
Babelsberg/JS
A Browser-Based Implementation of an

Object Constraint Language

Tim Felgentreff1, Alan Borning2,3, Robert Hirschfeld1, Jens Lincke1,
Yoshiki Ohshima3, Bert Freudenberg3, and Robert Krahn4

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
2 University of Washington, Seattle, WA, USA

3 Viewpoints Research Institute, Los Angeles, CA, USA
4 Communications Design Group, SAP Labs, San Francisco, CA, USA

Abstract.

�
�
�
��
��

��
� 	
��
����� 	

��� �

�
��

�����	�����

��

��
��
	 �

���������

�
�
�
�
�
�
�

��
������

�
�
�
�

Constraints provide a useful technique for ensuring that de-
sired properties hold in an application. As a result, they have been
used in a wide range of applications, including graphical layout, sim-
ulation, scheduling, and problem-solving. We describe the design and
implementation of an Object Constraint Programming language, an
object-oriented language that cleanly integrates constraints with the un-
derlying language in a way that respects encapsulation and standard
object-oriented programming techniques, and that runs in browser-based
applications. Prior work on Object Constraint Programming languages
has relied on modifying the underlying Virtual Machine, but that is
not an option for web-based applications, which have become increas-
ingly prominent. In this paper, we present an approach to implement-
ing Object Constraint Programming without Virtual Machine support,
along with an implementation as a JavaScript extension. We demon-
strate the resulting language, Babelsberg/JS, on a number of applications
and provide performance measurements. Programs without constraints
in Babelsberg/JS run at the same speed as pure JavaScript versions,
while programs that do have constraints can still be run efficiently. Our
design and implementation also incorporate incremental re-solving to
support interaction, as well as a cooperating solvers architecture that
allows multiple solvers to work together to solve more difficult problems.

Keywords: Constraints, Object Constraint Programming.

1 Introduction

Constraints are relations among objects that should hold. This could be that
all parts in an electrical circuit simulation obey the laws of physics, that the
rows in a Sudoku include each digit from 0 to 9, or that a streamed video
plays smoothly in the presence of changing CPU and network load. We also
want to support interactive use of constraints, for example, continuously re-
satisfying a set of layout constraints on screen widgets as they are moved with

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 411–436, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

412 T. Felgentreff et al.

the mouse. In addition, it is useful to extend the constraint formalism to allow
soft constraints as well as required ones, where the system should try to satisfy
the soft constraints if possible, but it is not an error if they cannot be satisfied.
For example, we might have a soft constraint for video quality that we are
willing to relax if necessary, given the current network load, or a desired ideal
spacing between two widgets that again can be relaxed if need be. In the work
reported here, we want to support constraints in a clean way in an object-oriented
language running in a lightweight, web-based programming environment.

Fig. 1. Constructing a Constraint-based Wheatstone Bridge Simulation

Figures 1 and 2 are screenshots from our prototype system that illustrate the
kinds of capabilities we want. Both are constructed in the Lively Kernel environ-
ment [1], an entirely web-based programming environment built on JavaScript.

Figure 1 shows a constraint-based simulation of Wheatstone Bridge being
constructed. (A Wheatstone Bridge is used to measure an unknown electrical
resistance by balancing two pairs of resistors so that the electrical potential
between them is 0.) Parts representing batteries, resistors, and meters are copied
from the Lively Kernel parts bin [2] on the right, dropped into the circuit on
the left, and wired together. These parts carry constraints representing Ohm’s
Law, Kirchhoff’s Current Law, and so forth. The system automatically solves
the constraints when the parts are first connected, and re-solves them if the
battery’s supply voltage or a resistance is edited, updating the voltage displayed
by the meter. (See Appendix A for the implementation.)

Figure 2 shows a color chooser from the parts bin that can be used to create
a color palette for a website. Users can specify the desired average hue and
luminance using the sliders, as well as change each color individually using a
color chooser. The system automatically updates the colors and sliders according
to user input — for example, the hue slider adjusts when the user changes the
luminance slider. The system supports incremental re-solving, so that colors

Babelsberg/JS 413

change smoothly when dragging the sliders. Furthermore, the constraints on
hue, luminance, and specific color selection have different priorities. The system
is allowed to make changes to individually selected colors or cause changes to
other colors to keep the average hue and luminance constant, whereas dragging
the sliders forces the system to use the new value. The widget has additional
constraints that luminance and hue of each individual color must be at least 80%
of the average luminance and hue, and that the system cannot set red, green,
and blue values outside the range 0–1.

Fig. 2. Color Palette Chooser with Hue and Luminance Goals

While the capability to graphically construct constraint-based simulations
dates back to Sketchpad [3] and ThingLab [4], in the current work we want to en-
able a true integration of constraints with the host object-oriented programming
language, and further support this in a web-based environment. To accomplish
this, we build on our recent work on Babelsberg [5], a language framework that
supports an integration of constraint satisfaction with objects and their methods.
Babelsberg in turn builds on earlier work on constraint-imperative programming
in Kaleidoscope [6] and Turtle [7]. In Babelsberg, constraints are expressed as
predicates using the underlying object-oriented language. The constraint is that
the predicate evaluates to true, and the system maintains this constraint auto-
matically whenever objects that participate in the constraint change.

Babelsberg improves on related approaches to constraint satisfaction in
object-oriented programs, which use libraries [8,9,10], domain-specific languages
[11,12], or (more recently) functional-reactive programming [13,14] to specify
and solve constraints. These approaches do not need special runtime support,
but require the programmer to call specific application programming interfaces
(apis) or follow certain rules to not accidentally circumvent the constraints.

We first implemented the Babelsberg design as a prototype in Ruby [15], called
Babelsberg/R. This implementation depends on extending the Ruby Virtual
Machine (vm). However, applications written in e.g. JavaScript typically have

414 T. Felgentreff et al.

to work on a variety of client vms included in different Web browsers. This
makes it infeasible to implement Babelsberg in a JavaScript vm. JavaScript
is currently of considerable interest in the industry and research communities.
Thus, an implementation as an extension written entirely in JavaScript enables
us to apply constraint programming to a variety of existing problems, and to
compare it directly with alternative solutions on a variety of platforms. Another
goal for our design is good performance. As with the original Babelsberg/R
implementation, we want the extension to have at most minimal impact on
speed for programs without constraints; and for programs with constraints, we
still want to have good performance for interactive graphical applications, which
generally implies the need to support incremental constraint solvers [16].

In addition to the goal of good performance, a useful Object Constraint Pro-
gramming language requires sufficiently powerful constraint solving capabilities.
In prior work [5], we identified (but had not yet implemented) an important re-
quirement, namely support for cooperating constraint solvers. The motivation is
that it is often infeasible to provide a single constraint solver that works well for
all aspects of a problem; instead, different solvers may be more appropriate than
others for some aspects, and which need to work together to solve the problem.
Our design and implementation in Babelsberg/JS provides this capability, in a
way that supports incremental re-solving of constraints without requiring access
to the vm.

The contributions of this work thus are:

– A design for Object Constraint Programming (ocp) languages that does not
require vm support

– An implementation of cooperating constraint solvers, including techniques
to do so without vm support and that support incremental constraint satis-
faction

– A realization of these in an operational implementation in JavaScript, run-
ning in the Lively Kernel environment, including additional support within
the language extension for writing constraint programs

The rest of this paper is structured as follows. Section 2 describes related
work and the Babelsberg framework on which we build. In Section 3, we de-
scribe the features a language must provide to support Babelsberg without vm
extensions. This design is realized in Babelsberg/JS (Section 3), which also in-
cludes support for cooperating constraint solvers (Section 3.1) and incremental
re-solving (Section 3.2). We then describe the implementation of Babelsberg/JS
in the Lively Kernel environment (Section 4), and the results of performance
evaluation (Section 5). Section 6 describes future work and concludes.

