
Lively Groups: Shared Behavior in a World
of Objects without Classes or Prototypes

Tim Felgentreff Jens Lincke
Robert Hirschfeld

Hasso Plattner Institute,
University of Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

Lauritz Thamsen

Technische Universität Berlin, Germany

lauritz.thamsen@tu-berlin.de

Abstract
Development environments which aim to provide short feed-
back loops to developers must strike a balance between imme-
diacy and the ability to abstract and reuse behavioral modules.
The Lively Kernel, a self-supporting, browser-based environ-
ment for explorative development supports standard object-
oriented programming with classes or prototypes, but also a
more immediate, object-centric approach for modifying and
programming visible objects directly. This allows users to
quickly create graphical prototypes with concrete objects.

However, when developing with the object-centric ap-
proach, sharing behavior between similar objects becomes
cumbersome. Developers must choose to either abstract be-
havior into classes, scatter code across collaborating objects,
or to manually copy code between multiple objects. That
is, they must choose between less concrete development, re-
duced maintainability, or code duplication.

In this paper, we propose Lively Groups, an extension to
the object-centric development tools of Lively to work on
multiple concrete objects. With Lively Groups, developers
may dynamically organize live objects that share behavior
using tags. They can then modify and program such groups
as if they were single objects. Our approach scales the Lively
Kernel’s explorative development approach from one to many
objects, while preserving the maintainability of abstractions
and the immediacy of concrete objects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPW’15, October 25-30, 2015, Pittsburgh, PA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3905-6/15/10. . . $15.00.
http://dx.doi.org/10.1145/2846656.2846659

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Programming Environments—Interactive environ-
ments; D.3.3 [Programming Languages]: Language Con-
structs and Features—Classes and objects

Keywords Web Applications, Interactive Systems, Ex-
ploratory Development, Lively Kernel

1. Introduction
A common goal of development environments is to allevi-
ate development by providing feedback early. Such feedback
mechanisms range from syntax checking and automatic test
execution, to integration of the development environment and
applications into a single runtime. Such live programming en-
vironments allow developers to experiment in and interact
with the system while they are developing. Notable environ-
ments include Self [20], Squeak/Smalltalk [7], Lisp [18], and
the Lively Kernel [6, 8], which provide varying degrees of
support for immediately seeing ones actions and for develop-
ing the system from within itself.

The Lively Kernel is a collaborative web-based devel-
opment environment. Lively’s development tools allow pro-
grammers to change applications from within the same Web
page and immediately see the results. Developers can either
work on abstract behavior and classes or on concrete objects.
Both approaches are live in the web page, but working on
abstract behavior requires cognitive effort to map the ab-
stractions to the concrete, visible objects and to makes it
more difficult to explore while using the system. In contrast,
the direct interaction with objects allows short feedback cy-
cles [12], but currently only works one object at a time. It is,
however, more suited to introduce inexperienced developers
to programming interactive applications on the Web, espe-
cially such applications where reliability and correctness are
subject to best-effort rather than strict requirements.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

FPW’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3905-6/15/10...$15.00
http://dx.doi.org/10.1145/2846656.2846659

15

To implement behavior common to multiple objects, de-
velopers in Lively Kernel have three choices: either, abstract
common functionality into classes that define shared behav-
ior these objects, scatter code across collaborating objects,
or manually copy code between objects. The first option re-
quires mental effort to find the right decomposition [19], the
second option breaks encapsulation [17], while the third re-
duces maintainability [11].

To overcome this challenge, but keep the benefits of imme-
diate, object-centric development, we propose an extension of
Lively’s tools. Our extension is based around tagging objects
to work on groups of objects as if they are one. Developers
can tag objects by clicking their visual representations, by
selecting nodes from the scene-graph, or by evaluating pro-
gram queries. Tags are added as necessary when developers
want to modify or add behavior to a group of objects, kept
as long as such grouping seems useful, and removed when
objects are no longer seen in the same context.

