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Abstract
When implementing virtual machines, besides the interpreter
and optimization facilities, we have to include a set of primi-
tive functions that the client language can use. Some of these
implement truly primitive behavior, such as arithmetic oper-
ations. Other primitive functions, which we call algorithmic
primitives, are expressible in the client language, but are im-
plemented in the VM to improve performance.

However, having many primitives in the VM makes it
harder to maintain them, or re-use them in alternative VM
implementations for the same language. With the advent of
efficient tracing just-in-time compilers we believe the need
for algorithmic primitives to be much diminished, allowing
more of them to be implemented in the client language.

In this work, we investigate the trade-offs when creating
primitives, and in particular how large a difference remains
between primitive and client function run times in VMs with
tracing just-in-time compiler. To that end, we extended the
RSqueak/VM, a VM for Squeak/Smalltalk written in RPython.
We compare primitive implementations in C, RPython, and
Smalltalk, showing that due to the tracing JIT the perfor-
mance gap can be significantly reduced.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors— code generation,optimization

Keywords Algorithmic Primitives, Tracing JIT, Squeak/S-
malltalk
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1. Introduction
Dynamically typed programming languages are traditionally
implemented as virtual machines (VMs). As the popularity
of VM-based languages has increased, VM implementation
techniques have evolved to the point where most mature
VMs utilize some form of just-in-time (JIT) compilation, with
two main technologies contending at the moment: method
JITs [12], which generally compile methods at a time into
machine code, and utilize techniques such as inlining and
branch pruning to simplify the code or merge multiple meth-
ods; and tracing JITs [1], which record the actions of the
program including branches taken and methods dispatched
into a specific trace and compile it into machine code.

A large part of VMs are basic behavioral blocks of the
implemented language, called primitives, natives, or builtins.
Some of these primitives are inherently required, because
their behavior cannot adequately be expressed in the imple-
mented (client) language. But some primitives, which we
call algorithmic primitives, exist only for performance rea-
sons— since the implementation (host) language is usually
lower-level and easier to optimize than the client language
of the VM, it is assumed that primitives implemented in the
lower-level host language are often faster than if they were
implemented in the client language. We discuss this in more
detail in Section 2.

Many VM-based languages have more than one VM imple-
mentation1. Some of those language implementations are not
(only) source compatible, but may also share an instruction
set— typically bytecode— or a standard library. As a result,
every primitive in the reference implementation has to be re-
implemented in all the other implementations. Furthermore,
the primitive implementations cannot usually be debugged
from the high-level language — if a bug is suspected in a
primitive implementation, the debugging process has to cross
language boundaries and can become more cumbersome.

1 Python, Jython, and PyPy; Ruby, JRuby, and Topaz; HotSpot, Dalvik, and
Jikes; . . .



Thus, we argue that it is desirable to reduce the number of
primitives to ease VM development and maintenance.

In this work we investigate the trade-offs around imple-
mentations of algorithmic primitives. Our investigation was
prompted by a trend that we have seen in other work to move
behavior that used to be implemented as part of the VM into
the client language (Section 5) and makes the following con-
tributions:

• We discuss possible trade-offs when implementing behav-
ior as primitive in contrast to in the client language in
Section 3.

• We quantify the performance gap between functionality
implemented as primitive in contrast to in the client
language in Section 4.

2. Primitive Building Blocks in Virtual
Machines

Virtual machines primarily provide a runtime for a client
language. In addition to that, they typically provide certain
pieces of code that are to be invoked from the client language.
The most common primitive behaviors are often available as
part of the instruction set, e.g. the integer addition bytecode
on the Java virtual machine (JVM). Other primitives often
expose the same calling interface as functions of the client
language; primitive invocation is hence typically transparent
to user code. Depending on the language, primitives are
sometimes more selective regarding what arguments they can
handle and cannot be inspected in the same way as ordinary
methods, given such reflective facilities exist in the client
language.

In languages including Python, Ruby, Java, and JavaScript,
calling primitives is like calling any function, the only differ-
ence being that the source code is not given in the client lan-
guage. Primitives in such languages are usually documented
in text form, explaining their purpose, signature, and pecu-
liarities such as possible side-effects. In Self [6], primitives
are indicated by their selectors— methods whose slot name
starts with underscore (_) call a primitive function.

To explore and evaluate the trade-offs for implementing
primitive functions, we use Squeak/Smalltalk running on top
of the RSqueak/VM [3], an open-source2 implementation that
uses the RPython meta-tracing just-in-time compiler (JIT)
toolchain which also powers PyPy [4].