2 Background and Related Work

Programs frequently have some set of constraints that should hold. In a standard
imperative language, the usual approach to dealing with such constraints is to
leave it entirely up to the programmer to ensure that they are satisfied — the

Babelsberg/JS 415

constraints may be implicit in the code and just expressed explicitly in comments
and documentation, or perhaps in the form of machine-checkable assertions.

For some constraints, programmers may write assertions to fail early if the
constraints are unexpectedly not satisfied [17], while other constraints describe
invalid system states that can be automatically corrected. In our color chooser
example, when the user selects a specific color that does not meet the luminance
constraints, the system is allowed to change it. To deal with these kinds of
situations, programmers may write corrective code that is executed at various
times (for example, color adjustments may run while the user is dragging the
luminance slider). This code uses branches and state changing operations to
check and correct invalid state. However, these statements are order dependent,
and the branching code expresses the constraints implicitly. Furthermore, it can
be unclear whether a solution is complete in that it covers all possible cases
or optimal. As argued in our prior work on Babelsberg [5] and elsewhere, it is
usually clearer to express and satisfy constraints explicitly, rather than encoding
them in control flow.

One approach to making the constraints explicit is to use a library that pro-
vides one or more constraint solvers. Numerous solvers, covering a wide range
of type domains (including reals, booleans, and finite sets), are available for im-
perative languages and can be called from imperative code [8,9,10,16]. For more
specialized domains such as user interface layout, some libraries provide separate
domain specific languages (dsls) to express, for example, minimal distances be-
tween graphical objects. Prominent examples here include the Mac OS X layout
specification language [11] or the Squander framework [18]. For our example,
these approaches replace the branching and state changing code with declara-
tive constraints. However, these constraints are expressed in the language of the
library, using solver-specific types and expressions. To interact with the impera-
tive state of the system, the solver must be called explicitly, and the constrained
values must be copied between the solver and runtime data structures whenever
either imperative code or the solver update them. This is error-prone, because
programmers may accidentally circumvent the solvers if they do not call the
solver in all required places. Further, because solvers often operate on a limited
number of domain-specific primitive types, object-oriented abstractions cannot
be used to express constraints.

An alternative approach is to integrate a means to express and maintain
one-way constraints with the language itself. Some languages such as Scratch
[19], LivelyKernel [1], and KScript [13] have built-in support for data flow,
which allows programmers to express unidirectional constraints among objects.
Babelsberg/JS shares with these systems the need to intercept object access and
solve constraints when the system is disturbed.

To support a broader set of constraints, other languages directly integrate
one or more solvers into their execution model. Again, there is a large body of
prior art in this area, including Constraint Logic Programming [20], Constraint
Imperative Programming [6,7], and Object Constraint Programming [5].

416 T. Felgentreff et al.

As illustrated by the color palette chooser example, it can be useful to extend
the concept of constraints to include soft constraints with different priorities as
well as required ones. There are various ways to formalize multiple priorities for
soft constraints, and how to trade off conflicting soft constraints with the same
priority; here we use the formalism described in [21]. In addition to hard and
soft constraints, it is useful to add support for placing a read-only annotation
on a variable in a given constraint. Operationally, a read-only annotation tells
the system that it may not change the value of that variable to satisfy the given
constraint.1 Another useful extension is the addition of stay constraints and edit
constraints [8], which provide important tools for integrating constraints with
a language with state and in supporting interactive constraint systems. Stay
constraints specify that a variable should keep its previous value. Soft stay con-
straints with a very low priority are used to express frame axioms, i.e., the desire
that things remain the same unless there are some other constraints that force
them to change. For example, suppose we are moving one part of a geometric
figure with constraints. Without weak stay constraints to try and keep things
where there used to be, the entire figure might collapse to a single point (still sat-
isfying all its required constraints, but to the surprise of the user). Finally, edit
constraints provide a concise and efficient way to support incremental updates,
for example, moving a constrained object with the mouse. A typical sequence of
actions when moving a part of a constrained figure is to first add edit constraints
on the x and y values of a point being moved, then repeatedly provide new x
and y values given the mouse position (and let these values propagate through
the other constraints), and then finally remove the edit constraint when done
moving.

2.1 Object Constraint Programming and Babelsberg

Object Constraint Programming differs from Constraint Imperative Program-
ming in that it focuses on object-orientation as the main paradigm. It seeks to
integrate declarative constraints in a way that does not compromise the expecta-
tions of imperative object-oriented programmers and that provides a declarative
semantics that is compatible with these expectations.

Babelsberg is a design for a family of Object Constraint Programming lan-
guages. Since the language we present in this paper is an instance of this design,
we summarize its goals in this subsection. These include:

– a syntax and semantics that are a strict superset of and fully compatible
with the base language

– a unified mechanism for abstraction shared between constraints and object
oriented code, so that constraints can re-use object-oriented methods and
respect encapsulation

1 For example, if we have a constraint a+ b = c?, where c has been annotated as read-
only, the system may change a or b or both to satisfy the addition constraint, but not
c. Other constraints might change c, however, which would of course force changes
to a or b. For simplicity, here we have given an intuitive, operational description of
read-only annotations; please see [21] for a formal, declarative semantics.

Babelsberg/JS 417

– performance that is competitive with the base language for standard object-
oriented code without constraints

– support for both required and soft constraints, constraints on object iden-
tity, variables that are read-only to solvers or imperative code, as well as
incremental re-solving for use in interactive applications

– an api for constraint solvers that makes it straightforward to add new solvers
and does not privilege the solvers provided with the implementation, to make
it easy to use different solvers in different programs

2.2 Babelsberg/R

In [5] we describe Babelsberg/R, an implementation of Babelsberg based on a
modified Ruby vm. The modifications are almost all semantic extensions, with
only one minor syntactic extension, plus libraries for constraint satisfaction.
The semantic model is also an extension of Ruby’s, and supports all of the
existing Ruby constructs such as classes, instances, methods, message sends,
blocks (closures), object identity, and the language’s control structures.

All these Ruby constructs are also supported in constraints. However, there
are two important restrictions:

– The expression that defines a constraint should return a boolean, just like
an assertion. The constraint is that the boolean is true.

– Constraints can be placed on the results of message sends, as long as the
execution of these messages does not have side-effects (or those side-effects
are benign, like caching), and repeated execution of the expression produces
the same result, as long as no variables participating in the constraint have
changed (so system calls for example to a random number generator or a file
stream do not qualify)

For example, the constraint in the color chooser that each color should have a
luminance at least 80% of the global targeted average can be expressed concisely
in Babelsberg/R:
1 c o l o r s . each do | c o l o r |
2 always { p a l e t t e . target_luminance ∗ 0 . 8 <= co l o r . luminance () }
3 end

What looks like an assertion on each element in the colors collection is actually
a constraint. Whenever any color or the target palette luminance changes, the
system will automatically adapt to ensure that this constraint is always satis-
fied. This snippet also shows that constraints can be used within imperative
constructs and constrain the values of properties (the target_luminance) as well as
the results of object-oriented message sends (the result of the calculated luminance

of colors).
Given a set of constraint expressions, Babelsberg can choose among multiple

solvers to find a solution to them. The architecture makes it straightforward to
add new solvers, and does not privilege the solvers provided with the language
(they are merely the ones that come with the standard library). However, the

418 T. Felgentreff et al.

programmer has to indicate which solver is available to the runtime, and there
may be constraints that are too difficult for the solvers. Additionally, features
such as incremental solving, read-only variables, soft constraints, and stay con-
straints are only available with some solvers.