Our approach is motivated by physical construction,
where similar parts are manufactured with common prop-
erties and maybe from a common template, but each part
is self-contained and can, if needed, evolve independently.
Thus, our approach manages shared behavior without dic-
tating the program decomposition, while maintaining the
immediacy of live objects. It provides an alternative to shar-
ing behavior between multiple objects, without reverting
to classes or common prototypes. We think the tooling we
present here could be done for class-based or prototypical
languages. However, we think that our tooling in conjunction
with a flexible and immediate mechanism for directly work-
ing on multiple objects in a group, having objects shared
across different groups for different contexts, and also for
removing them again without having to change any code
can be a boost to productivity. When a number of objects
share a class, and we want to add specific behavior to just
one of those objects, should we have to create a subclass?
What if we are not sure the specific behavior will really stay?
The cognitive overhead of adding a subclass just for one
object, which may be removed again immediately inhibits
experimentation and explorative development. We feel that
the mental hurdle to adding or removing an object to or from
a group is much less than what it may be when we consider
classes or prototypes for sharing behavior.

Thus, the contributions of our work are:

• We present a lightweight approach to share behavior
based on tagging that does not require committing to a spe-
cific decomposition, and that allows objects to enter and
leave groups as needed. We explore our approach as an
alternative way of sharing behavior using groups, where

groups do not represent a meta-level object (like classes
or prototypes), but are merely tags on an object that can
be easily added or removed without immediately affecting
the concrete behavior of the objects. This is done by go-
ing against the common wisdom of not copying code, but
instead duplicating actions and behavior between objects
in a group.

• We present tooling to visually and programmatically se-
lect and group live objects for development in a specific
context, and which makes code that is duplicated between
objects in a group manageable. Our tools are created with
inexperienced developers in mind, and are meant to sup-
port the kind of small, interactive applications that are
common on the Web today, and for which best-effort com-
puting is sufficient.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a short overview of the Lively Kernel environ-
ment, demonstrates its object-centric development approach
with an example, and identifies challenges that arise when
concrete objects share behavior. Section 3 introduces our ap-
proach to sharing behavior between groups of objects, while
Section 4 describes our implementation in Lively. Section 5
identifies current limitations and proposes future work. Sec-
tion 6 presents related work, while Section 7 concludes this
paper.

2. Object-centric Development: The Lively
Kernel

The Lively Kernel allows browser-based, object-centric devel-
opment of Web applications, including direct manipulation,
object specific behavior and object serialization. To exem-
plify this object-centric development approach, we present a
game built entirely with objects.

2.1 The Lively Kernel

Lively’s main characteristics include the integration of
design-time and runtime, object-centric development tools,
the implementation of the Morphic User Interface Construc-
tion Environment [15], and a serialization mechanism to
store objects persistently. It further supplies a module sys-
tem that includes classes with single inheritance, traits and
context-oriented layers [13]. The Kernel itself and applica-
tions are based on these modules, however, developers can
create new applications as, for example, development tools,
by composing and editing concrete objects without creating
modules. As first explored in the Self programming language
and environment [21], this directness and livelyness shortens
the development cycle [20].

16

Figure 1. Lively’s Object Editor modifies a test runner built from Parts.

The Morphic architecture allows programmers to directly
manipulate and compose Morphs. It provides handles for
basic graphic modification as resizing, repositioning, and
rotating Morphs, but also ways to add them as children to
other Morphs. Developers can add object-specific behavior
to Morphs and try out changes to objects with immediate
feedback. During development, the edited object provides a
concrete context for the code. Lively’s object-centric code
editor is called Object Editor, shown in Figure 1. It shows all
scripts of a certain object and allows developers to add and
alter scripts. It enables developers to experiment with these
scripts, as all statements that do not depend on parameters or
temporaries can be evaluated directly on the editor’s target
object. Finally, Lively’s object serialization enables a Web-
based object repository [14], called Parts Bin, into which
developers publish their Morphic creations. Such published
Parts are available to other developers, effectively making the
Parts Bin a library of visual components that developers can
use and reuse.