In Squeak/Smalltalk, a method can have an annotation
that indicates a primitive call by number or name. When a
method is to be executed that is denoted as primitive, the
VM dispatches to the primitive function instead of running
the method’s code. Only if the primitive fails, either because
it is not provided by the VM or because the primitive code
indicates a failure, the VM invokes the Smalltalk method.
Commonly, the Smalltalk code either generates a runtime
exception or emulates the primitive behavior.

2 https://github.com/HPI-SWA-Lab/RSqueak

In the example below, whenever the method bitXor: is
called, line 3 declares that the primitive function primDigitBitXor

from the LargeIntegers module should be called. The
method body is fallback code — it is only run if calling
the primitive fails. Here, the Smalltalk code implements the
same behavior as the primitive— the primitive call is only a
performance optimization. We call this an algorithmic primi-
tive.

1 bitXor: n

2 | norm |

3 <primitive: ’primDigitBitXor’ module:’LargeIntegers’>

4 norm := n normalize.

5 ↑self
6 digitLogic: norm

7 op: #bitXor:

8 length: (self digitLength max: norm digitLength)

The original Squeak VM [13] is written in a subset of
Smalltalk called Slang. This code is statically translated into
C and compiled to create the virtual machine. We chose
Squeak to evaluate the trade-offs of implementing primitives
in the VM, because the code for most algorithmic primitives
already exists in a form that is executable in the client
language, since Slang is a subset of Smalltalk.

The motivation of Slang is enabling Smalltalk developers
to develop the VM using a familiar language and familiar
tools. However, in practice the limits of Slang compared
with Smalltalk proper can get in the way of this ideal; Slang
does not support polymorphism— or even instances, for that
matter — it supports only primitive uses of block closures
for branching, and its semantics for array access and bit
operations are subtly different, since they are mapped to those
of C. Furthermore, although the Slang code is executable, to
distribute changes to the VM it still needs to be translated to
C and compiled for different platforms. For changes in pure
Smalltalk, on the other hand, a convenient update mechanism
exists in-image. It would thus be useful to move algorithmic
primitives out of the VM, since development already happens
at the Smalltalk level, and cutting out the translation to C
not only removes compilation and makes distribution of the
changes easier, it also serves to remove the restrictions of
Slang when implementing the algorithms.

Removing algorithmic primitives from the VM would also
serve to reduce code-duplication in Squeak. Many methods
(such as bitXor: above) already have fallback code that im-
plements the same behavior as the Slang code, often written
in more idiomatic Smalltalk. The RSqueak/VM and other
alternative VMs could automatically share the fallback and
the Slang code. Only if none exists or it is inherently neces-
sary to provide a primitive on the VM level, the RSqueak/VM
would have to re-implement the primitive function. There
are many ways to group primitives into those that require
re-implementation and those that do not— we present here
a grouping that we have found useful to make that decision
while implementing the RSqueak/VM.

https://github.com/HPI-SWA-Lab/RSqueak


Memory Primitives This set of primitives is closely related
to the memory design of the programming language. In
object-oriented languages, memory primitives may be used
to create new objects, reflectively access their fields or their
size, trigger garbage collection, or manipulate their pointers.
Depending on the language, not all of these are available as
primitives, and their function may only be accessible through
bytecodes.

Mathematical Primitives We count in this group of primi-
tives arithmetic operations (including addition and multipli-
cation, trigonometric and exponential functions, and numeric
equality and inequality), as well as binary operations includ-
ing or, xor, bit-shift, and bit-invert. These are implemented
directly on the CPU and can be accessed through machine
instructions.

System Call Primitives Most VMs provide access to system
resources such as I/O devices, the system clock, or a random
number generator to the client language. These VMs typically
abstract application programming interfaces (APIs) of differ-
ent operating systems to allow operating system independent
access to system resources. These functions are usually im-
plemented in the standard library of the operating system and
the VM only needs to convert arguments and return values
appropriately.

Foreign Function Interface Most VMs offer a way to in-
terface with existing libraries. The greatest common denomi-
nator among foreign function interfaces (FFIs) are C calling
conventions. A FFI usually requires explicit naming of the
library to find the functions in, and marshalling for function
arguments and demarshalling of return values. While in prim-
itives, the callee is responsible for type conversions, in a FFI
call, the caller has to explicitly convert types.

VM Specific Primitives Depending on the implementation,
the VM might offer additional entry points, for example to
register callbacks for mouse and keyboard handling, for green
threading, timed behavior, or reflection on VM internals such
as garbage collection information.

Algorithmic Primitives Finally, some primitives imple-
ment behavior that can be expressed in the client language,
but doing so was considered to be too slow. This group of
primitives can include, for example, operations on arbitrarily
large integers, string and regular expression operations, or
sorting, searching, and cryptographic algorithms.

