights/%/reserve/?�>

3 | response code data |
data← �id=�, flightId.

5 response← (HTTPSocket httpRequestHandler)
httpRequest: �POST�

7 url: self airlinesUrl, �/reserve�
headers: (�Accept: */*�,

9 String crlf,
�Content-Type: application/x-www-form-urlencoded�,

11 String crlf,
�Content-Length: �, data size,

13 String crlf)
content: data

15 response: [:rr | "Extract the response code"
code← ((rr copyUpTo: String cr) findTokens: � �)

17 second asNumber].
code ~= 200 ifTrue: [self status: code].

19 ↑ response contents

Listing 5.1: Flight Reservation Request Entry Point

Using our prototype, we argue that these steps can be simplified. The flight
system can be written with the most common case in mind, namely that the
price will usually not change between search and reservation. Deployed in a test
system, the continuous tracing can be enabled during load tests. As such tests
will execute many searches and reservations in parallel, the data races leading
to the above bug will certainly be among the recorded network schedules. In
contrast to a diagnosis script written after a bug report, such network schedules
may not be marked as failing, because the load tests will not include assertions for
all undesired behavior, but only such behavior as the developers have thought of.
That is not a problem, however, because just differencing all schedules recorded
during load testing will yield a diff that can be used to reason about possible
data races. Thus, reviewing the schedule enables developers to review the actual
communication data generated in their system, rather than having to reason
about possible communication patterns.

Differencing all available communication data may still yield a lot of noise.
This can be improved if the load tests are enriched with assertions of expected
behavior, such as status codes, Web page contents like prices, available seats,
and such, as well as assertions about request order. Using these assertions, our

44

5.1 Tracing Overhead

prototype can help developers divide the observed variances in communication
schedules into critical and non-critical variances.

Given any description of an undesired communication pattern, either through
reasoning or using our trace differencing tool, we also help developers implement
solutions to the various problems. In the traditional case, after deciding upon
a fix for the problem—presenting an additional confirmation page if the price
changed, for example—developers need knowledge about the system and the
employed Web framework to know which code represents the entry point to
implement the fix. Using our prototype, this can be simplified. Given network
traces, developers can just click the network event that represents the reservation
request, and our prototype will show the corresponding code in the receiving
system. This will lead them directly to the code in Listing 5.1, even without prior
knowledge about the system.

In the following sections we evaluate aspects of our prototype implementation
corresponding to the goals we set ourselves, namely:

1. We need a reasonably lightweight tracing mechanism
2. Analyzing schedules should enable us to provide hints to developers about

where to start debugging
3. Shaping network access in the running system has to be stable
4. Server events are connected to code locations in our tooling

5.1 Tracing Overhead

Our prototype uses ContextS to implement the tracing, which itself has a very
high overhead. To get an idea how much overhead ContextS imposes just for
method dispatch, we have run a send heavy benchmark, calculating the Fibonacci
number of 26 recursively, both without and with layer on a recent build of the
Squeak CogVM. The CogVM includes a jit compiler with polymorphic send-site
caching, which, after some warm-up, makes its method dispatch performance
comparable to other languages with a just-in-time (jit) compiler, such as Java or
C#. For our benchmark, we ran the unchanged recursive Fibonacci implemen-
tation both unchanged and with a ContextS layer active, as well as the layered
implementation, again both with layer on and off. We ran each benchmark 10

times for 5 seconds each. We recorded how many times per second the Fibonacci
of 26 was calculated and averaged it over the ten runs. In Table 5.1 we show the
results of this benchmark, rounded to 3 significant digits. From these numbers we
can gather that just activating ContextS executing through non-layered methods
introduces a large slowdown with a factor of 62.4. Just having layered method

45

5 Evaluation

without any layer being active produces an insignificant slowdown of only 0.03.
Note also that execution times for layered methods vary more than non-layered
methods.

Benchmark Avg Executions/s σ in percent of avg
No layer active Non-layered 52.2 0.847

Layered 50.9 2.08

1 Layer active Non-layered 0.836 0.335

Layered 0.639 6.18

Table 5.1: ContextS Benchmark

This drastic slowdown seems to preclude any intention of using ContextS for
low-overhead tracing. Note, however, that a recursive Fibonacci is a very send-
heavy benchmark, which escalates the overheads of the ContextS implementation.
For tracing, we need only layer a select few methods (cf. subsection 4.1.2). Addi-
tionally, we argue that most of the time in a Web application is spent waiting for
IO, and not the CPU. Our second benchmark thus consists of running a diagnosis
script for the above reporting example both with and without tracing, also 10

times for 5 seconds each. The results of this can be seen in Table 5.2. We think it is
clear that the tracing overhead is minimal, with the tracing inducing a slowdown
of only 0.01. The variance is comparable, as could be expected because the entry
points were layered for both benchmarks. These performance results show that
our prototype fulfills the requirement for low-overhead tracing, because the
vast amount of time is not spent in method dispatch, but rather waiting for the
network. These benchmarks were run on a local machine connecting through
the loopback device, so in a distributed setup the overhead may be even more
insignificant.