2.2 Object-centric Development by Example

Our game, shown in Figure 2 and developed entirely with
objects, features a two-dimensional map where a player
character 1© and several non-player characters (npcs) can
move about. It supports terrains and obstacles, some of
which—like water 2© or trees 3©—are impassable. The goal
of the game is to talk to all npcs on the map 4© and defeat
them in debates by choosing the best insults from multiple-
choice menus and, thereby, bringing the morale meter 5© of
the opponent down to zero.

Each feature of the game is implemented on basic Morphs
in one of three ways: functionality that is required once, be-
longs to one object. If functionality is required on various
different Morphs, however, we implemented it on a central

Figure 2. Freedom of Speech — A debating adventure game
built from Parts.

component. For example, the game object implements an im-
age loading function available to all objects of our game. If
functionality is required by various similar Morphs, we imple-
mented it by composing multiple Morphs, some of which are
invisible and use visible Morphs as costumes, as in Squeak
Etoys [9]. The invisible Morphs contain the shared behav-
ior, while the visible Morphs implement distinct function-
ality and provide individual appearance. For example, each
character is built from a transparent Morph that provides
path-finding, user interaction, and debating, while three visi-
ble Morphs—a morale bar, a character picture, and a speech
bubble—implement distinct behavior.

2.3 Problems Found

The implementation of the game’s features exemplifies chal-
lenges in object-centric development of many objects that
share behavior. Multiple of our objects require shared as well
as distinct functionality. The object-centric development ap-
proach of Lively, derived from physical construction and easy
to approach for inexperienced developers, suddenly breaks

17

down. In these situations, we recognize four different imple-
mentations:

Duplication Developers can copy the shared functions to all
characters. While this approach maintains immediacy and
concreteness, it duplicates code. This duplication impedes
maintainability, as developers have to remember all occur-
rences when editing copied functions. Additionally, ex-
perimenting on functionality will only change one object
with no convenient mechanism to propagate experiments
to all similar objects. This approach, however, incremen-
tally scales the development difficulty with the size of the
program.

Abstraction Developers can abstract common functionality
into modules that define shared behavior. This necessitates
integrating existing objects into a module system and re-
duces feedback immediacy, as the code no longer has a
concrete context in form of a specific instance. Abstrac-
tion also represents a point where the learning curve for
inexperienced developers suddenly becomes very steep,
since they might have to learn about new concepts like
classes or prototypes.

Externalization Developers can implement procedures re-
quired by multiple objects at an external location. Objects
call those routines and pass themselves as arguments. This
impedes code comprehension as it trades Modular Under-
standability [16] for code re-use.

Scattering Finally, developers may choose the costume ap-
proach, in which they implement common functionality
on invisible Morphs that compose visible Morphs to cus-
tomize their appearance and functionality. However, this
scatters the code belonging to one logical domain entities
across multiple objects and the scene-graph. Addition-
ally, costumes are highly coupled to their invisible base
Morphs. That is, while Lively developers expect each ob-
ject in the Parts Bin to be self-sufficient, costume Parts
are not usable by themselves.

The identified implementations impose a choice between
unmanaged duplication, reduced immediacy, diminished
code comprehension, or scattered code. We need an approach
to share behavior in a world objects that scales Lively Ker-
nel’s explorative development approach from one to many
objects, while preserving the maintainability of abstractions
and the immediacy of concrete objects.

3. Object Groups Approach
Different objects implement overlapping responsibilities. De-
velopers modularize such responsibilities to share behavior
between objects, however, multiple-inheritance, traits, and

layers require either upfront planning or subsequent refactor-
ing. Either way, developers loose the immediacy of concrete
object development and reason on a more abstract level.

In our approach, developers can combine concrete objects
into concrete groups. Each group represents a specific re-
sponsibility. Objects can be assigned to groups dynamically,
allowing programmers to develop objects with immediate
feedback, and modularize them on-demand to improve main-
tainability.

3.1 Lively Groups

We provide group operations for Lively’s object-centric de-
velopment operations, which include, first, evaluating code-
snippets in the context of the target object, and second, adding
functions to the target directly.