***

The last group of primitive is of particular interest to im-
plementers of an alternative VM, because it may be possible
to omit them and still get a functional implementation of
the language. Primitive functions are generally considered to
be faster than the same function implemented in the client
language, but one common goal of VM re-implementations
is to use current optimization techniques to improve the

execution speed of the client language. In this work, we
use the RSqueak/VM to explore if current tracing JIT tech-
niques improve the execution speed of pure Smalltalk to the
point where some algorithmic primitives may be replaced
with client language implementations with acceptable perfor-
mance.

3. Trade-Offs Between Implementation
Locations For Language Algorithms

Implementing behavior in the client language rather than as
a primitive can allow easier implementation and debugging,
better code reuse, and changeability—in short all the benefits
that the high-level client language ought to have over more
low-level languages. However, doing so may adversely affect
speed, security, and subtle execution semantics, which can be
a concern for often used functions.

However, changeability and performance are probably of
highest importance among the six.

Ease of Implementation Most VMs provide a high-level
programming language implemented in a lower-level lan-
guage. They incur a performance overhead for the promise of
easier implementations through higher expressiveness, better
abstractions and more powerful tools. Likewise, implement-
ing an algorithm in a higher-level, VM-based language typi-
cally requires less code, has shorter round-trip times than in
a lower-level, ahead-of-time (AOT)-compiled language, and
allows using advanced debugging tools that take advantage
of the language abstraction and the introspection capabilities
of the VM. In contrast, implementing behavior as algorithmic
primitives requires rebuilding the VM during development.
To debug algorithmic primitives, developers have to debug
both in the client language as well as the host language, likely
using different tools at different abstraction levels that may
not be built to be used in conjunction.

Reuse Different VMs implementing the same language can
share all code implemented in the client language. Hence, re-
implementations of an existing VM need to only re-implement
fewer primitives. Moreover, improvements made to the stan-
dard library can be shared directly across different VMs with-
out additional adaptations for each VM.

Code reuse can also prevent subtle bugs from creeping
into different implementations of the same functionality. In
Squeak, for example, some primitives are optional— while
implemented in the standard VM, fallback code in Smalltalk
implements that same behavior. This is useful to get alterna-
tive implementations working quickly, but is also a source
of hard to track bugs when code changes in the primitive
implementation are not adequately reflected in the fallback
code. A similar situation arises in JavaScript, where not all
VMs implement the same set of features. Pure-JavaScript li-
braries, commonly called polyfills, are used to support older
or non-compliant browsers.



Changeability Changing behavior implemented as a prim-
itive usually requires recompiling of the VM. Since rebuild-
ing requires additional sources and a build environment, this
discourages improving primitives in general and negatively
affects the round-trip times between editing the code and see-
ing the changed behavior. In order to see the results of a VM
change, it has to be recompiled and externally tested. If the
source is edited in the client language, the VM can recompile
that code and the primitive can be tested more quickly.

Speed Reduced execution time is the main reason for creat-
ing primitives which could also be implemented in the client
language. The reasoning is that every method call needs a new
frame, which (depending on the language) may mean costly
method lookups, saving frame and stack pointer, copying the
arguments to the new frame, initializing local variables, or
repeated boundary checking, boxing, and unboxing of basic
values used in the computation of the algorithm.

On the other hand, inlining JITs with escape analysis can
omit many of those operations if they can look into the
implementation of the algorithm, which is not possible if the
algorithm is implemented as a primitive. Thus algorithmic
primitives prohibit these kinds of optimizations across their
boundaries.

Security Many dynamic languages allow monkey-patching,
a practice by which behavior in other libraries including the
language’s standard library can be overwritten by user code.
Fixing the behavior in form of a primitive may prohibit mali-
ciously monkey-patched code from affecting security critical
algorithms. The computation within a primitive is usually
hidden from the client language: it cannot be reflectively in-
spected, and usually a thread cannot be interrupted within a
primitive method. In a closed source VM, the behavior of the
primitive can be documented only externally, not as part of
the code. This may make it harder to exploit security issues in
the algorithm, but is unlikely to. The benefit may be undone
because the lower-level VM implementation language may
be prone to different, potentially more security critical issues
such as buffer overflows and out-of-bounds memory accesses
which are harder to occur within a managed VM runtime.

Behavior Some behavior cannot be easily expressed in the
client language or its semantics differ from an implementa-
tion as primitive. Properties or behavior such as endianness
and overflow, bit-wise operations, or string encoding, that are
naturally platform specific in a low-level language such as C,
have to be explicitly implemented to behave in the way that
is correct for the given platform if they are implemented in
the client language. In this case, the client implementation
may be more complex and thus more error-prone than an
implementation as a primitive.