Benchmark Avg Executions/s σ in percent of avg
Normal execution 8.51 3.64

Tracing 8.39 1.36

Table 5.2: Tracing Benchmark

These results may be interesting for implementations of our approach on other
languages. ContextS is one of the slowest available implementations of context-
oriented programming [4]. Given these results, a context-oriented implementation
for other languages should equally have a very small practical overhead.

46

5.2 Case-Study: Reporting System

5.2 Case-Study: Reporting System

To evaluate our approach with another system besides the flight search and
booking example, we have adapted a system that is deployed in industry. The
original system is written in Ruby on Rails and deployed in the intranet of a
large company, with about a hundred users. The system implements a reporting
Web service, which its users query to get current data about other systems within
the company. A user will generally have a few prepared reports that provide
a high-level overview various systems for different countries, industries, and
company sectors. If any of the overview reports are not within expectations, the
user will drill down into the reports to see more detailed listings of the available
data.

The technological challenge in this system are the large amounts of data which
need to be processed as fast as possible to provide the most recent data to its
users. The data is aggregated over various servers throughout the world, and
preprocessed along the way before being imported into the reporting system.
The whole process of updating and reporting takes about 30 minutes. The system
overview is presented in Figure 5.1. The client communicates with the reporting
server through a Web site 1○, where reporting data is represented in html tables
generated by the reporting. The reporting data is transmitted in chunks, so the
summary numbers are transferred first, and the detailed numbers for drill down
are transferred on-demand if the user decides to drill down. The reporting server
obtains the reporting data from one of the databases, called Yin and Yang 2○.
One of the databases will always be the active database from which queries are
served, and the other is used by the importer to provide the most recent data 3○.
This is to ensure that queries are always done on complete data sets. Once an
import is done, a switchover command is sent to the reporting server, which
exchanges the roles of the databases.

This system was deployed and some time later, the developers received a
bug report very similar to our example report. In this report, one of the users
noted that very rarely the sums in the overview will not match the numbers
returned when drilling down into the data. This rare bug was triggered if,
between requesting an overview and a drill down, the data import finished and
the second query was run on different data. The eventual solution in the real
system consisted of a simple message informing users about the updated data.

We have reimplemented the system in Smalltalk, keeping the setup of servers
and their responsibilities and communication the same as in the original, for
evaluation with our prototype.

47

5 Evaluation

Figure 5.1: Reporting System

User Trial Our user trial was done with a Smalltalk programmer on the afore-
mentioned reporting system bug. The different servers contributing to the system
were run on one system for simplicity, and the bug report had already been con-
verted into a diagnosis script executable through our test runner (cf. Listing 5.2).

1 testBugReport001
| details overview totalSum detailsSum |

3 totalSum← detailsSum← nil.
overview← HTTPSocket httpGet: �http://localhost:�,

5 DIODataWarehouse instance portNumber, �/overview/�.
totalSum← overview contents asInteger.

7 (Delay forMilliseconds: 100) wait. "Manager needs some time to click"
details← HTTPSocket httpGet: �http://localhost:�,

9 DIODataWarehouse instance portNumber, �/details/�.
detailsSum← ((details contents findTokens: �, �) collect: #asInteger) sum.

11 self assert: detailsSum = totalSum.

Listing 5.2: Diagnosis Script

The participant did not know the code for the system beforehand, but we have
explained to the purpose and setup before the trial. After explaining the bug
report and that it was transformed into a diagnosis script, the participant started
his debugging session.

The participant knew the Path Tools suite and was able to use our modified
Path Map to run 100 executions of the diagnosis script. Of those only 2 failed,
both with the same schedule. The participant started examining the passes and
the failure. He quickly realized that a minimal passing schedule only includes
3 lifelines. He was able to identify those lifelines as the diagnosis script, the
reporting server, and a data store. He did this by clicking events on each and
examining the source code associated with the events.

He realized also that a failure included 2 more servers and recognized those
as another data store and the data importer by jumping into the code and
comparing with the system overview.

48

5.3 Scheduling Accuracy

The connection from network events to code were used also to determine the
request-response relationships of events. At this point the participant remarked
that being able to add those connections manually would be useful.

The participant then explained that he did not understand the significance of
the colors in the diff traces. In the overall difference most events were highlighted
with a high alpha, but two events were close to full red and had no transparency.
We explained that those colors show variance in the traces and the stronger
highlights should provide good entry points for debugging the problem. The
participants clicked one of the highlights and ended up in the method that
returns the drill down details for the report overview. He realized that this
method returns data from the data store to the client. He realized that the
problem is in concurrent modification of that data and checked that assumption
by establishing request-response relationships in the failure schedule. He noticed
that the drill-down and the data import switchover overlap. At this point we
finished the trial.