Direct evaluation for groups works differently depending
on whether the evaluated code references this or not. Eval-
uations without a self-reference execute only once, but self-
referential code snippets execute for each member of the
group. The results of all evaluations are collected into a re-
sult set and is the return value for the developer. This enables
developers to change properties of all members in one action,
by referencing this.

Interactive evaluation of code snippets may throw errors.
When editing a single object, uncaught errors abort the
computation and the runtime unwinds the stack. However, in
a group, the computation may fail for a subset of the objects.
So, for group evaluations, we catch intermittent errors and
return an exception object as part of the result set.

In Lively, developers use interactive evaluation to add
functions to objects as well. To add a function to a group, each
member of the group receives a copy of the same function.
Even though this duplicates the code, the function can be
edited and modified for all members at once in the context of
the group.

3.2 Creating groups

Developers can create groups on-demand using one of the
following three mechanisms:

Direct Selection Developers can explicitly point at visi-
ble objects to combine them into a group using multi-
selection techniques, including clicking on multiple ob-
jects or dragging a selection rectangle around objects.

Scene-graph Selection As some members of a group may
be off screen, invisible, obstructed or too small, direct
selection is sometimes difficult or impossible. In such
cases, developers may select objects in an alternative
representation of the scene-graph, a textual tree-view.

18

Figure 3. Extended Object Editor includes a scene-graph
browser and an object selection tool.

Programmatic Selection Some groups may include a large
number of objects, making it infeasible to select each
member manually. Furthermore, some groups may be
characterized by object properties that may not be visible.
In such cases, developers can define groups through code
snippets that yield lists of objects.

Programmers may use groups transiently, or assign labels
to persist the connection from member objects to the group.
To examine the parts of a group, developers can highlight all
members from the editor, adding a colored overlay to their
visual representation in world.

4. Implementation in the Lively Kernel
We evaluated our approach with a tool-based solution that
extends the Object Editor of Lively. Our Object Editor allows
to define groups visually and programatically. It stores the
group as property on all group members and edits them
simultaneously.

Defining Groups Our extended Object Editor, shown
in Figure 3, supports all three selection mechanisms of our
approach: direct, scene-graph, and programmatic selection.

For the direct selection, the editor provides a tool 1© to
enter selection mode, in which developers define groups by
clicking on the visual representation of objects. Furthermore,
we modified the edit button of Lively’s selection tool to open
our editor on the selected morphs. To select from the scene-
graph, we added a tree-view 2© that shows the composition
hierarchy of the world. Developers can browse the scene and
click to select. For programmatic selection, we modified the
global function edit, which opens an editor on the argument,
to treat collections of targets as a group. The global edit
function is also invoked by Lively’s shortcuts, providing
convenient access. Furthermore, since group names are just
properties of objects, any program can also filter objects with

Figure 4. Our Object Editor shows a list of available groups.

respect to their group names to select custom slices from
groups to edit. However, exposing this power in the tools
could quickly make a program unmanageable, as we discuss
briefly in Section 5.

Saving Groups Defined groups are initially anonymous
and transient. Naming a group persists it. In our prototype
groups are tags. When developers name a group, the editor
attaches the name to the group members. Lively serializes
this property as part of the object and, thereby, stores group
membership, for example, in the PartsBin. The editor collect
groups available in a world by iterating over visible objects
and offers the set of unique group names Figure 4 to develop-
ers.

Editing Groups When developers open groups in the Ob-
ject Editor, it determines the common group functions by
comparing their code and omits all other functions from its
script list. When developers evaluate code in the editor’s
script pane, we check the code for occurrences of this. If
there is none, the code is evaluated once, otherwise for each
object in the group. We guard such group evaluations with a
try/catch statement to continue evaluations on subsequent
group members even on intermittent errors.

Similarly, saving a function executes addScript on each
object, effectively duplicating the function.

5. Directions for Future Work
Our approach, in its essence, is an attempt to smooth out
the learning curve for inexperienced developers that started
development with object-centric development tools like those
available in Lively. It allows the step from editing single
objects to multiple objects not to be abstract, keeping the
metaphor of real objects that are manipulated directly. We
propose to implement our approach for other Lively tools
as well. Moreover, we want to explore first-class groups,
functions owned by groups, and automatic group discovery.