4. Measuring the Performance Gap
We explore the performance impact of running common al-
gorithmic primitives in pure Smalltalk and give explanations
of our results.

4.1 Algorithmic Primitives in Squeak
We present six benchmarks: generating a DSA key, filling an
array with a constant value, filling a string with a constant
character, generating the SHA of a long string, compositing
the screen, and rendering TrueType fonts. These are meant
to show real-world usage of primitives that RSqueak/VM ex-
ecutes in pure Smalltalk: large integer arithmetic, preparing
memory with constant values, string operations, compositing
32 bit graphics including transparency, and rendering graph-
ics with Bézier shapes.

All of these primitives have implementations in Slang
that are translated to C and compiled into the Cog VM, a
Squeak VM with a single-stage method JIT, and into the Inter-
preter Squeak VM. On RSqueak/VM, all but the compositing
and rendering primitives use fallback code written in pure
Smalltalk that runs when the primitive fails. The composit-
ing and rendering primitives in RSqueak/VM execute the
Slang code directly, which is a little more expensive as the
Slang simulation simulates C semantics for things like ar-
ray pointers and bit-wise operations. We explicitly measure
compiled C code against running pure Smalltalk code here—
implementing the primitives in the client language is only an
option if performance is still acceptable3.

4.1.1 Large Integer Arithmetic
Most dynamic languages have a way of transparently over-
flowing from the machine word size to a larger integer type
and so does Squeak. The SmallInteger class represents 32 bit
tagged integers— operations that exceed the tagged range re-
turn a LargePositiveInteger or LargeNegativeInteger. The
arithmetic on small integers is handled using arithmetic prim-
itives. Large integers are represented as lists of bytes and
arithmetic on them is handled using specially crafted primi-
tive functions. However, the algorithms for byte-wise opera-
tion are also available in Squeak.

In the RSqueak/VM, we avoid having to implement large
integer primitives in two ways: first, we use an optimized
internal representation for large positive integers that fit into
an unsigned 32 bit number. Byte-wise access is simulated,
but arithmetic is done on the unsigned value. Second, we
optimistically call the small integer primitives even for large
integers that can fit into a 64 bit integer. Quite many do, and
thus we pay only the price of converting from the unsigned
32 bit integer or the byte representation to a 64 bit value. For
the remaining operations, we run the fallback code.

3 Running the simulated code on the Cog VM is between one and two orders
of magnitude slower than RSqueak for these benchmarks, with the interpreter
even worse, but that is not the comparison we are interested in for this work.



The implementation in Squeak is based on byte-wise oper-
ations. There are a number of different large integer libraries,
each with their own balance between speed and implementa-
tion complexity. We observed that very large integers are cur-
rently rarely used in Squeak, and the Slang code is not well
optimized for them. Given this, we consider an implemen-
tation that is sufficiently fast for word-sized to double-word
sized integers to be acceptable. Omitting large integer prim-
itives also allows to easily evolve the algorithms or change
the representation of large integers, should performance for
larger numbers be an issue.

As a benchmark for large integers, we generate keys
according to the Digital Signature Algorithm [16].

4.1.2 Filling an Array
Squeak has a number of primitives to quickly fill collections
with the same value. One such primitive is number 105,
which for arrays and strings has the following definition:

1 replaceFrom: start to: stop with: rep startingAt: repStart

2 <primitive: 105>

3 super replaceFrom: start to: stop

4 with: rep startingAt: repStart

SequenceableCollection, a superclass of both types, has
a generic implementation in Smalltalk:

1 replaceFrom: start to: stop with: rep startingAt: repStart

2 | index repOff |

3 repOff := repStart - start.

4 index := start - 1.

5 [(index := index + 1) <= stop] whileTrue: [

6 self at: index

7 put: (rep at: repOff + index)]

Regarding our trade-offs, omitting this primitive comes
down to ease of implementation. Squeak has specialized ar-
rays for words, bytes, and characters, besides arrays that hold
pointers to arbitrary objects. These all implement the same
interface with respect to element access, and thus can share
the Smalltalk implementation. However, the primitive imple-
mentation has to explicitly handle each possible array type,
because polymorphic dispatch is unavailable at that level,
making the primitive implementation more cumbersome. We
measure the impact of omitting this implementation by filling
variable sized arrays and strings with constant values.