Using our tool, the participant was able to find out the communication sched-
ules for a system unknown to him. He was also able to assign endpoint addresses
to servers. Multiple open problems were identified:

1. Our visualization of the differences between schedules is too hard to understand.
Visualization was not the focus of this work, however.

2. While we cannot automatically establish request-response relationships for any
asynchronous communication, developers should be able to connect events
manually when they find out how they are connected. For larger schedules it is
impractical to remember all connections.

3. To understand the concurrent modification problem, we think data flow analysis
may be useful to identify network events which contribute to a particular data
point. In our trial the participant may have found out more quickly how the
report data is modified once he arrived at the method that returns the data.

Overall our approach seemed to be useful, but more tool features and better
visualizations are needed so developers can use the approach on their own. As it
stands now, a tool expert has to be present to explain the intended way the tools
should be used.

5.3 Scheduling Accuracy

Our approach hinges on the accuracy of our IO scheduler to shape traffic in the
live system to match a previously recorded trace.

49

5 Evaluation

The scheduler can only uses events generated in the network, because it is
not recording enough data to replay events from memory. In our examples the
servers were running the full time. Some created events on an independent
schedule, others reacted only to requests. The initial requests at the beginning
of each trace were given by the bug report or user interaction with the Web
frontend. However, this is a serious limitation in systems were not enough events
are generated to re-enact a given schedule, and some claim that this may be the
more common case [17]. We are not aware of any studies to support one view or
the other, but if indeed servers in a distributed system become unavailable often
enough—due to net splits, maintenance, or any other reason—it would render
our re-scheduling approach ineffective.

A possible solution in that case may be to additionally record message contents
as well as communication partners. While this may come at a larger overhead
in both space and execution time, it would enable replay of single servers
independent of the other systems, if, during replay, only the recorded message
contents are used instead of actual live data.

For our scheduler we have implemented a number of settings that can be
tweaked to make successful reproduction of a schedule more probable. First,
unexpected requests may be dropped during replay. Depending on the system,
this may make a re-execution more probable, at the cost of dropping possibly
valid requests in the live system. Another option for those requests is to hold
them until the schedule is finished and release them later, which will increase
the latency of the system. Another setting controls the timeouts for waiting for
an expected event to occur. These timeouts may potentially be too long or too
short for a given schedule, so schedules may sometimes fail to reproduce if they
trigger timeouts. Tweaking those timeouts was sometimes necessary in our trials
for successful replay.

Given those settings, a hybrid approach between our approach and fully
isolated replay from message contents may be preferable. If we record message
contents, they could be used as a better fallback mechanism in these cases
where an expected event does not occur within a specified time frame or where
unscheduled requests require responses that are not part of the schedule. This
may not only increase the robustness of our re-scheduling approach, but also
further minimize disturbance of the live system, because unexpected requests at
least receive a valid (if outdated) response, instead of a manufactured value that
will, in most cases, not be a valid response.

50

5.4 Events to Code Mapping

5.4 Events to Code Mapping

Our prototype offers an overview of the global network events, as well as
a call tree. Upon clicking on a network event, the scheduler re-executes the
communication an logs the first 100 stack entries for each event. We use the Path
Tools mechanism to find methods belonging to a certain project and search from
the top of stack until we find one of those methods or give up.

In practice this works well only for synchronous requests or if responses are
handled in closures connected to the method which sent out the request. In the
KomHttpServer framework, however, request and response objects are created
in the framework and the application handlers are called at a later point. So at
the time the scheduler encounters an event, the application method is not on the
stack and can thus not be automatically connected to the event.

To work around this limitation, we need a way to wrap all application methods
in one-shot wrappers to record their activation. Those activations can then be
associated with either the last incoming request or the next sent response.

51

6 Related Work

Because our approach combines work in various areas of distributed systems de-
bugging, from continuous record and replay, over replay-driven fault navigation,
debugging at different levels of abstraction and full-on distributed debugging,
we have sub-divided our treaty of related work in this chapter into sections for
each of those domains.

6.1 Record and Replay

The need for consistent record and replay to debug certain kinds of distributed
applications is widely accepted. Approaches vary mainly in how much they
record, and subsequently how much of the system they can simulate to eliminate
behavioral disturbance.

Replay with Mocks Mocks are program entities designed to simulate the
behavior of a real entity. In system replay, mocks may be used to stand in
for network nodes. If enough information about the data sent by a particular
node has been recorded, there is no need to re-execute that node during replay.
Assuming the node works deterministically, a mock can return the appropriate
responses.