Babelsberg/R was implemented by modifying the Ruby vm. It uses two inter-
pretation modes: imperative evaluation mode and constraint construction mode.
The interpreter normally operates in imperative evaluation mode. In the absence
of constraints, this is the standard Ruby vm. However, if the interpreter encoun-
ters a load or store instruction for a variable with a constraint on it, rather
than directly loading or storing into the variable, it calls the appropriate con-
straint solver to retrieve the variable’s value or to solve an equality constraint
between the variable and the new value. When a constraint is being added, the
interpreter switches to constraint construction mode. It continues to evaluate
expressions using message sends, but rather than computing the result, it builds
up a network of primitive constraints that represent the constraint being added,
keeping track of the dependencies in the process.

To support this, the Ruby vm was extended to support constrained variables.
These variables refer to different objects depending on the context they are
used in. One is the normal object-oriented binding used in the host language
execution. The other is a constraint object that can be used by a solver for
constraint construction and solving. Variables become constrained variables only
when they are used in a constraint, minimizing the performance impact for parts
of the program where only normal variables are accessed.

3 Object Constraint Programming without VM Support

In industry, JavaScript has become the de-facto standard for Web program-
ming, and a huge amount of code exists in the language. This fact, along with
JavaScript’s unique design and its execution environment in a Web browser, also
make it of great interest to the research community, motivating work on revising
and adapting useful features of other languages to include in it [22,23].

To provide practical support for ocp in JavaScript, we adapt the Babelsberg
design to not require support from the underlying vm. This enables us to run
Babelsberg/JS in modern browsers and use it in a variety of practical Web
applications.

For Babelsberg/JS, since we do not have access to the vm, we cannot re-
define the operation of load and store instructions to handle variables with
constraints on them. Instead, the unmodified JavaScript vm is used only for im-
perative evaluation mode. To intercept accesses and assignments to constrained
variables, we wrap properties with property accessors that interact correctly with
the constraint solver. To get the value of a constrained variable, the accessor gets
the value for that variable from its solver. For a store, the setter in general calls
the appropriate constraint solver to solve an equality constraint between the
variable and its new value for a store.

For constraint construction mode, we use a custom JavaScript interpreter,
itself written in JavaScript. This custom interpreter is about three orders of

Babelsberg/JS 419

magnitude slower than the underlying one. However, since evaluating code in
constraint construction mode is a much less common activity, and one that
doesn’t occur in inner loops, the performance penalty is not a significant issue.

Generalizing our approach, we have thus identified the following requirements
for implementing the Babelsberg scheme without vm support:
– The host language must support a means to intercept variable lookup, so

names can refer to different objects.
– The vm-based implementation of Babelsberg assumes that the vm provides

access to the program state so solvers can ignore encapsulation and modify
data structures directly. In contrast, here the extension must enable calling
the appropriate api functions to manipulate data structures.

– The host language must provide a means to modify interpretation of a block
of code to implement the constraint construction mode.

The first requirement is only partially supported in JavaScript, namely for
object fields using property accessors. We therefore limit ourselves to constrain-
ing field storage in Babelsberg/JS, but not storage into local variables. (Some
compiled OO languages, for example C#, also support property accessors; and
other dynamic OO languages, such as Python and Smalltalk, support method
wrappers to enable intercepting accessors, again within the limitation of only
constraining field access.) As with the original Babelsberg/R design, it does not
matter whether the fields are constrained directly or whether they are used in
the execution of a method that was constrained to produce a certain result. A
property that is accessed in the execution of a constraint expression is wrapped
with property accessor that intercepts lookup and storage.

Property Accessors for Constrained Objects. When an object has been
used in a constraint, its constrained properties have been replaced with property
accessors. The property getter is a simple wrapper that reads from the solver
variable in the most upstream region in which the field is referenced (cf. 3.1).
Instead of returning the field value of the object, it returns the value of that
variable in the solver data structure. The property setter distinguishes two cases.
If the variable is writable from a solver, an equality constraint for that solver is
created and the updated constraint system is solved, potentially triggering other
solvers. On the other hand, if the variable is not writable (either because it is of
a type that no available solver supports or because it has been marked as read-
only by the programmer), its new value is stored, and all dependent constraints
are recalculated. These dependent constraints have treated the variable as a
constant (because they cannot modify it). To recalculate them, the constraints
are deactivated in the solvers, and the expressions that created them are re-
evaluated in constraint construction mode to create new constraints based on
the new value. (The implementation of edit constraints (Section 3.2) handles the
situation of repeated changes much more efficiently.)

Creating Constraints. As an example of defining constraints, consider an
interactive temperature converter, which maintains the relation between sliders
representing values on the Fahrenheit, Celsius, Rankine, and Kelvin scales.

420 T. Felgentreff et al.

1 var c onve r t e r = {} ,
2 cassowary = new CLSimplexSolver () ;
3 always : { s o l v e r : cassowary
4 c onve r t e r .C ∗ 1 . 8 == conve r t e r .F − 32 &&
5 c onve r t e r .C + 273.15 == conve r t e r .K &&
6 c onve r t e r .F + 459.67 == conve r t e r .R
7 }

In Babelsberg/JS, a source-to-source transformation creates a call to a global
function — always — from an always: expression of this form (this transformation
just provides syntactic sugar – the function can also be called directly with
function object.) Once this function has executed, a change to any one of the
temperature values in the converter object will trigger changes to the other
three values to keep the constraint satisfied through property accessors described
above.

The always function passes the predicate expressing the constraint and infor-
mation about the context into a custom JavaScript interpreter. This interpreter
is used to evaluate expressions in constraint construction mode, which is provided
as part of the Babelsberg/JS library. The custom interpreter creates property
accessors (getters and setters) for the C, F, K, and R fields of the converter object.
The appropriate accessor is then called whenever some other part of the program
uses one of those fields. However, within the constraint expression, accesses to
these fields do not use these accessors, but instead return ConstrainedVariable
objects. Messages are then sent to these objects, and instead of calculating val-
ues, build up networks of primitive constraints that can then be satisfied by a
solver. The always function returns a Constraint object that provides meta-level
access to the asserted relations, using the protocol described for Babelsberg/R
[5].

In this example, the constraints are on the fields of the object. However,
constraints in Babelsberg/JS (as with any instance of the Babelsberg scheme)
can also invoke methods that perform computations. For example, imagine the
converter uses the getCelsius method to return a cached temperature value that
is updated in regular intervals from a Web service:

1 var c onve r t e r = {} ,
2 cassowary = new CLSimplexSolver () ;
3
4 c onve r t e r . g e tCe l s i u s = function () {
5 i f (! c onve r t e r . updater) {
6 updateCe l s ius (c onve r t e r) ; // updateCelsius omitted for brevity
7 c onve r t e r . updater = s e t I n t e r v a l (5000 , function () {
8 updateCe l s ius (c onve r t e r) ;
9 }) ;

10 }
11 return c onve r t e r .C;
12 }
13
14 always : { s o l v e r : cassowary
15 c onve r t e r . g e tCe l s i u s () ∗ 1 . 8 == conve r t e r .F − 32 &&
16 c onve r t e r . g e tCe l s i u s () + 273 .15 == conve r t e r .K &&
17 c onve r t e r .F + 459.67 == conve r t e r .R
18 }

Babelsberg/JS 421

By placing the constraint on the result of sending messages rather than on
fields, Babelsberg respects object encapsulation. The value returned from the
message send in this example is simply a float, but return values can also be
arbitrary objects and computed values. For example, we could constrain the
maximum pressure of a volume of dry air with a fixed density and gas constant,
which would effectively limit the maximum temperature to around 36◦ Celsius.