4.1.3 The SHA Algorithm
Squeak implements the Secure Hash Algorithm (SHA) from
the U.S. government’s Secure Hash Standard (SHS) [15],
based on an implementation by Bruce Schneier [17]. The
secure hash standard was created with 32 bit hardware in
mind, so all arithmetic in the hash computation must be done
modulo 232. The Squeak implementation was originally cre-
ated as pure-Smalltalk and uses objects to simulate 32 bit
hardware registers. Squeak’s SHA implementation explicitly
avoids using large integers. Due to the known size limit on the

Figure 1. BitBlt transfers rectangular areas from one array
to the other. In this image, a paragraph is composed from
letters copied from the font form [10, p. 335].

numbers, specially crafted objects are faster than overflow-
ing into large positive integers (strengthening our previous
argument that large integer arithmetic, if left in Smalltalk,
could be optimized based on the use-cases of developers).
The default Squeak VM includes a set of primitives to di-
rectly generate the hash in C, which translates into a three
orders of magnitude speedup.

Implementing this algorithm as a primitive made sense
to get the significant speedup on the original Squeak VM.
However, we argue that the performance of running the
pure Smalltalk code is much improved with the tracing JIT
of RSqueak/VM. Another consideration may be that ease
of implementation and changeability is no argument for
maintaining the implementation in Smalltalk: the algorithm
is fixed and a canonical implementation exists in C. Then,
again it may be easier to study and understand the code in
Smalltalk.

4.1.4 Transferring Bits to the Screen
BitBlt is an algorithm that combines one block of bits with
another according to certain rules, and was developed to
speed up graphical operations for one bit displays [11], but
later extended to handle up to 32 bit of color [13]. BitBlt
has several rules for combining blocks of bits for blending
or replacing, as well as combining bit-areas of different
color depths. The Squeak screen is entirely composed of
Form objects that are composited together using BitBlt and
drawn to the screen. Drawing to the screen is the same as
drawing to any other form. A primitive is used to designate
a form as the display, and the VM is expected to mirror it to
the screen. Forms are word objects, arrays which hold only
unsigned integers. As an example (Figure 1), to display a text
paragraph, the required letters are copied from a form that has
the entire pre-rendered font, to a paragraph form. The letters
are also used a mask for syntax highlighting by blending with



Table 1. All benchmark results. We give means of the execution time along with a 95 % confidence interval.
Benchmark RSqueak Cog Interpreter

mean mean mean

arrayFillArray 586 ±7ms 378 ±2ms 920±58ms
arrayFillString 1079 ±80ms 419 ±2ms 945±12ms
mandala 25 ±3ms 12 ±1ms 14 ±0ms
renderFont 4514 ±45ms 17 ±0ms 25 ±0ms
dsaGen 3794±377ms 411±54ms 405±52ms
shaLongString 862 ±19ms 47 ±1ms 58 ±1ms

a uni-colored form. Finally, the paragraph form is then copied
to the display form.

BitBlt was originally published as Smalltalk code [10]. It
is now mostly in Slang code, but some fast path optimiza-
tions were only done in C, with the Slang code having only
stubs that delegate to the slow code paths. Furthermore, the
Slang code for BitBlt uses custom CArray objects that sim-
ulate C array semantics — these allow fast access to arrays
when translated to C, but incur additional overhead during
simulation in Smalltalk. Finally, although word objects con-
tain unsigned 32 bit integers, reading from them in Smalltalk
returns either SmallIntegers or LargePositiveIntegers, de-
pending on their size. This increases the type variety and thus
puts additional pressure on the optimizing JIT. Concerning
our trade-offs, the version history of BitBlt demonstrates that
indeed this is a primitive that changes relatively often, as new
optimizations or blending modes are introduced. However, it
is also crucial that the BitBlt operations run fast enough to
provide a smooth user interface.

4.1.5 Font Rendering
Squeak includes Balloon, a rendering engine for 2D and 3D
graphics. The 2D engine provides anti-aliasing and vector
graphics in software. It does most of its rendering using
a contiguous chunk of memory and makes heavy use of
matrix transformations to draw curves and polygons. Once
it finishes rendering, it calls BitBlt to transfer the actual bits
from the work buffer to the screen. Balloon is very flexible
and provides 44 primitive functions that can be combined to
show SVGs, draw TrueType fonts, play Flash 3 animations,
and render Bézier curves.

Implementing Balloon in the VM or running it in Smalltalk
must weigh performance against changeability. The algo-
rithms used in the Balloon Engine are heavy on numeric
operations and their performance benefits from being imple-
mented in the VM. At the same time, Balloon is a rather large
module with more than 5 000 lines of Slang code (for com-
parison, all large integer primitives comprise less than 1 400
lines, and the SHA primitives comprise less than 250 lines of
code). Re-implementing Balloon is thus a major burden on an
alternative VM implementation. As to changeability, although
Balloon set out to support multimedia formats, progress on
updating it for current formats has stalled, with Flash support
at version 3. One reason for this may be that the code is not in

Smalltalk (and not even fallback code exists), and thus experi-
menting with extensions is difficult. To evaluate this trade-off,
we measure the performance of rendering TrueType glyphs.