Classes as “Fit and Finish” Provided we can scale our
direct-manipulation approach to development using groups,
we must ask ourselves if that makes abstraction mechanisms
such as classes or prototypes irrelevant. Abstraction mech-
anisms give us structure (which can aid our thinking), and
many patterns and idioms have been created around object-

19

oriented programs with traditional abstraction mechanisms
that help communicate intent of code entities and structure
working on programs in teams. Classes also make it clear how
to get “clean” objects of a certain type, something notoriously
difficult in object-centric development.

A possible approach could be to provide a path from
groups to classes. As the system evolves and some groups
settle down, the system could recognize groups that are rarely
modified and suggest turning them into classes. The tools
should guide this conversion to smooth the learning curve.
The existence of classes in object-oriented programs can thus
turn from a necessity to an indication of maturity, robustness,
and quality. In terms of our metaphor of working with real
objects, this would be akin to molding clay and, only when
the final shape is settled, firing it to make it more structurally
robust.

Groups as First-class Entities In our prototype implemen-
tation, there is no direct representation of a group. Instead,
group membership is an attribute on member objects and
available groups are derived from the available objects. These
group attributes are serialized with their objects, but if a group
is edited while one of its members is not available, that mem-
ber will not receive the change. We want to investigate first-
class groups as a (completely transparent) implementation
approach. These would implement group-related meta-level
function, and their members can relate to them and be up-
dated through them. Given such first-class groups, it may
also be easier to visually associate shared functions with their
groups in Lively tools.

Similarity Based Groups In the current implementation,
developers create groups explicitly. The mechanism we use
is based on grouping as it is known from graphical editors,
the user can select objects and declare them to be part of a
group. Objects are either in a group or not, regardless of their
properties. However, in large systems, objects can easily be
forgotten, or similarities between objects might not be clear
to the user. Thus, a mechanism could be added to help the
user in finding “emergent” groups: grouping could happen
automatically based on the similarities between objects. The
interface of groups could also be based on distance, not on
whether a property or function is shared (or not). Right now,
any function that is not shared between all members of a
group is not shown as part of the group editing process.
However, if nine out of ten objects do share a method, it
might be useful to show that method with some visual hint
of that it is not ubiquitous. Such automatically detected and
distance-based groups would allow developers to recognize
emerging and diverging groups.

Additional Object-centric Tools Apart from the Object Ed-
itor, Lively offers more object-centric tools, e.g., an Object
Inspector, a Style Editor, and a Text Editor, that all work on
one object at a time. Developers would benefit if these can
manipulate groups of objects as well. Furthermore, Lively’s
Parts Bin repository could be aware of groups. This would
allow searching for groups and loading complete groups at
once.

Advanced Query Tools for Groups In our current proto-
type, groups are just atomic strings — tags. These tags are
used in a simple query mechanism based on equality, and
a question arises about how useful a more elaborate query
mechanism might be. Should we allow to select “all objects
that are in groups that start with an ’a’?” How about “all
objects that are in groups whose names are synonyms to
’player’?” While we, as experienced developers, might be
tempted to allow such complex queries, the confusing group
selections that can arise from such queries may prove to be
unmanageable.

6. Related Work
Approaches to overlapping shared behavior range from ab-
stract language concepts to tool support. Our approach pri-
marily relates to approaches that allow injecting multiple
distinct collections of methods into single objects. It further
relates to module systems that emphasize concrete objects.

6.1 Stripetalk

The Stripetalk system [4], described as one of several the-
oretical systems that use different types of decomposition
and language design principles, bears some similarity to our
presented approach. Stripetalk is a shared-nothing system in
that there is no mechanism to share behavior — if multiple
objects need to be updated, they must be retrieved by means
of some query, and the same edit must be applied to all of
them. The authors proposed to attach one or multiple “stripes”
to objects for easier retrieval, where stripes would simply be
strings without any intrinsic meaning or structure. Stripetalk
is very close to our system, but was never realized and eval-
uated in practice. The authors suggested, for example, very
powerful retrieval methods (even a complete query language
for stripes), but our practical experience with our approach
so far indicates that such power may be detrimental to the
maintainability of the system.