This approach is advantageous for nodes that are not under debugger control.
On those machines, package races on the network cannot be rescheduled upon
receive and behavior may still vary during replay. Mocks avoid that problem, at
the cost of greater recording overhead at least in space, if not in time, for copying
message contents.

We have opted not to use mocks in this work, but other approaches use mocks
for some or all the nodes during a replay.

Deterministic Replay on the JVM with DejaVu DejaVu [24] is a record and
replay framework for distributed Java applications. It uses modified Java virtual
machines (jvms) to execute java applications and record their thread schedules
as well as network access. Thread and network schedules use implementations
of Lamport Clocks to establish event order.

53

6 Related Work

The level of abstraction for network events in DejaVu is lower than in this
work, recording tcp instead of http events. While this enables replay just as well,
we argue that it is harder for a programmer to review tcp traffic and connect it
to the program domain than it is with http events.

Contrary to this work, DejaVu supports both open and mixed world record
and replay. we note in section 3.3.3 how the same may be accomplished in my
implementation.

Tracing and Simulation with iDNA iDNA [8] is part of Microsoft-developed
framework for instruction-level tracing and replay of applications in user-mode.
The solution includes running instrumented programs atop a runtime called
Nirwana, which provides hooks for iDNA to register points of interest for tracing.
The Nirwana runtime uses dynamic binary translation to break a monitored
process’ instructions into smaller instructions that are then instrumented and
executed on the host. The iDNA tracing component records traces via callbacks
from the Nirwana framework and, for replay, reads trace records and feeds
Nirwana desired instruction pointer and register values for replay. The overhead
is about one order of magnitude, which makes it feasible to run IO-bound
applications in tracing mode all the time, which is also the scenario envisioned
by the authors.

Due to its low level of recording, iDNA supports multi-threaded applications,
as well as applications that generate executable code at runtime, such as jit-
compiled languages, but does not target networked applications specifically.
Similar to the present work, iDNA is aimed at tracing continually on the live
system, but the focus is on single process applications rather than communicating
processes or servers.

Reproducible Failures with ReCrash ReCrash [5] is a framework to observe
program execution in Java and generate test-cases that reproduce observed errors.
Similar to this work, it can be applied to live systems. ReCrash does not try to
preserve enough information to replay an observed failure from the beginning,
but rather just keep enough information around to provide an method entry
point with arguments that trigger the crash.

To do this, ReCrash keeps a n-deep shadow stack during execution with copies
of the receivers and arguments. If a crash occurs the stack is saved. In a second
step, the shadow stack is searched for the first call that reliably reproduces the
exception.

The ability to reproduce crashes using this technique is limited by the size
of the shadow stack, as well as the copy depth of receiver and arguments at

54

6.2 Replay-driven Fault Navigation

each stage. Deeper stack and copying might be more able to reproduce a crash,
but imposes a larger overhead. The authors offer a way out by only enabling
monitoring after a crash occurred for the first time, and only for methods on the
stack at that point. Since in this mode no information has been saved about the
execution, the crash has to occur again, which might take a very long time for
rare exceptions.

For the class of problems that are related to causes that are not on the same
stack, like the concurrent update problem presented in this thesis, ReCrash has
only limited value.

Output-deterministic Replay with liblog The liblog [17] tool for distributed
C/C++ applications uses a libc wrapper library to intercept system calls and
record events such as network communication, file access, and ipc.

The goal, as in this work, is to record sufficient information in the live-system
to replay execution at will for later debugging. The authors decided against
in-situ replay, however, and use a central console to download all logs and
program checkpoints to re-instantiate the program locally. Additionally, they
record enough information to replay each process independently of the others,
which imposes a higher tracing overhead.

Like DejaVu, and unlike this work, liblog records events at a very low level.
Most programs written for the Web, for example, do not use socket program-
ming directly, so the programmer will still have to match the recorded network
communication to the level of abstraction in his code.

6.2 Replay-driven Fault Navigation

Test-driven Fault Navigation with Path Tools The Path Tools [32] are a research
project in Squeak/Smalltalk and the basis for our prototype. Path Tools uses
re-executable entry points, mostly tests, to exercise code paths in a project for
analysis. These entry points need to execute deterministically in order for the
Path Tools’ analysis to work correctly.

In our work we have extended Path Tools and use it for re-execution and
analysis of distributed applications. Because Path Tools currently need deter-
ministic execution paths to work, this work offers an approach to make network
communication deterministic.

6.3 Debugging at Different Levels of Abstraction

55

6 Related Work

Network Analysis and Debugging with Firebug Firebug1 is an open-source
debugger and Web application analysis tool for Firefox2. It offers a JavaScript
debugger with breakpoints and a network pane to review XMLHttpRequest (xhr)
requests made from the JavaScript code of the web-page. Firebug includes the
ability to log network communication and set breakpoints on incoming and
outgoing connections, which enables developers to move from network to source
code, but not the other way around.

