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Abstract: Logic puzzles such as Sudoku are described by a set of properties that a valid solution must have. Con-
straints are a useful technique to describe and solve for such properties. However, constraints are less suited to express
imperative interactions in a user interface for logic puzzles, a domain that is more readily expressed in the object-
oriented paradigm. Object constraint programming provides a design to integrate constraints with dynamic, object-
oriented programming languages. It allows developers to encode multi-way constraints over objects using existing,
object-oriented abstractions. These constraints are automatically maintained at run-time. In this paper we present an
application of this design to logic puzzles in the Squeak/Smalltalk programming environment, as well as an extension
of the design and the formal semantics of Babelsberg to allow declaring constraints using the imperative collection
API provided in Squeak. We argue that our implementation facilitates creating applications that use imperative con-
struction of user interfaces and mutable program state as well as constraint satisfaction techniques for different parts of
the system. The main advantage of our approach is that it moves the burden to maintain constraints from the developer
to the runtime environment, while keeping the development experience close to the purely object-oriented approach.
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1. Introduction

Logic puzzles are declarative. Their rules declare what a valid
solution should look like, and they can then be solved without
any pre-described algorithm other than logical deduction tech-
niques. A famous example is Sudoku. The rules of a logic puzzle
describe properties that should be maintained while solving the
puzzle. For example, in Sudoku, the properties are that each row,
column, and box contain the numbers from 1 to 9 exactly once.
The properties of a logic puzzle can be formulated as formal con-
straints, which a constraint solver can use to find one or more
solutions or to check if a solution input by the user is valid [12].

Babelsberg [5] is a design to integrate constraints into object-
oriented languages in a way that allows programmers to dy-
namically create and satisfy constraints on objects. The de-
sign is a strict extension of the object-oriented semantics of
the underlying host language. Babelsberg uses object-oriented
method definitions to define constraints rather than a constraint
(DSL) [17], [19]. As a consequence, Babelsberg respects encap-
sulation and object-oriented abstractions. The design also sup-
ports solver features such as constraint priorities [2] and incre-
mental resolving [8]. Recently, the design has been extended
to allow multiple constraint solvers to cooperate to find a solu-
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tion [6].
This design lends itself well to build interactive user interfaces

for logic puzzles where the puzzle rules are expressed as con-
straints on the Morphic objects. User interface frameworks such
as Morphic [15] are inherently imperative – the user interface
consists of compositions of Morphs that have state and react to
user input events. Morphic was first implemented in Self, with
later implementations in Squeak [16] and JavaScript [20].

In a standard imperative programming language, constraint
solving and satisfaction is implemented explicitly. Using just
Morphic in a standard imperative language, developers have to
ensure that all event sources that might change the user inter-
face trigger calls to resatisfy constraints in some way. In con-
trast, Babelsberg maintains constraints automatically, regardless
of how the system was perturbed. This reduces the amount of
knowledge the developer has to have about possible event sources
for the Morphs. We argue that this is more in line with the encap-
sulation and abstraction desired in object-oriented applications.

An incomplete aspect of the original Babelsberg design was
that it only allowed constraints on objects and their parts, but did
not allow multi-directional solving for constraints on collections.
In the context of logic puzzles the rules are usually defined on
sets of objects (for example, Sudoku constraints are defined on
rows, columns, and boxes.) In prior work, we experimented with
an extended Squeak/Smalltalk based prototype implementation of
the Babelsberg design — Babelsberg/S — to support operations
on collections of objects [9]. In this paper, we present a general
design from this prototype implementation, as well as semantic
rules to supplement the existing Babelsberg semantics [7].

Thus, the contributions of this work are:
• We describe an implementation of the Babelsberg design in
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Squeak/Smalltalk.
• We describe an extension to Babelsberg that let the pro-

grammer conveniently specify constraints on collections that
works even if the underlying solver does not support collec-
tion types.

• We present a technique for Morphic applications to inter-
act with constraints, using as a running example an inter-
active Sudoku application where constraints are resolved in
response to user input, and constraint solving affects the user
interface display.

• In an appendix, we present semantic rules to supplement the
formal Babelsberg design to support collection predicates.
To simplify the rules for the semantics, however, we assume
the solver supports uninterpreted functions to represent field
access (but not collections).

2. Object Constraint Programming in Squeak

This section describes how constraints are expressed in our
Squeak implementation of Babelsberg, called Babelsberg/S. For
our examples, we use the rules of a Sudoku puzzle.

1 constraint := [
2 (sudoku at: 1 at: 1) between: 1 and: 9
3 ] alwaysSolveWith: solver.

Listing 1: Defining the domain of a Sudoku cell.