1 c onve r t e r . p r e s su r e = function () {
2 var gasConstantDryAir = 287 .058 , // J /(kg * K)
3 den s i t y = 1 . 29 3 ; // kg /m ^3
4 return den s i t y ∗ gasConstantDryAir ∗ c onve r t e r .K / 1000 ;
5 }
6

7 always : { s o l v e r : cassowary
8 c onve r t e r . p r e s su r e () <= 115 // kPa
9 }

3.1 Cooperating Constraint Solvers

The temperature converter described above has no graphical representation. Cas-
sowary only works on reals, yet in order to display the temperature scales, we
need to convert the values into strings and update the Web browser’s Docu-
ment Object Model (dom) using the appropriate api. This is best done with
a local propagation solver, which can invoke arbitrary methods to satisfy the
constraints, in this case by calling the api. (The constraints that define the
temperature converter are simple enough that we could have used a local propa-
gation solver for all of them, but this is unsatisfactory for many problems, such
as the Wheatstone bridge example in Figure 1, since local propagation cannot
handle such situations as simultaneous equations or inequalities.)

There is currently no single solver that can efficiently handle all constraints
that arise in a typical application (and it seems unlikely that one can be created).
To address this, we extend the work presented in [5] to include an architecture
for cooperating constraint solvers, allowing a problem to be partitioned among
multiple solvers. For this example, we use two solvers: one for linear arithmetic
on the reals, and one for local propagation constraints.

Our architecture for cooperating solvers partitions constraints into regions
that are connected via read-only variables, implementing the design proposed
in [24]. The result is a very loose coupling among the cooperating solvers. This
approach is in contrast to the more commonly-used Satisfiability Modulo The-
ory (smt) technique for supporting cooperating constraint solvers [25], which
uses inferred equality constraints as the means for the cooperating solvers to
communicate (including the case when neither of the equated variables has a
specific value). Our experience so far indicates that our approach is more suited
to integration with imperative constructs, in which variables do always have
specific values, and lends itself well to support edit constraints for incremental
re-solving. (While we have not yet done so in our implementation, the architec-
ture described in [24] in fact allows hierarchies of cooperating solvers, so that
within a single region, there could be multiple solvers that cooperate by sharing
inferred equality constraints.)

422 T. Felgentreff et al.

In the cooperating solvers architecture, each constraint belongs to exactly
one solver. All constraints that belong to the same solver are in the same region.
While constraints belong to exactly one region, variables may be shared across
regions. This happens if variables occur in multiple constraints that belong to
different regions. These variables must be read-only in all but one of the regions.
Read-only variables are represented in a solver-specific manner, either using
stay constraints for solvers that support them, or through required equality
constraints. To support this, solver libraries should provide a method that makes
a variable read-only for them.

In this architecture, the regions must form an acyclic graph, so that solving
can simply proceed from the upstream to the downstream regions, propagat-
ing variable values. Figure 3 shows an example configuration. Solving proceeds
from the left and each solver propagates values for its variables to downstream
solvers that need them. The downstream solvers can only read, not write to those
variables. This architecture prohibits loops and a system that oscillates without
finding a solution. To create this graph, the system determines an order for the
solvers based on the dependencies between the constraints. The programmer can
explicitly control the position of a solver in this graph, or the libraries can pro-
vide information so the system can create the order without the programmer’s
support. Applications can use multiple instances of the same solver type that are
used one after the other (for example, for a problem that first uses Cassowary
to solve simultaneous linear constraints, then DeltaBlue for local propagation
constraints, then Cassowary again).

Fig. 3. Regions propagating variable values downstream

Once the solver regions are sorted, solving proceeds from the furthest up-
stream region. Each region will determine values for the variables it can write
to, and the downstream regions will adjust to accommodate the new values prop-
agated to their read-only variables from higher level regions. Soft constraints are
solved for just within each region — in keeping with the theory of hard and soft
constraints in the presence of read-only variables [21], if a soft constraint in an
upstream region restricts a variable to a certain value, then a downstream region
must use that value and can in fact not distinguish if this value was determined
by a required or a soft constraint. If constraints in a downstream region cannot
be satisfied due to an upstream soft constraint, we do not backtrack.

Given these additional capabilities, we can now add a graphical representation
to our temperature converter. We want the color of a div element to change when
the temperature is above 30◦ C.

Babelsberg/JS 423

1 var e l = jQuery ("# tooHotWarning ") ;
2
3 always : { s o l v e r : d e l t ab l u e
4 e l . c o l o r . formula ([c onve r t e r . g e tCe l s i u s ()] , function (c e l s i u s) {
5 var c o l o r = c e l s i u s > 30 ? " red " : " blue " ;
6 e l . s e tAt t r i bu t e (" class " , c o l o r) ;
7 return c o l o r ;
8 }) ;
9 }

Note that for the DeltaBlue local propagation solver, we do not provide a predi-
cate (although we could — in that case it would be run to test whether re-solving
is necessary). Instead, local propagation solvers need formulas for all writable
variables that state their dependencies and how to update the variable. In this
case, we want the Celsius value to be used as input for the color, but not vice
versa, so we only provide one formula. The only dependency here is on the return
value of converter.getCelsius(), passed explicitly in line 4. (Note that this could be
omitted Babelsberg/R, because its version of DeltaBlue supports deducing the
dependencies from the formula function — a feature we have not yet implemented
here.) The dependencies are passed as arguments to the formula function, so we
can use them directly to update the dom using the browser’s setAttribute api and
return the new value. These functions, just like the predicates for Cassowary, are
evaluated in constraint construction mode which wraps variables with property
accessors — the function formula is simply a function defined by DeltaBlue.

3.2 Incremental Re-solving for Cooperating Constraint Solvers

Some applications involve repeatedly re-satisfying the same set of constraints
with differing input values. A common such case is an interactive graphical ap-
plication with a constrained figure, in which we move some part of the figure with
the mouse. For such applications, it is important to re-solve the constraints effi-
ciently, and a number of constraint solvers, including DeltaBlue and Cassowary,
support this using edit constraints that allow a new value for a variable to be
repeatedly input to the solver.

The original Babelsberg design did not include support for incremental re-
solving at the language level — it was up to the solver library to provide access
to such functionality. However, to integrate with our cooperating solvers archi-
tecture, Babelsberg/JS does include support for incremental re-solving through
a solver-independent edit function that takes the variables to be edited and re-
turns a callback function. The process that produces new values can use this
callback to input new values into the solvers for the variables to be edited.

The edit function gathers all the constraints in which the passed variables
participate. Only variables that occur solely in solver regions that support edit
constraints can be edited; otherwise an exception is raised. The read-only anno-
tations for variables in the solvers for downstream regions are converted to edit
constraints, reflecting the fact that the upstream regions will be providing new
values for these variables. Finally, the edit function creates a callback function
and returns it. This callback can then be used to feed new values into the solvers.

424 T. Felgentreff et al.

As an example, suppose we wanted to connect the Celsius value of our temper-
ature converter to a graphical slider. We wrap the original onDrag (which updates
the slider’s value) to input the new value into the edit callback as well.

1 var ca l l back = ed i t (converte r , [’C ’]) ;
2 s l i d e r . onDrag = s l i d e r . onDrag . wrap (function (or iginalOnDrag , evt) {
3 originalOnDrag (evt) ;
4 ca l l back ([s l i d e r . va lue]) ;
5 }) ;

Two restrictions apply to the use of incremental re-solving with cooperating
solvers: first, all variables that are edited must be only in regions of solvers that
support edit constraints; and second, while the edit callback is used, no new
constraints can be created. (Edit constraints are just a technique for optimizing
the sequence of repeatedly replacing a constraint that a variable equal a constant
with a new constraint with a new constant. Thus, if the restrictions aren’t met, it
is still possible to express and solve the desired constraints, just not as efficiently.)