Firebug, like traditional debuggers, works synchronously on the code and
network communication of the current Web pages’ JavaScript process, and offers
no integration with other services or debugger instances. Also, while it is possible
to break on network events and move to the source code callback for a given
event, there is no further integration between the two [7].

Message-oriented Debugging with Causeway Causeway[37] is a message-oriented
debugger that tries to unify the network request/response view with the message
send/receive view of the software. The authors’ approach is to trace program
execution as well as network communication partners and message contents,
and present the captured information in a post-mortem debugger. This debugger
synchronizes the network and the stack view so moving in one will update the
other (cf. Figure 6.1), a behavior which has been the main inspiration for how we
show the two levels abstraction in our prototype implementation.

In difference to this work, Causeway is strictly post-mortem. That means it has
to trace all required information, all the time, imposing a very high overhead, a
problem the authors mention themselves.

Figure 6.1: Causeway Message Debugger

1Mozilla Firebug: http://getfirebug.com/
accessed June 20, 2012

2Mozilla Firefox: http://www.mozilla.com/
accessed June 20, 2012

56

http://getfirebug.com/
http://www.mozilla.com/

6.4 Distributed Debugging

6.4 Distributed Debugging

Most debuggers work one thread at a time, and only for one process, and offer
the programmer a way to switch threads while debugging. Most debuggers
allow developers to stop all threads at once, however, this disturb the execution
order and lead to heisenbugs, since uniformly starting and stopping multiple
threads is not possible, even within a single process. This equally applies to
processes that are distributed across a network. However, some runtimes, such as
the jvm or the Common Language Runtime (clr), but also distributed systems
middleware, such as corba, still allow developers to stop and inspect processes
across a network.

Virtual Machine Interfaces on JVM and CLR Both the jvm and the clr offer
debugging facilities to connect symbolic debuggers to remote processes. These
facilities, in case of the jvm using a custom Java Virtual Machine Tools Interface
(jvmti)3 and in case of the clr built on the Component Object Model (com)
standard [38], abstract from the network to offer the same debugging experience
across a network as for local processes. Debugging multiple processes from the
same vm is possible with these approaches. Additionally, both of these vms are
built to support different languages, so debugging across languages is possible,
too. However, we know of no debugging tool for either vm that supports different
languages.

Compared to this work, these debugging interfaces have two shortcomings:
first, to inspect a remote process that process has to be stopped by the debugger.
It is undesirable for a deployed system to stop providing its service because
a debugger is connected to it. Second, these debugging facilities only provide
a view on the program, and do not track network communication between
processes, so it is still difficult to get a global view of the distributed system.

Debugging Distributed Objects with CORBA and SOAP As a logical exten-
sion of object oriented programming into the realm of distributed systems,
middleware layers, such as CORBA [41] and SOAP [40], have evolved. They
allow developers of distributed systems to specify object interfaces for publishing
and accessing distributed services in an interchangeable format. Developers can
program against these interfaces as if the distributed system were running in
a single process, while the middleware takes care of communication. However,
much of the development time complexity hiding provided by middleware is

3
jvm Tool Interface Version 1.0
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html

accessed July 31, 2012

57

http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html

6 Related Work

lost when debugging, because developers cannot step into message sends that
are converted to network communication by the middleware. Recently, effort has
been expended to enable symbolic debuggers to overcome this restriction and
step across servers [27, 22] when debugging on top of such middleware.

Such debuggers for middleware systems, like the middleware systems them-
selves, try to abstract from the network. Approaches at stepping across servers
are extensions to symbolic debuggers that are meant to allow developers to in-
spect objects in distributed system as if they were locally available. In contrast to
this work, these debuggers target systems that are fully under developer control
and can be stopped at will for inspection. Like traditional symbolic debuggers,
they ignore Heisenbugs caused by the debugging process and are not well suited
to debug non-deterministic failures.

58

7 Conclusion

We have presented an approach—Replay-driven Fault Navigation—to debug
distributed applications and a prototype for distributed Web applications commu-
nicating via http requests. Our approach covers continuous logging of network
events, log analysis, communication replay, and connecting events to code loca-
tions.

Lightweight, continuous logging in the deployed system provides insight into
failures that occur infrequently or only in deployment. At the same time the
logger disturbs the execution only minimally. We achieve this first, by logging all
the time, and second, by logging only information strictly necessary for replay.
This way, the execution behavior during logging becomes the normal behavior.
The minimally necessary information is the partial ordering of events and the
communication partners. We have shown that the overhead of this approach is
minimal and justifiable for deployed systems.