Running Primitives
We ran our benchmarks on a 64 bit Ubuntu 14.10, running a
3.16.0 Linux kernel. For translation, we used PyPy revision
223e8c97aec from February 19, 2015, and 32 bit GCC 4.8.2.
The revision of RSqueak/VM ◦ was e235be9, the version of
the Cog VM 4 was 4.0-2585, and the version of the Squeak
Interpreter VM � was 4.10.2-2614. The benchmark ran on an
Intel Core i7-4650U at 1.7 GHz with 3.94 GiB of RAM. The
benchmarking script and image is publicly available online.4

The Squeak image version is 4.6-14318.
We report wall times measured in-system using the

Smalltalk method Time class>>#millisecondsToRun:. We re-
move the impact of JIT warm-up from our measurements by
running each benchmark 200 times in a freshly booted image,
and using the last 20 results [2]. Except for the font rendering
benchmark, all benchmarks run headless. All benchmarks
also run single-threaded. We show the arithmetic mean of all
runs along with bootstrapped [7] confidence intervals for a
95 % confidence level.

Table 1 gives the raw benchmark results and Figure 2
gives the results in terms of relative speed against the stan-
dard Interpreter VM. We can see from the benchmarks that
RSqueak/VM has a larger variance in general, as compared
to the other two VMs. The last column of Figure 2 also shows
that the mean slowdown of RSqueak/VM over all bench-
marks is just under a factor of six, and thus within an or-
der of magnitude. RSqueak/VM achieves by far the worst
performance in the Balloon benchmark.

4.2 Explaining the Gap
The time differences between Interpreter VM and Cog are
likely a result of Cog’s method JIT, which is very simple: it
compiles each method separately and has only very limited
support for advanced features such as method inlining or
escape analysis.

arrayFillArray and arrayFillString These two bench-
marks shows that the overhead of filling large chunks of
memory with the same value is small. The overhead is

4 https://github.com/HPI-SWA-Lab/RSqueak-Benchmarking

https://github.com/HPI-SWA-Lab/RSqueak-Benchmarking
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Figure 2. Algorithmic primitives benchmarks, with execution time normalized to Interpreter. Lower is better.

mostly due to additional guards in the compiled code from
RSqueak/VM. In contrast to the C code, the JIT cannot rely
on the fact that the Smalltalk methods used in the primi-
tive implementation would not change. Furthermore, another,
higher-priority thread could interrupt the benchmark and
exchange the array or string that is filled using the become:

method to exchange pointers, whereas a VM primitive on
Cog and the Interpreter VM cannot be interrupted. It may
be possible to further minimize the number of guards with
structural changes to RSqueak/VM.

mandala and renderFont These benchmarks have very dif-
ferent slowdown, but mostly suffer from the same types of
overhead. All three tested VMs allocate Smalltalk frames ini-
tially on the stack and only copy them to the heap if they are
accessed reflectively from Smalltalk. In these benchmarks,
this happens only for RSqueak/VM, because each primitive
call to BitBlt in the mandala benchmark or to Balloon in
the renderFont benchmark sets up the Slang code for sim-
ulation by copying arguments from the sender context into
an InterpreterProxy object, the Slang interface to various
Smalltalk facilities. Thus, every call into the method that
sets up the Slang code is slow, currently. Second, both of
these benchmarks rely on fast arithmetic. Although the trac-
ing JIT can generally remove allocations of integer objects
so that few object allocations are needed, allocations remain
around entering inner loops and Slang code. Thus, besides
the impact of simulating arithmetic for some large integers,
RSqueak/VM suffers additional overhead and GC pressure
from allocating numeric objects. Third, the Slang code was
written with the intention of being translated to C. It uses
special arrays and bit-operations that simulate C semantics
in Smalltalk, incurring additional overhead.

The reason why mandala is only about a factor of two
slower than the standard VM, whereas renderFont is three
orders of magnitude slower, is that one BitBlt operation cor-
responds to only one call to the Slang code which then does
all the work. One Balloon operation, in contrast, comprises
dozens of very short calls into Slang code, each of which

forces a few stack frames to the heap and a few numeric
objects to be fully allocated. However, these problems may
be greatly diminished if the primitive were not simulated in
Smalltalk, but rather written in pure Smalltalk, without the
overhead of an InterpreterProxy or simulating C semantics
for array access and bit-wise operations.

dsaGen and shaLongString Both of these benchmarks suf-
fer primarily from missing large integer primitives. Although
the values used generally do not overflow into more than
32 bit, the fallback implementations for missing primitives
use byte-wise and bit-wise access. As mentioned in Sec-
tion 4.1.1, RSqueak/VM internally stores 32 bit positive num-
bers as unsigned integers and simulates byte access. In this
case, however, this incurs additional overhead.