6.2 Multi-dimensional Separation of Concerns

Decomposition along multiple dimensions, as in Aspect- and
Context-oriented Programming [5, 10], Traits [3], Mixins [3],
and Multiple Inheritance [1] structure independent concerns

20

of an object independently. Developers compose objects from
such inpedent decompositions. These modularize behavior
and can be used by many objects similar to our groups. How-
ever, our groups are less abstract and enable direct feedback.
In comparison to abstractions, the group approach does not
separate concerns, but leaves the required information for
execution and understanding in the object itself. Further-
more, traits require upfront planning or subsequent refac-
toring when implementing changes to a program, whereas
object groups can be created on-demand.

6.3 Data, Context, and Interaction

Data, Context, Interaction (dci) is a paradigm, in which ob-
jects can occur in different roles, depending on the execution
context. Objects encapsulate only the domain knowledge, and
shared behavior is added on-demand from roles. Similar to
our approach, objects can have multiple roles at the same
time. However, in dci, object roles are added automatically
at runtime, whereas groups are defined by the developer as
they emerge.

6.4 Dynamic Text

Dynamic Text [2] is a tool-based approach that reduces the
effects of duplication in scattered code. It tracks copies of
code and allows developers to edit all instances of that code
simultaneously. It is an alternative to Aspect-oriented Pro-
gramming [10], but deliberately does not resolve tangling
as concern implementations are sometimes more understand-
able in conjunction with base code. This approach relates to
our object groups in that both do not resolve duplications, but
rather provide tool support for managing duplications.

6.5 Prototype-based Inheritance

Prototype-based Inheritance [22] is an approach to shared
behavior, in which objects inherit attributes and functions di-
rectly from other objects. Languages that offer prototypical
inheritance—such as Self and JavaScript—allow dynamic re-
placement of an object’s prototype, which is used in method
lookup. They offer the concreteness of object-centric devel-
opment. Compared to our groups, simple prototypical inheri-
tance does not allow objects to share behavior across multiple
prototypes.

7. Conclusion
We have presented Lively Groups as an extension to the
Lively Kernel’s object-centric development tools to group
and work on multiple object simultaneously. Developers may
group available objects that share behavior either visually, by
clicking their graphical shapes or choosing them from a view
of the Morphic scene-graph, or programatically, by evaluat-

ing program statements that return collections. The object-
centric development tools present a group’s shared functions
and allow to specify behavior for all group members. Further,
developers may evaluate statements on groups and, thereby,
apply changes to all members simultaneously.

With our approach, tools manage duplicated code, while
developers interact with live objects. That is, developers no
longer choose between manual duplication of code to multi-
ple objects, unnecessary indirection in form of delegation, or
extended feedback cycles of traditional functional decompo-
sition.

In the future, we want to implement our approach for more
of Lively’s tools. Further, the Object Editor should visually
distinguish between object-specific and shared functions.
Moreover, as our current implementations only considers
available members while modifying groups, we want to
explore first-class groups and automatic group discovery.

Nevertheless, our Object Editor already permits develop-
ers to work on groups of objects and, thereby, effectively
scales the object-centric development approach from one to
many objects.

References
[1] L. Cardelli. A semantics of multiple inheritance. Semantics of

data types, pages 51–67, 1984.

[2] S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Ter-
amoto. Do We Really Need to Extend Syntax for Advanced
Modularity? In Proceedings of the 11th Annual International
Conference on Aspect-oriented Software Development, AOSD
’12, pages 95–106. ACM, March 2012.

[3] G. Curry, L. Baer, D. Lipkie, and B. Lee. Traits: An Approach
to Multiple-inheritance Subclassing. In Proceedings of the
SIGOA Conference on Office Information Systems, pages 1–9.
ACM, June 1982.