Our analysis of communication identifies network patterns that are likely to
contribute to a failure. Communication schedules containing those patterns are
associated to failures. Developers use these associations to choose schedules for
replay and inspection. We associate schedules by differentiating them against
each other and correlating the differences with failed assertions in the executed
code. Developers can also use these associations to decide whether a failure is
likely related to non-determinism in the network communication schedule or
not.

A communication scheduler replays a selected communication schedule in a
live system. The scheduler shapes the exchange of data between the network
and the application. As network events pass through it, the scheduler re-orders
network events to match the selected schedule. Developers can use this to check
whether a failure is caused by non-determinism in network event order. If a
sporadic failure reliably occurs during repeated replays of a failing schedule, it
is likely caused by patterns in the network event order. When developers know
that a particular schedule causes a failure, they can use the scheduler to replay
that schedule and gather additional execution data. This additional recording
changes the runtime behavior of the application. This disturbance influences
non-deterministic aspects of the execution, which, given deterministic servers, is

59

7 Conclusion

the order of network events. The scheduler re-orders those events to match the
selected schedule, thus removing the disturbance.

We use the replay mechanism to connect network events with code locations.
Developers can then move between the network event schedule and the code
of the systems in a distributed application. We achieve this by recording calls
during execution to create an execution trace. We save the stack information
network events which is associated with the methods in the call tree.

With these features we target challenges that are inherent to distributed ap-
plications: non-determinism, shared resource access, and multiple languages.
Non-determinism is intrinsic to unreliable networks, shared resources are re-
quired to persist shared data, and multiple languages are the reality of the Web.
Developers need tools to approach these challenges, and, with our approach, they
can investigate sporadic failures, compare and replay schedules, refine recorded
state, and connect network events to code locations across languages.

Beyond debugging of communication, Replay-driven Fault Navigation allows
developers to gain a larger picture of a distributed application. They can review
communication patterns, and connect those patterns with specific code locations
to understand how communication is performed in the code. Furthermore,
connecting code locations on different servers via network events emphasizes
the implicit programming interfaces between servers.

We have conducted interviews with developers and a trial with one developer
to evaluate our approach. The outcome supports our claim that our tool is useful
to understand and inspect non-deterministic failures in distributed systems.
However, to determine whether it is faster than existing approaches a proper
user study should be conducted.

Our current implementation of Replay-driven Fault Navigation targets asyn-
chronous request-based distributed applications which can be modeled with uml

sequence diagrams. Communication in sequence diagram is assumed to take
no time, and so it is in our approach. In some distributed applications requests
can take a considerable amount of time, however, which means that while such
a request is in transit, a number of other requests may be sent and received.
An example for such applications are those that use streaming or optimistic
protocols, such as Google’s spdy

1, to minimize latency. For our approach to work
with such applications, we have to adjust it and treat the beginning and end of a
request as separate events, instead of the request as a single, atomic event.

Other open questions remain. Our heuristics and visualizations thereof for
differencing network schedules should be expanded and tested in user study. We

1SPDY: An experimental protocol for a faster web
http://www.chromium.org/spdy/spdy-whitepaper

accessed July 20, 2012

60

http://www.chromium.org/spdy/spdy-whitepaper

also need to extend our prototype for distributed systems other than Web appli-
cations to show the generality of our approach. We want to explore integration of
our logging and replay mechanisms into the services of hosting providers. This
would make debugging distributed applications more accessible for developers
that use such platforms. Finally, we think that we could extend our approach to
other kinds of communication non-determinism, such as between processes and
threads.

Despite these open questions, our approach is already usable to debug failures
in distributed systems. We have evaluated on a prototype how developers can
approach failures without prior knowledge of the concrete distributed system.
Compared to traditional debuggers, our approach does not require the system to
stop, it allows debugging on the deployed system, and it allows navigation on
both network and implementation level.

61

Bibliography

[1] Gautam Altekar and Ion Stoica. “ODR: output-deterministic replay for mul-
ticore debugging”. In: Proceedings of the 22nd ACM Symposium on Operating
Systems Principles. ACM, Oct. 2009, pages 193–206.

[2] Malte Appeltauer. “Extending Context-oriented Programming to New
Application Domains: Run-time Adaptation Support for Java”. PhD thesis.
Hasso-Plattner-Institute, Apr. 2012.

[3] Malte Appeltauer and Robert Hirschfeld. “Declarative layer composition in
framework-based environments”. In: Proceedings of the Workshop on Context-
oriented Programming. ACM, June 2012, pages 1–6.

[4] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and
Michael Perscheid. “A Comparison of Context-oriented Programming
Languages”. In: Proceedings of the Workshop on Context-oriented Programming.
ACM, July 2009, pages 1–6. isbn: 9781605585383.