4 Implementation in Lively Kernel

We have implemented Babelsberg/JS in the Lively Kernel environment [1]. We
provide pure JavaScript implementations of DeltaBlue and Cassowary as con-
straint solvers and extend the Lively Kernel JavaScript interpreter to evaluate
constraint expressions. The code is not Lively specific – we use the collection
apis and class system of Lively, but this could be trivially changed. However,
when used in the Lively environment, we provide a source transformation that
makes writing constraints in the Object Explorer [2] more convenient.

4.1 Assignment

Assignment to objects that are constrained in Babelsberg/JS is the core concept
that binds the declarative constraints and imperative code together. Whereas in
standard imperative code an assignment writes a value to a memory location,
assignments in Babelsberg add equality constraints on constrained objects and
trigger re-satisfaction. The new equality constraint may be unsatisfiable, in which
case the assignment is not executed and a runtime exception is generated.

As in Babelsberg/R, the Babelsberg/JS runtime informs the developer of a
failed assignment by generating a runtime exception. To support the cooperating
solvers design, assignment in Babelsberg/JS is a 3-step process:

Set Value. If the new value is the same as the old, we simply return. Otherwise,
we convert all read-only constraints on the assigned variable either to required
edit constraints (for solvers that support them) or to equality constraints.

If the assigned value has an external variable, i.e., it is constrained by a solver
that can handle its type (for example a real in Cassowary), the new value is input
into the furthest upstream solver using an equality constraint and this solver is
then called. Afterwards, the equality constraint for assignment is removed. How-
ever, if the solver cannot satisfy its constraints with the new value, an exception
is raised.

Babelsberg/JS 425

Update Downstream Variables. For all external variables except the primary one
(the one in the most upstream solver), the new value is input into the solver. If
any of the solvers fail to satisfy their constraints with the new value, an exception
is generated and all read-only constraints are re-enabled as above.

All remaining constraints are in solvers that cannot handle the type of that
variable. Consequently, its value was treated as a constant in their constraint
expressions. With the new value, these have to be recalculated. The old variable
value is remembered and the new value is stored. These constraints are disabled,
their expressions re-evaluated in constraint construction mode, and then the
constraints are re-enabled. If any constraint in this set fails to run its expression
or cannot be satisfied with the new value, the old value is restored and an
exception is generated.

Update Connected Variables. Finally, we have to update the variables connected
to the assigned variable. To do so, we create the transitive closure of all variables
connected to the assignee through constraints. For all these variables, a new value
has already been created for all solvers that already ran, but their downstream
read-only constraints still have to be updated. These variables have to go through
the first two steps of the assignment process, returning early if their values have
not changed.

At this point, assignment can only fail for variables that are in solvers that
have not run yet. These are only solvers that the primary assignee is not part of.
If any one of these solvers cannot satisfy their constraints with the new value,
we restore the old value, re-satisfy the constraints, and raise an exception. While
this may leave the system in a different state than it was in before assignment
(depending on the implementation of the participating solvers, they may not
deterministically find the same solution to the same set of constraints) the system
will still be in a state that satisfies all previous constraints.

Deferred Assignment of Connected Variables. Babelsberg/R included an opti-
mization to defer copying the values from a solver to the object-oriented variable
location after assignment. Instead of copying the values for all affected variables
immediately, the variable’s values would be copied when they are next used in
imperative code. This optimization cannot be used with our cooperating con-
straint solver architecture. Consider the following contrived example:

1 var obj = {a : 10 , b : 10 , c : true } ;
2 always : { s o l v e r : cassowary
3 obj . a + obj . b== 20
4 }
5 always : { s o l v e r : d e l t ab lu e
6 obj . c . formula ([obj . b] , function (b) {
7 i f (b== 13) throw " unlucky " ;
8 return b < 10 ;
9 })

10 }
11 obj . a = 7 ;

When obj.a changes, Cassowary is called to resatisfy the first constraint. However,
to trigger DeltaBlue to solve the second constraint, the new value for obj.b has

426 T. Felgentreff et al.

to be copied immediately, rather than when obj.b is next read. Otherwise, a
failure to satisfy the second constraint is only encountered sometime later in the
execution and difficult to trace back to the assignment that caused it.

Assigning Mutable Objects. So far we have described how assignment is handled
for atomic objects, such as integers and floats. We have not, in our design,
addressed the case of mutable objects with substructure. Consider the following
midpoint line:

1 var l i n e = { s t a r t : pt (0 , 0) , end : pt (1 , 1) , midpoint = pt (0 , 0) } ;
2 always : { s o l v e r : cassowary
3 var c en t e r = l i n e . s t a r t . g e tPos i t i on () .
4 addPt(l i n e . end . g e tPos i t i on ()) . scaleBy (0 . 5) ;
5 l i n e . midpoint . g e tPos i t i on () . eqPt (c en t e r) ;
6 }
7
8 l i n e . midpoint = pt (1 , 1) ;

There are two ways to look at such an assignment: a) the assignment asserts
equality between midpoint and pt(1, 1) — both mutable objects — not their x

and y parts. So the solver could also modify the parts of the newly assigned
point to satisfy the constraint. This seems counter-intuitive, so presumably the
right-hand side of an assignment should be read-only to the solver. On the other
hand, there are use-cases for constraints for example in input rectification [26],
where programmers may expect the system to fix the assigned object, rather
than reject the assignment.

For now, we consider the behavior in this case to be implementation defined.
Babelsberg/JS marks the assigned objects’ parts with strong stay constraints.
This means that, as long as other constraints allow, the solver will not change
the new position for the midpoint. The design of a general solution is subject of
further research.

Changing the Type of Variables. Most solvers only provide support for a
limited number of type domains (such as reals or booleans). When variables
are used in constraints, their current values determine how they are handled
by the solvers. Changing the type of a variable, although possible in a dynamic
language, is a relatively uncommon operation, so slow performance is acceptable.
When it does occur, the variable is removed from all solvers, all its constraints are
disabled, and its constraint expressions are re-executed in constraint construction
mode, thus creating new solver-specific representations.

4.2 Constraint Construction

When a programmer writes a function that contains a constraint expression,
this expression is evaluated using our JavaScript ConstraintInterpreter. Popular
JavaScript vms2 (Apple Safari’s SquirrelFish3, Google Chrome’s V84, Mozilla
2 http://www.w3schools.com/browsers/browsers_stats.asp
3 http://trac.webkit.org/wiki/SquirrelFish
4 https://code.google.com/p/v8/

http://www.w3schools.com/browsers/browsers_stats.asp
http://trac.webkit.org/wiki/SquirrelFish
https://code.google.com/p/v8/

Babelsberg/JS 427

Firefox’s SpiderMonkey [27], or Microsoft’s Chakra5) do not provide direct ac-
cess to the native interpreter or execution context of the caller, so our interpreter
cannot look up names used in the constraint expression in the caller’s environ-
ment. Instead, those names have to be passed explicitly.

Babelsberg/JS provides a source-to-source transformation based on UglifyJS 6,
which collects names from the context and modifies the source code to pass those
names into the constraint expression. This source transformation is enabled au-
tomatically when programmers use Babelsberg/JS in the Lively Kernel’s Ob-
ject Editor. For other JavaScript code, they have to provide a context object
explicitly.7

Given a context, a function, and a solver, the ConstraintInterpreter executes
the expressions in the function to create the constraint. The ConstraintInter-
preter subclasses a JavaScript interpreter, modifying its behavior in three main
aspects:

1. Slot accesses are intercepted. For each slot accessed during the execution of a
constraint expression, property accessors are created that delegate access to
a ConstrainedVariable object. For each slot, only one ConstrainedVariable
is created on first access. ConstrainedVariables manage the communication
with the various solvers and create solver specific representations of the slot
value.