4.2.1 Threats to Validity
Re-implementing former primitives in Smalltalk exposes
them to the regime of the garbage collector, which, for the
RSqueak/VM, we cannot currently disable selectively. This
might increase running times for re-implemented primitives,
because all basic types, including integers, are boxed, and
arithmetic operations repeatedly create those. On the other
hand, if objects are created within a trace and not referenced
from outside, the tracing JIT removes those unnecessary heap
allocations. Therefore, the number of created objects after
warm-up should be quite low. On Cog and the Interpreter VM,
integers that fit within 31 bit are tagged and thus do not create
pressure on garbage collector.

The RSqueak/VM is far from being a mature Squeak
implementation and several features of the standard VM are
still missing. Squeak defines a model of green threading,
including interrupts triggered outside the VM, e.g. by mouse
movements across the window, or due to timing. While Cog
and the Interpreter VM support those, the implementation in
the RSqueak/VM is still incomplete. We prevent the biggest
of those scheduling related performance deteriorations by
running headless, but the heartbeats used for timing are still
active in all three VMs.



Finally, the presented benchmarks were written with a
particular set of primitives in mind, but they exercise a sig-
nificant portion of the Squeak core and should be considered
macro-benchmarks. Thus, they should be taken to demon-
strate heavy usage of specific algorithmic primitives within
an application, rather than assessments of a single primitive
feature.

5. Related Work
Other modern VMs with JITs have moved algorithmic primi-
tives out of the VM and into the client language. The reasons
given are mostly due to performance, but the benefits to ease
of implementation and debugging that we have mentioned
also apply.

5.1 JavaScript DOM-Operations
JavaScript is a dynamically typed programming language
used in web-browsers. All JavaScript runtimes used in major
browsers use some version of dynamic compilation. Some
browser vendors have recently re-implemented at least some
parts of their Document Object Model (DOM) operations in
JavaScript to make them visible to the JIT, or plan to do so.
Unfortunately, there have been few publications about this
particular change, and none with performance results.

TraceMonkey [9], the JavaScript JIT formerly used in Fire-
fox, also traces DOM-operations that were re-implemented in
JavaScript5. Internet Explorer 10 supposedly executes DOM
operations in JavaScript6 and for Chromium, there are plans
to re-implement the DOM-API in pure JavaScript6so the V8
engine can compile methods including DOM operations as
one. For all these browsers, implementing the DOM-API in
C++ meant that every call to DOM functions resulted in a
runtime switch.

The re-implementation of browser specific DOM libraries
in JavaScript improves the overall performance because it
makes them visible to the JIT, as we described in Section 3.
It allows the inlining of DOM operations instead of exiting
just-in-time compiled code and having to assume that all
arguments can escape. The re-implementations were not done
for increased code clarity or reuse.

5.2 PyPy Python Interpreter
The general way to introduce primitive behavior to Python
outside of the VM are C-extensions. While the PyPy Python
interpreter tries to maintain C-extension compatibility, they
explicitly recommend re-implementing extensions in Python7.
The RPython-based Topaz Ruby implementation mirrors this

5 https://brendaneich.com/2008/08/tracemonkey-javascript-lightspeed/

(retrieved March 2, 2015)
6 http://www.chromium.org/blink#architectural-changes (retrieved
March 1, 2015)
7 http://doc.PyPy.org/en/latest/faq.html#

do-cpython-extension-modules-work-with-PyPy (retrieved March
3, 2015)

sentiment in their recommendations when to implement func-
tionality in Ruby and when in the VM8, but lacks data.

The reasons for re-implementation the PyPy project gives
are twofold. First, a missing visibility to the tracing infras-
tructure results in dropping out of traces for any calls to C-
extension functions. Second, the Python C-extension API al-
lows access to garbage collection implementation specific
details. CPython uses a reference counting garbage collector.
Since PyPy does not, the counters have to be emulated, which
can impact performance.

5.3 Maxine Snippets
Writing primitive behavior in the same language as the non-
primitive user code has also been done in the Maxine VM [18].
This Java VM is itself written in a slightly augmented Java.
The implementation of primitives is hence also done in
Java via so-called Snippets, small pieces Java code that gets
translated to machine code using the existing JIT during
the compilation of the VM. However, at execution time, the
thusly specified primitives are indistinguishable from C or
Assembler written ones. They can neither be inspected nor
changed.