[5] Shay Artzi and Michael D Ernst. “ReCrash : Making Software Failures
Reproducible by Preserving Object States”. In: Proceedings of the European
Conference on Object-Oriented Programming. Springer, July 2008, pages 542–
565.

[6] Melinda-Carol Ballou. Improving Software Quality to Drive Business Agility.
Technical report. IDC, June 2008, pages 1–12.

[7] John J. Barton and Jan Odvarko. “Dynamic and Graphical Web Page
Breakpoints”. In: Proceedings of the 19th international conference on World wide
web. ACM, Apr. 2010, pages 81–90.

[8] Sanjay Bhansali, Wen-ke Chen, Stuart De Jong, Andrew Edwards, Ron
Murray, Milenko Drinic, Darek Mihocka, and Joe Chau. “Framework
for Instruction-level Tracing and Analysis of Program Executions”. In:
Proceedings of the 2nd international conference on Virtual execution environments.
ACM, June 2006, pages 154–163.

[9] Christian H. Bischof, H. Martin Bücker, Paul D. Hovland, Uwe Naumann,
and Jean. Utke, editors. Advances in Automatic Differentiation. First. Springer,
July 2008.

63

Bibliography

[10] Corrado Böhm and Giuseppe Jacopini. “Flow Diagrams, Turing Machines
and Languages with only Two Formation Rules”. In: Communications of the
ACM (May 1966), pages 366–371.

[11] Marc L. Corliss. “Low-overhead Interactive Debugging via Dynamic Instru-
mentation with DISE”. In: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture. Feb. 2005, pages 303–314.

[12] Anne Dinning and Edith Schonberg. An Empirical Comparison of Monitoring
Algorithms for Access Anomaly Detection. First. ACM, Mar. 1990.

[13] Stephane Ducasse, Lucas Renggli, David C Shaffer, Rick Zaccone, and
Michael Davies. Dynamic Web Development with Seaside. First. Square Bracket
Associates, Apr. 2010.

[14] Engine Yard. The state of PaaS: 2012. Technical report. Engine Yard, 2012.

[15] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
First. Prentice Hall, Aug. 2005, pages 1–5.

[16] Jason Gait. “A Debugger for Concurrent Programs”. In: Software: Practice
and Experience (June 1985), pages 539–554.

[17] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. “Replay
Debugging for Distributed Applications”. In: Proceedings of the annual
conference on USENIX’06 Annual Technical Conference. May 2006, page 27.

[18] Jim Gray. “Why Do Computers Stop and What Can Be Done About It?”
In: In Proceedings of 5th Symposium on Reliability in Distributed Software and
Database Systems. IEEE, Jan. 1986, pages 3–12.

[19] Thorsten Grötker, Ulrich Holtmann, Holger Keding, and Markus Wloka.
The Developer’s Guide to Debugging. Second. CreateSpace, Apr. 2012.

[20] Robert Hirschfeld and Pascal Costanza. “An Introduction to Context-
oriented Programming with ContextS”. In: Generative and Transformational
Techniques in Software Engineering (GTTSE) II. July 2008, pages 396–407.

[21] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
“Back to the future: the story of Squeak, a practical Smalltalk written
in itself”. In: Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. 818. ACM, Oct.
1997, pages 318–326.

[22] Christopher G. Kaler, Oliver J. Sharp, Erik B. Christensen, Dale A. Wood-
ford, and Luis Felipe Cabrera. Debugging Distributed Applications. 2007.

64

Bibliography

[23] Derrick Kondo, Bahman Javadi, Paul Malecot, Franck Cappello, and David
P Anderson. “Cost-benefit Analysis of Cloud Computing versus Desk-
top Grids”. In: Proceedings of the 23rd International Parallel and Distributed
Processing Symposium. IEEE, May 2009, pages 1–12.

[24] Ravi Konuru and H. Srinivasan. “Deterministic replay of distributed Java
applications”. In: Proceedings of the 14th International Parallel and Distributed
Processing Symposium. IEEE, May 2000, pages 219–227. isbn: 0-7695-0574-0.
doi: 10.1109/IPDPS.2000.845988.

[25] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed
system”. In: Communications of the ACM (July 1978), pages 558–565.

[26] Friedemann Mattern. “Virtual Time and Global States of Distributed Sys-
tems”. In: Proceedings of the International Workshop on Parallel and Distributed
Algorithms. Oct. 1988, pages 215–226.

[27] Giuliano Mega and Fabio Kon. “Debugging Distributed Object Appli-
cations With the Eclipse Platform”. In: Proceedings of the 2004 OOPSLA
Workshop on Eclipse Technology eXchange. ACM, pages 42–46.

[28] Robert Charles Metzger. Debugging by Thinking - A Multidisciplinary ap-
proach. First. Elsevier Digital Press, Nov. 2003.