2. Certain unary (! and −) and binary operations (arithmetic, equality, in-
equalities, conjunction) are not interpreted as usual if an operand is a Con-
strainedVariable or an expression involving ConstrainedVariables. Instead,
the constraint object is sent a message to construct a solver-specific expres-
sion representing the operation and that expression is returned. For example,
in Cassowary, the expression a.value <= b.value would return a LinearInequal-
ity object.

3. Functions invoked in the expression are also interpreted in the Constraint-
Interpreter by default. However, the plain JavaScript interpreter is used if
the receiver is a ConstrainedVariable. In that case, the call is executed using
normal JavaScript execution semantics. This is required to avoid creating
constraints on the state of the solvers themselves.

The responsibility of ConstrainedVariables during constraint construction is
to pass calls to the appropriate solver. To that end, a ConstrainedVariable lazily
builds a mapping from solvers to solver-specific representations of its value. Dur-
ing construction, if the programmer has explicitly selected a solver, this solver is
5 http://en.wikipedia.org/wiki/Chakra(JScriptengine)
6 http://lisperator.net/uglifyjs/
7 Note that we cannot use eval to access the outer scope. If we only supported con-

straints that access fields of objects in the scope and do not call user defined func-
tions, we could have rewritten the code and evaluated the constraint expression
using JavaScript’s eval function, which has access to the enclosing scope. Using a
custom interpreter, however, allows us to easily instrument the execution of most
user-defined functions, so we can use normal object-oriented methods in constraint
expressions.

http://en.wikipedia.org/wiki/Chakra (JScript engine)
http://lisperator.net/uglifyjs/

428 T. Felgentreff et al.

asked to provide a value representation by sending the message constraintVariableFor

with the value as argument. If no solver was provided, the value is sent the
constraintSolver message. Solver libraries may override this message for types that
they can operate on. If the value responds with a solver instance, this solver
becomes the active solver for the currently constructed constraint and is asked
to provide a representation, again by sending constraintVariableFor.

Whenever a new representation is created in this manner, the solvers are
sorted to determine which region the variable belongs to. Only the solver re-
sponsible for this region may write to the variable; as far as all other solvers are
concerned it is read-only.

4.3 Determining Cooperating Solver Regions

The architecture for cooperating constraint solvers requires that each variable
must be read-only in all but one of the regions that it occurs in. Furthermore,
the regions and associated solvers must form an acyclic graph.

In Babelsberg/JS, when a variable appears in a new solver, we gather the
solvers for the variable and sort them into regions. The region information is
stored as a property of a solver instance. This allows, for example, the use of
multiple instances of the same solver in different regions.

The variable is marked read-only for all solvers except the one in the furthest
upstream region, the defining solver. This means that new values are assigned
by calling suggestValue on the defining solver, and that all other solvers are trig-
gered (in descending order of regions) once the defining solver has resatisfied its
constraints, as described in Section 4.1.

4.4 Edit Constraints

Since the original Babelsberg design did not include language-level support for
edit constraints, these were supplied by the solver libraries. In Babelsberg/R,
the meta-level protocol for inspecting constraints was used to support edit con-
straints in Cassowary and DeltaBlue. The programmer called the appropriate
edit method with the objects to be edited and a stream that would provide new
values. The Constraint meta-protocol was used to create edit variables, constrain
them to be equal to the supplied variables, and update them from the stream.

To support cooperating incremental re-solving (cf. Section 3.2), in
Babelsberg/JS there are two changes to this scheme. First, to support edit con-
straints within a single thread, the edit method returns a callback to input new
values into the solvers, rather than taking a stream of values. Second, since
the language design now supports edit constraints explicitly, the solvers have to
provide a specific edit constraint api.

Upon calling the edit method, the following methods are called on the solvers
and the supplied variables, in order:

prepareEdit is called on each solver variable. In this method, variables can pre-
pare themselves for editing. In Cassowary, for example, this would call the

Babelsberg/JS 429

addEditVar method on the solver with the variable as argument. For DeltaBlue,
this creates an EditConstraint on the variable and adds it to the list of con-
straints.

beginEdit is called once for each solver participating in the edit before the
callback is returned. In Cassowary, this initializes the edit constants array
and prepares the solver for fast re-solving when these constants change. In
DeltaBlue, the solver generates an execution plan to solve the constraints
starting with the EditConstraints as input.

Now the callback can be used to input new values into the system and trigger
re-solving. The callback will call resolveArray on each solver with the new values
and update the object’s storage (so other observers and hooks around the values
still work). Because the solver’s execution plan is fixed for the duration of an
edit, we disallow creating new edit callbacks before the current edit has finished.
When new constraints are created, the execution plan may also become invalid,
but we do not enforce invalidating the edit callback in this case.

To finish editing, the callback is simply called without supplying new values.

finishEdit is sent to each solver variable. Cassowary variables do nothing here,
DeltaBlue variables remove their EditConstraints from the solver.

endEdit is called once for each solver to reset the solver state.

Compared to Babelsberg/R, this makes the interface for edit constraints uni-
form across solvers and also allows it to work with cooperating solvers. However,
each solver now has to provide some support for this, so more work is required
to enable the feature.

5 Performance Evaluation

Our design tries to provide reasonable performance for a variety of applications.
To evaluate its performance, we investigated two scenarios: a) how constraint
solving performance compares with using imperative code to satisfy the con-
straints, b) how object-oriented performance is affected by our extension (thus
comparing the use of Babelsberg/JS with calling a constraint satisfaction library
from standard imperative code).

For the first problem, we used a Kaleidoscope example as a benchmark [28].
(The same benchmark was used for Babelsberg/R.) In this example, we simulate
a user interaction in which the user drags a slider to adjust the upper end of the
mercury in a thermometer. The constraints are that the mercury should follow
the mouse if possible, but must not go outside the thermometer, and that the
graphical representation of the thermometer and mercury (using a gray and a
white rectangle) as well as a number displaying the current value, should be
updated.

We compare the performance of a purely imperative solution using branches
and assignments, a constraint version that calls the Cassowary constraint sat-
isfaction library from imperative code, and a version with the same set of con-
straints in Babelsberg/JS (cf. Appendix B). Both of the constraint versions use
edit constraints.

430 T. Felgentreff et al.

Imperative Library Babelsberg/JS
100x 1.47 ± 0.128 24 ± 0.486 109 ± 2.29
1,000x 1.62 ± 0.0922 143 ± 4.26 214 ± 4.89
10,000x 1.86 ± 0.382 1445 ± 270 1311 ± 304

Unconstrained Access Constrained Access
1,000x 3.31 ± 0.289 8.57 ± 1.08
10,000x 20.4 ± 0.694 29.8 ± 1.82
100,000x 189 ± 5.83 241 ± 15.9

All numbers are the average execution time in milliseconds ± the standard
deviation. We ran each set of iterations 10 times on Firefox 27 on a 3.2 Ghz
Intel Core i5. This micro-benchmark show that, in extreme cases, the object-
constraint versions are many hundred times slower than the purely imperative
solution. However, Babelsberg/JS is comparable to the library-based approach.
Using a library has less overhead for few iterations (where creating the con-
straints takes a large portion of the time in Babelsberg/JS). However, in both
cases, by using edit constraints, we can achieve acceptable performance for re-
peatedly solving a set of constraints with varying input values. Considering that
Babelsberg/JS is intended for imperative programmers who want to express con-
straints in some parts of their programs, we expect that most of the time the vm
will not be solving constraints in tight loops, but running mostly imperative code
intermingled with constraint re-satisfaction. Furthermore, we think the benefits
for comprehensibility, code size, and robustness justify the performance impact
in some system parts. The imperative code is more complex because it has to
make all cases explicit using branches, it is hard to tell whether the solution is
optimal or complete, and the constraints are hard to derive from the code.