[4] T. R. Green, A. Borning, T. O’Shea, M. Minoughan, and
R. Smith. The stripetalk papers: Understandability as a lan-
guage design issue in object-oriented programming systems.
Prototype-based Programming: Concepts, Languages and Ap-
plications, 1998.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented
programming. Journal of Object Technology, 7(3):125–151,
2008.

[6] D. Ingalls. The Lively Kernel: Just for Fun, Let’s Take
JavaScript Seriously. In Proceedings of the 2008 Symposium
on Dynamic Languages, DLS ’08, pages 9:1–9:1. ACM, July
2008.

[7] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN
Conference on Object-oriented Programming Systems, Lan-

21

guages and Applications, OOPSLA ’97, pages 318–326. ACM,
October 1997.

[8] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen.
The Lively Kernel–A Self-supporting System on a Web Page.
In R. Hirschfeld and K. Rose, editors, Self-Sustaining Systems,
pages 31–50. Springer, May 2008.

[9] A. Kay. Squeak Etoys, Children & Learning. Technical report,
Viewpoints Research Institute, Jan. 2005.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming, ECOOP ’97, page 220–242.
ACM, December 1997.

[11] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and J. Hudepohl.
Assessing the benefits of incorporating function clone detec-
tion in a development process. In Software Maintenance, 1997.
Proceedings., International Conference on, pages 314–321.
IEEE, 1997.

[12] J. Lincke and R. Hirschfeld. Scoping Changes in
Self-supporting Development Environments Using Context-
oriented Programming. In Proceedings of the International
Workshop on Context-Oriented Programming, COP ’12, pages
2:1–2:6. ACM, June 2012.

[13] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. An
Open Implementation for Context-oriented Layer Composition
in ContextJS. Science of Computer Programming, 76(12):
1194–1209, December 2011.

[14] J. Lincke, R. Krahn, D. Ingalls, M. Roder, and R. Hirschfeld.
The Lively PartsBin–A Cloud-Based Repository for Collabo-
rative Development of Active Web Content. In Proceedings

of the 2012 45th Hawaii International Conference on System
Sciences, HICSS ’12, pages 693–701. IEEE, January 2012.

[15] J. H. Maloney and R. B. Smith. Directness and Liveness in
the Morphic User Interface Construction Environment. In
Proceedings of the 8th Annual ACM Symposium on User
Interface and Software Technology, UIST ’95, pages 21–28.
ACM, December 1995.

[16] B. Meyer. Object-oriented Software Construction. Prentice-
Hall, second edition, 1997.

[17] J. Micallef. Encapsulation, reusability and extensibility in
object-oriented programming languages. Journal of Object-
Oriented Programming, 1(1):12–36, 1988.

[18] G. L. Steele Jr. An overview of common lisp. In Proceedings
of the 1982 ACM symposium on LISP and functional program-
ming, pages 98–107. ACM, 1982.

[19] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N degrees
of separation: multi-dimensional separation of concerns. In
Proceedings of the 21st international conference on Software
engineering, pages 107–119. ACM, 1999.

[20] D. Ungar and R. B. Smith. Self: The Power of Simplicity.
In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications, OOPSLA ’87, pages
227–242. ACM, December 1987.

[21] D. Ungar and R. B. Smith. Self. In Proceedings of the
third ACM SIGPLAN Conference on History of Programming
Languages, HOPL III, pages 9–1–9–50. ACM, June 2007.

[22] D. Ungar, C. Chambers, B.-W. Chang, and U. Hölzle. Orga-
nizing Programs Without Classes. Lisp Symbolic Computing,
4(3):223–242, July 1991.

22

	Introduction
	Object-centric Development: The Lively Kernel
	The Lively Kernel
	Object-centric Development by Example
	Problems Found

	Object Groups Approach
	Lively Groups
	Creating groups

	Implementation in the Lively Kernel
	Directions for Future Work
	Related Work
	Stripetalk
	Multi-dimensional Separation of Concerns
	Data, Context, and Interaction
	Dynamic Text
	Prototype-based Inheritance

	Conclusion