[29] Krishna Nadiminti and Rajkumar Buyya. “Distributed Systems and Recent
Innovations: Challenges and Benefits”. In: InfoNet Magazine (Mar. 2006),
pages 1–5.

[30] D Stott Parker, Gerald J Popek, Gerard Rudisin, Allen Stoughton, Bruce J
Walker, Evelyon Walton, Johanna M Chow, David Edwards, Stephen Kiser,
and Charles Kline. “Detection of Mutual Inconsistency in Distributed Sys-
tems”. In: IEEE Transactions on Software Engineering (May 1983), pages 240–
247.

[31] Sérgio Almeida Paulo, Carlos Baquero, and Victor Fonte. “Interval Tree
Clocks”. In: In Proceedings of 12th International Conference on Principles of
Distributed Systems. Springer, Dec. 2008, pages 259–274.

[32] Michael Perscheid, Michael Haupt, and Robert Hirschfeld. “Test-Driven
Fault Navigation for Debugging Reproducible Failures”. In: Journal of the
Japan Society for Software Science and Technology on Computer Software (2012).

[33] Michael Perscheid, Bastian Steinert, Robert Hirschfeld, Felix Geller, and
Michael Haupt. “Immediacy through Interactivity: Online Analysis of Run-
time Behavior”. In: Proceedings of the 17th Working Conference on Reverse
Engineerings. IEEE, Oct. 2010.

65

http://dx.doi.org/10.1109/IPDPS.2000.845988

Bibliography

[34] Tobias Rho, Malte Appeltauer, Stephan Lerche, Armin B. Cremers, and
Robert Hirschfeld. “A Context Management Infrastructure with Language
Integration Support”. In: Proceedings of the Workshop on Context-oriented
Programming. ACM, July 2011, pages 3–8.

[35] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Second. Pearson Higher Education, July 2004.

[36] Yasushi Saito. “Jockey: A user-space library for record-replay debugging”.
In: Proceedings of the 6th International Symposium on Automated Analysis-
driven Debugging. ACM, Sept. 2005, pages 69–76.

[37] Terry Stanley and Tyler Close. Causeway: A message-oriented distributed
debugger. Technical report. HP Laboratories, 2009.

[38] Dennis Strein and Hans Kratz. “Design and Implementation of a high-level
multi- language .NET Debugger”. In: In Proceedings of the 3rd International
Conference on .NET Technologies. May 2005, pages 57–64.

[39] Gregory Tassey. “The Economic Impacts of Inadequate Infrastructure for
Software Testing”. In: National Institute of Standards and Technology, RTI
Project (May 2002).

[40] Aaron E Walsh. UDDI, SOAP, and WSDL: The Web Services Specification
Reference Book. First. Pearson Education, Apr. 2002.

[41] Zhonghua Yang and Keith Duddy. “CORBA: A Platform for Distributed
Object Computing”. In: SIGOPS Operating Systems Review (Oct. 1996),
pages 4–31.

[42] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Second.
Morgan Kaufmann, 2009.

[43] Hubert Zimmermann. “OSI reference model–The ISO model of architecture
for open systems interconnection”. In: IEEE Transactions on Communications
(Apr. 1980), pages 425–432.

66

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst sowie
keine anderen Quellen und Hilfsmittel als die angegebenen benutzt habe.

Potsdam, den 20. August 2015

Tim Felgentreff

67

	Introduction
	Approach
	Outline

	Request-based Distributed Applications
	Motivating Example
	System Description
	Failure Scenarios
	From Bug Report to Failure

	Challenges when Debugging in Distributed Environments
	Observation and Logging
	Understanding and Classifying Observations
	Reproducing Failures
	Connecting Server Events to Code Locations

	Replay-driven Fault Navigation
	Live System Observation
	Logical Communication Schedules
	Continuous Logging
	Mixed Environments

	Communication Analysis
	Differencing between Schedules
	Associating Variations and Assertions

	Replay and Reordering
	Re-ordering Scheduler
	Fault Navigation Over Multiple Runs
	Online Replay

	Debugging at Different Levels of Granularity
	Connecting Network Events to Code

	Implementation
	Tracing Communication Patterns
	Distributed Context-oriented Computing
	Tracer Entry Points
	Trace Format

	Communication Diffing
	Difference Format and Visualization
	Correlating Variances and Failures

	Reordering Access to Network Resources
	Constraints on the Networked Systems
	Entry Points
	Scheduling Execution
	Probable Replay

	Connecting Network and Object Communication

	Evaluation
	Tracing Overhead
	Case-Study: Reporting System
	Scheduling Accuracy
	Events to Code Mapping

	Related Work
	Record and Replay
	Replay-driven Fault Navigation
	Debugging at Different Levels of Abstraction
	Distributed Debugging

	Conclusion