To test how the purely object-oriented parts of a system are affected if we
pass objects with constraints to them, we measured the overhead of field access
for constrained versus unconstrained fields by repeatedly reading the same 5
properties from an object first without and then with equality constraints on
each variable. These results are comparable to those for Babelsberg/R and show
that the overhead for reading constrained objects in purely imperative parts of
the code is minimal.

In our example applications — the circuit simulation, color palette chooser,
and temperature converter presented above, as well as a simple particle simu-
lation, an available-to-promise function, and a layout example — the overhead
of constraints was much less pronounced and they provided interactive perfor-
mance, often even without using edit constraints.

6 Future Work and Conclusion

We have presented a design for implementing an Object Constraint Programming
language without vm support, which is realized as a JavaScript extension called
Babelsberg/JS. We have also implemented a number of features from the original

Babelsberg/JS 431

ocp design, including unified language constructs for constraint definition and
object-oriented code, automatic maintenance of constraints, integration with the
existing syntax and semantics, an interface to add new solvers and constraint
solver constructs such as read-only variables and incremental re-solving; and
also extended the design to support cooperating constraint solvers. There are a
number of directions for future work.

Usability of Babelsberg/JS. An important area for future work is the evaluation
of the usability of our approach in general applications. We are interested in
the comprehensibility of Babelsberg/JS code, especially to the target group for
this language, i.e., imperative programmers with little prior experience with con-
straint programming. This will also provide opportunity to compare performance
on more practical examples.

Debugging, Explanation, and Solver Selection. It is currently difficult to tell
why a solver may not be able to satisfy a given constraint, why it produced an
unexpected result, or why finding a solution is slow. Our ConstraintInterpreter
should include support for reasoning about the constraint system it builds. Pro-
log (or just a direct backtracking algorithm) may be useful as a “meta-solver”
to automatically find a solver (or set of solvers) for a particular configuration of
constraints.

Other Babelsberg/R features. Babelsberg/R included support for more ocp fea-
tures that we have omitted for now in this work. Specifically, we want to add
support for identity [29], class, and message protocol constraints. Furthermore,
to control when solving is invoked, Babelsberg/R provides multi-assignments to
update multiple values simultaneously before a solver is invoked. Finally, we plan
to add the convenience methods once and assert ... during ... to control the duration
of constraints, although these could be trivially added using the meta-protocol
of Constraint objects.

Babelsberg/JS, compared to the earlier Babelsberg/R implementation, can be
applied more directly to existing problems. It runs unmodified in different Web
browsers, and integrates with the existing imperative language and libraries. The
work reported here is quite recent, and we expect to continue to evolve both the
language and its implementation.

References

1. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The lively kernel A
self-supporting system on a web page. In: Hirschfeld, R., Rose, K. (eds.) S3 2008.
LNCS, vol. 5146, pp. 31–50. Springer, Heidelberg (2008)

2. Lincke, J., Krahn, R., Ingalls, D., Roder, M., Hirschfeld, R.: The Lively PartsBin–
a cloud-based repository for collaborative development of active web content. In:
2012 45th Hawaii International Conference on System Science (HICSS 2012), pp.
693–701. IEEE (2012)

432 T. Felgentreff et al.

3. Sutherland, I.: Sketchpad: A man-machine graphical communication system. In:
Proceedings of the Spring Joint Computer Conference, IFIPS, pp. 329–346 (1963)

4. Borning, A.: The programming language aspects of ThingLab, a constraint-oriented
simulation laboratory. ACM Transactions on Programming Languages and Sys-
tems 3(4), 353–387 (1981)

5. Felgentreff, T., Borning, A., Hirschfeld, R.: Babelsberg: Specifying and solving
constraints on object behavior. Technical Report 81, Hasso-Plattner-Institut, Pots-
dam, Germany (May 2014)

6. Lopez, G., Freeman-Benson, B., Borning, A.: Kaleidoscope: A constraint impera-
tive programming language. In: Constraint Programming. NATO Advanced Science
Institute Series, Series F: Computer and System Sciences, vol. 131, pp. 313–329.
Springer (1994)

7. Grabmüller, M., Hofstedt, P.: Turtle: A constraint imperative programming lan-
guage. In: Research and Development in Intelligent Systems XX, pp. 185–198.
Springer (2004)

8. Badros, G.J., Borning, A., Stuckey, P.J.: The Cassowary linear arithmetic con-
straint solving algorithm. ACM Transactions on Computer-Human Interaction
(TOCHI) 8(4), 267–306 (2001)

9. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

11. Sadun, E.: iOS Auto Layout Demystified. Addison-Wesley (October 2013)
12. Enthought Inc: Enaml 0.6.3 documentation (February 2014)
13. Ohshima, Y., Lunzer, A., Freudenberg, B., Kaehler, T.: KScript and KSWorld:

A time-aware and mostly declarative language and interactive GUI framework.
In: Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, pp. 117–
134. ACM, New York (2013)

14. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield,
A., Krishnamurthi, S.: Flapjax: A programming language for Ajax applications.
ACM SIGPLAN Notices 44(10), 1–20 (2009)

15. Flanagan, D., Matsumoto, Y.: The Ruby Programming Language. O’Reilly (Jan-
uary 2008)

16. Freeman-Benson, B.N., Maloney, J., Borning, A.: An incremental constraint solver.
Communications of the ACM 33(1), 54–63 (1990)

17. Rinard, M., Cadar, C., Nguyen, H.H.: Exploring the acceptability envelope. In:
Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA 2005), pp. 21–30.
ACM (October 2005)

18. Milicevic, A., Rayside, D., Yessenov, K., Jackson, D.: Unifying execution of im-
perative and declarative code. In: 33rd International Conference on Software En-
gineering (ICSE), pp. 511–520 (May 2011)

19. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Communications of the ACM 52(11), 60–67 (2009)

20. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM Principles of Programming Languages Conference (POPL 1987), pp. 111–
119. ACM (January 1987)

Babelsberg/JS 433

21. Borning, A., Freeman-Benson, B., Wilson, M.: Constraint hierarchies. LISP and
Symbolic Computation 5(3), 223–270 (1992)

22. Van Cutsem, T., Miller, M.S.: Proxies: Design principles for robust object-oriented
intercession APIs. ACM Sigplan Notices 45(12), 59–72 (2010)

23. Kang, S., Ryu, S.: Formal specification of a JavaScript module system. In: Pro-
ceedings of the ACM International Conference on Object-Oriented Programming
Systems Languages and Applications, pp. 621–638. ACM (2012)

24. Borning, A.: Architectures for cooperating constraint solvers. Technical Report
VPRI Memo M-2012-003, Viewpoints Research Institute, Glendale, California
(May 2012)

25. Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1, 245–257 (1979)

26. Long, F., Ganesh, V., Carbin, M., Sidiroglou, S., Rinard, M.: Automatic input rec-
tification. In: 2012 34th International Conference on Software Engineering (ICSE),
pp. 80–90. IEEE (2012)

27. Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat, M.R., Ka-
plan, B., Hoare, G., Zbarsky, B., Orendorff, J., et al.: Trace-based just-in-time type
specialization for dynamic languages. ACM Sigplan Notices 44(6), 465–478 (2009)

28. Lopez, G., Freeman-Benson, B., Borning, A.: Kaleidoscope: A constraint impera-
tive programming language. In: Constraint Programming. NATO Advanced Science
Institute Series, Series F: Computer and System Sciences, vol. 131, pp. 313–329.
Springer (1994)

29. Lopez, G., Freeman-Benson, B., Borning, A.: Constraints and object identity. In:
Pareschi, R. (ed.) ECOOP 1994. LNCS, vol. 821, pp. 260–279. Springer, Heidelberg
(1994)

434 T. Felgentreff et al.

A Examples

Circuits. The circuit parts are represented by classes that create constraints
in their initializers. (The context has to be passed because classes are written
in plain JavaScript files in Lively without source transformation.) The code to
connect leads is omitted (it constrains voltages to be equal and the sum of
currents to be 0.0 between leads).