6. Conclusions and Lessons Learned
Through this work we have gained insights into some of the
trade-offs mentioned in Section 3. The points raised here are
not limited to implementing algorithmic primitives, but some
are specific to meta-tracing JITs and PyPy.

Regarding the development process, we found that debug-
ging primitives at the Smalltalk level generally works well.
BitBlt presented the most problems. Debugging Smalltalk re-
quires the Smalltalk debugger to be rendered, but all render-
ing depends on the BitBlt primitive. Once we had a working
version, however, we were able to incrementally tweak the
BitBlt implementation from within Smalltalk, easily revert-
ing changes if they broke code paths. Overall, the Smalltalk
BitBlt-implementation was both hardest and easiest to de-
bug— hardest when rendering issues prevented the debugger
from showing, because then we were unable to inspect the
state of the system, and easiest when the issues were rel-
atively minor (such as color issues with BGR versus RGB
pixel formats), because we could directly inspect and fix these
issues in the Squeak debugger without even having to restart
the image.

Reusing Smalltalk code to replace primitives has made
development of the RSqueak/VM easier. There are several
primitives in Squeak that have a correct Smalltalk implemen-
tation in case the primitive fails. The Smalltalk code for the
primitives we presented has been in development for a long
time — the BitBlt code originated with Smalltalk-80 [10],
the replaceFrom:to:with:startingAt: method is too old to
have a correct timestamp, and the large integer operations

8 https://github.com/topazproject/topaz/issues/486 (retrieved April 7,
2015)

https://brendaneich.com/2008/08/tracemonkey-javascript-lightspeed/
http://www.chromium.org/blink#architectural-changes
http://doc.PyPy.org/en/latest/faq.html#do-cpython-extension-modules-work-with-PyPy
http://doc.PyPy.org/en/latest/faq.html#do-cpython-extension-modules-work-with-PyPy
https://github.com/topazproject/topaz/issues/486


and hashing code are each more than 20 years old. Even in
a community as small (compared to more mainstream lan-
guages like Ruby and Python) as Squeak/Smalltalk, there
exist multiple different VM-implementations besides the one
we already presented: the RoarVM [14] for running on mul-
tiprocessor systems, SqueakJS [8] which runs in the browser,
Potato9 for running on the JVM. To keep them compatible
with the standard implementation as it evolves requires con-
siderable effort from the VM maintainers, and thus most VMs
have fallen behind. This effort can be lowered by replacing
VM primitives with pure Smalltalk code.

Being able to change the primitives in Smalltalk also
lowered the barrier to inspecting and thinking about im-
provements to the implementation. In contrast, changing the
RSqueak/VM primitives requires a current checkout of the
PyPy and RSqueak/VM sources, and build environment set-
up for 32 bit compilation. Similarly, changing the Interpreter
VM requires an SVN checkout of the C sources and the Slang
code10. In either case, changing the primitives requires su-
perficial knowledge of the general VM structure and some
familiarity with C or RPython.

***

In this work, we studied the impact dynamic trace com-
pilation has on the decision to implement behavior as primi-
tive. When deciding whether to implement behavior as prim-
itive, programmers weigh ease of implementation, reuse, and
changeability against speed, security, and platform behavior.
Our results show that due to the advances of tracing JITs and
VM implementation techniques, the speed argument has lost
some of its weight, but there is still about one magnitude of
speed difference remaining. However, we are confident that
for some primitives this difference can be removed almost en-
tirely, and we argue that the costs of implementing behavior
primitive are palpable and not increasing the primitive count,
or even actively reducing it, is worth considering.

Future work can go in several directions. RSqueak/VM
itself has some potential for improvement. First, neither
the fact that objects cannot change in size after creation,
nor that there are some objects and methods which can
be assumed constant during tracing are exploited by the
VM so far. Second, although the standard Squeak VM is
limited to 31 bit integers due to tagging, RSqueak/VM is not.
However, the wider range is not currently exploited nor do
we know if the image will break when the small integer range
changes. Third, we are working to fully apply strategies [5] to
RSqueak/VM. Many full objects used in primitive operations
(such as forms, rectangles, and points) have only fields of the
same types. Using strategies, these may be stored unboxed
and thus help the JIT eliminate more object allocations and
improve performance further.

9 http://sourceforge.net/projects/potatovm/ (retrieved March 29, 2015)
10 https://wp.me/p1sRgQ-2Y (retrieved March 29, 2015)
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