1 Object . s ubc l a s s (’ T w o L e a d e d O b j e c t ’ , {
2 i n i t i a l i z e : function () {
3 this . l ead1 = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
4 this . l ead2 = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
5 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
6 return s e l f . l ead1 . cu r r en t + s e l f . l ead2 . cu r r en t == 0 . 0 ;
7 }) ;
8 } ,
9 }) ;

10 TwoLeadedObject . s ubc l a s s (’ R e s i s t o r ’ , {
11 i n i t i a l i z e : function ($super , r e s i s t a n c e) {
12 $super () ;
13 this . r e s i s t a n c e = r e s i s t a n c e ;
14 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
15 return s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage ==
16 s e l f . l ead2 . cu r r en t ∗ r e s i s t a n c e
17 })
18 } ,
19 }) ;
20 TwoLeadedObject . s ubc l a s s (’ B a t t e r y ’ , {
21 i n i t i a l i z e : function ($super , supplyVol tage) {
22 $super () ;
23 this . supplyVol tage = supplyVol tage ;
24 always({ s o l v e r : cassowary ,
25 ctx : { s e l f : this , supply : this . supplyVol tage }} ,
26 function () {
27 return s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage == supply
28 })
29 } ,
30 }) ;
31 Object . s ubc l a s s (’ G r o u n d ’ , {
32 i n i t i a l i z e : function () {
33 this . l ead = { vo l tage : 0 . 0 , cu r r en t : 0 . 0 } ;
34 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
35 return s e l f . l ead . vo l tage == 0.0 && s e l f . l ead . cu r r en t == 0.0
36 })
37 } ,
38 }) ;
39 TwoLeadedObject . s ubc l a s s (’ Wire ’ , {
40 i n i t i a l i z e : function ($super) {
41 $super () ;
42 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
43 return s e l f . l ead1 . vo l tage == s e l f . l ead2 . vo l tage
44 })
45 } ,
46 }) ;
47 TwoLeadedObject . s ubc l a s s (’ V o l t m e t e r ’ , {
48 i n i t i a l i z e : function ($super) {
49 $super () ;
50 this . read ingVoltage = 0 . 0 ;
51 always({ s o l v e r : cassowary , ctx : { s e l f : this }} , function () {
52 return s e l f . l ead1 . cu r r en t == 0.0 &&
53 s e l f . l ead2 . vo l tage − s e l f . l ead1 . vo l tage == s e l f . read ingVol tage
54 })
55 } ,
56 }) ;

Babelsberg/JS 435

B Benchmarks

For comparing purely imperative to purely constraint-oriented performance we
started with the following imperative version.

1 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
2 mouse . locat ion_y = i
3 var old = mercury . top
4 mercury . top = mouse . locat ion_y
5 i f (mercury . top > thermometer . top)
6 mercury . top = thermometer . top
7 i f (old < mercury . top) // move gray rect u p w a r d s (d r a w s over the w h i t e)
8 gray . top = mercury . top
9 else // move w h i t e rect d o w n w a r d s (d ra w s over the gray)

10 white . bottom = mercury . top
11 d i sp l ay . number = mercury . top
12 }

In the constraint library and Babelsberg/JS versions, we specify the same
constraints and use an edit constraint in the same manner, once through the
Cassowary api and once in the syntax of Babelsberg/JS. Given below is the
Babelsberg/JS version. (The solver argument is omitted for brevity.)

1 always(function () { return d i sp l ay . number ==mercury . top }) ;
2 always(function () { return white . top == thermometer . top }) ;
3 always(function () { return white . bottom==mercury . top }) ;
4 always(function () { return gray . top ==mercury . top }) ;
5 always(function () { return gray . bottom==mercury . bottom }) ;
6 always(function () { return mercury . top <= thermometer . top }) ;
7 always(function () { return mercury . bottom== thermometer . bottom }) ;
8 always({ p r i o r i t y : " s t r o n g " } , function () {
9 return mercury . top ==mouse . locat ion_y

10 }) ;
11
12 var cb = ed i t (ctx . mouse , [" l o c a t i o n _ y "]) ;
13 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
14 cb (i) ;
15 }

To compare accessor performance with and without constraints, we measured
the following two loops individually:

1 var o = { get a () {return 0} , get b () {return 0} , get c () {return 0}} ,
2 oc = {a : 0 , b : 0 , c : 0} ;
3 always({ s o l v e r : cassowary , ctx : {oc : oc }} , function () {
4 return oc . a==0 && oc . b==0 && oc . c ==0
5 }) ;
6
7 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
8 sum = o . a + o . b + o . c ;
9 }

10 f o r (var i = 0 ; i < this . I t e r a t i o n s ; i++) {
11 sum = oc . a + oc . b + oc . c ;
12 }

436 T. Felgentreff et al.

C Artifact Description

Authors of the Artifact. Design and documentation: Tim Felgentreff, Alan
Borning, Robert Hirschfeld, Jens Lincke, Yoshiki Ohshima, Bert Freudenberg,
Robert Krahn. Core developer: Tim Felgentreff.

Summary. The artifact shows Babelsberg/JS, an implementation of the
Babelsberg design for object-constraint programming in the Lively Kernel. It
includes an installation of the Lively Kernel environment and a number of ex-
ample applications, some of which are mentioned in the paper. A screencast
shows how the examples can be accessed. The provided package is designed to
support repeatability of the experiments of the paper: in particular, it allows
users to try and modify the example applications from the paper, as well as to
run the benchmarks.

Babelsberg/JS uses a modified JavaScript interpreter to transform constraint
expressions into constraints that are handed to the Cassowary and DeltaBlue
constraint solver libraries. The full source code is included in the Lively Kernel
environment, and instructions for exploring it are included.

Content. The artifact package includes:

– a Babelsberg/JS installation in a local Lively Kernel environment;
– the Chromium browser already open on a Lively Kernel world;
– a screencast that shows how to interact with the examples.

We provide a VirtualBox disk image for testing Babelsberg/JS. The image
contains a stripped down installation of Ubuntu 13.10 LTS set up to launch
Chromium directly with the screencast and the Lively Kernel page already
open. Through port forwarding the environment is also accessible from the host:
http://localhost:9001/users/timfelgentreff/ecoop_artifact.html.
Note that to access the latter, we recommend a WebKit-based browser (Safari,
Chrome, or their derivatives) or a recent version of Firefox (29 at the time of
this writing).

Getting the Artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink.

Tested Platforms. The artifact is known to work on Oracle VirtualBox ver-
sion 4 (https://www.virtualbox.org/) with at least 512 MB RAM.

License. BSD-3-Clause (http://opensource.org/licenses/BSD-3-Clause)
for Babelsberg/JS, MIT (http://opensource.org/licenses/MIT) for the
Lively Kernel environment

MD5 Sum of the Artifact. 57324cb58f7a517ab1abd1088bbd9d0f

Size of the Artifact. 810 MB

http://localhost:9001/users/timfelgentreff/ecoop_artifact.html
https://www.virtualbox.org/
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/MIT

	Babelsberg/JS
	1 Introduction
	2 Background and Related Work
	2.1 Object Constraint Programming and Babelsberg
	2.2 Babelsberg/R

	3 Object Constraint Programming without VM Support
	3.1 Cooperating Constraint Solvers
	3.2 Incremental Re-solving for Cooperating Constraint Solvers

	4 Implementation in Lively Kernel
	4.1 Assignment
	4.2 Constraint Construction
	4.3 Determining Cooperating Solver Regions
	4.4 Edit Constraints

	5 Performance Evaluation
	6 Future Work and Conclusion
	References
	A Examples
	B Benchmarks
	C Artifact Description