Listing 1 shows the constraint for defining the domain of one
Sudoku cell. In general, a constraint in Babelsberg/S is specified
as a block that evaluates to a boolean — if the block evaluates to
true, the constraint is satisfied. As mentioned in Section 1, this
block contains Smalltalk code, rather than code written in a sep-
arate DSL. The variable sudoku in Listing 1 represents the grid
of cells in the interactive application from the outer scope and
the method between:and: is a predefined predicate on Squeak
numbers that just checks whether the receiver’s value is between
the upper- and lower-bound arguments. To actually turn this code
in into a constraint that can be handed to a solver, we send the
message alwaysSolveWith: to the block, passing as argument
an instance that implements the interface of the Bablelsberg/S
ConstraintSolver class. (It is also possible to solve the con-
straint with a default constraint solver, which is global inside the
Squeak image, by sending alwaysTrue.) While the Smalltalk
block can contain arbitrary Smalltalk code, asking the system to
interpret it as a constraint puts the same restrictions on the ex-
pressions insides the block as for previous implementations of
Babelsberg [5], [6]. These are a) an expression that is used as a
constraint must evaluate to a boolean (the constraint is that it eval-
uate to true), b) the expression should return the same result on
repeated evaluation (so that, for example, a random number gen-
erator would not qualify), and c) the expression should be free of
side-effects.

Translating Constraints in Babelsberg/S
To translate the Smalltalk expression into a form suitable for

a constraint solver, the constraint block is executed in a different
execution mode called constraint construction mode which uses
symbolic execution [3], [13] to create constraint expressions from

Fig. 1 The architecture of Babelsberg/S constraint construction mode.

the code. The block is only evaluated in constraint construction
mode when either alwaysTrue or alwaysSolveWith: are sent
to it, otherwise it is just an ordinary Squeak block.

Squeak/Smalltalk includes an in-image Smalltalk interpreter
that we instrumented to implement our constraint construction
mode. The resulting architecture is shown in Fig. 1. Squeak
stack frames can be reified into instances of subclasses of the
ContextPart class. These provide methods to interpret each
bytecode, a facility used by the Squeak debugger. Babelsberg/S
uses the instruments this interpretation to evaluate the bytecodes
in the constraint block. The alwaysTrue method creates a new
Process (a Smalltalk green-thread) that is interpreted stepwise
using the interface of the ContextPart objects. Where inter-
pretation in constraint construction mode deviates from normal
Smalltalk semantics, we use ContextS [10] to instrument methods
whose behavior needs to change inside a constraint construction
mode layer.

Consider the constraint in Listing 1: the block
[(sudoku at: 1 at: 1) between: 1 and: 9] is compiled
into bytecode. A new Squeak process is created (but not
scheduled) by sending the method newProcess to it. The process
has a stack with exactly one frame (a ContextPart object.)
That frame’s program counter is set to 0 and it contains the
bytecode for the constraint block. The Babelsberg/S interpreter
then steps through this frame by interpreting the bytecodes one
by one, including doing method lookup and creating new frames
as needed. An important consequence of this is that a variable
binding that is used as receiver in a constraint block cannot
be allowed to change, because then the lookup, and thus the
constructed constraint, might be invalid. Thus, for Listing 1,
the solver cannot simply find a collection that already satisfies
the constraint and change the binding of the sudoku variable.
Instead, it has to change the contents of the underlying collection
to satisfy the constraint. This restriction does not apply to
bindings that were created during constraint construction, such
as return values of methods – so the solver can (and will) change
what the method at:at: returns when sent to sudoku.

The modified interpreter creates ConstraintVariable ob-
jects for instance variables that are accessed through ac-
cessor methods. All methods are then called on these
ConstraintVariable objects. Operator methods such as +, -,
or <= construct constraint expressions instead of evaluating di-
rectly. Other methods that the solver does not directly support
are partially evaluated to break them down into these primitive
operations. In the case of between:and:, for example, the con-
straint constructed from partially evaluating the method would
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be equivalent to specifying n >= lower and: [n <= upper] di-
rectly. If the method evolves, the constructed constraints auto-
matically change as well, since they are constructed from the
same underlying code. By re-using existing methods in this way,
Babelsberg/S supports the object-oriented abstractions that al-
ready exist in the system. This is equivalent to the Babelsberg
implementations in Ruby and JavaScript [5].

Additionally, the interpreter creates instance-specific method
wrappers to intercept access to these variables. The wrap-
pers delegate read and write access to the corresponding
ConstraintVariable, which calls the solver as needed to keep
the constraints satisfied and returns the value of the variable from
the solver’s solution.

In contrast to JavaScript or Ruby, Squeak/Smalltalk does not
allow instance-specific behavior directly. All methods and in-
stance variables are declared on the class. However, wrapping
accessors on the class of any encountered object would cause
all instances of that class in the system to go through our wrap-
per, which imposes considerable performance overhead. To wrap
only the encountered instances, we create anonymous subclasses
of their class, and use Smalltalks become: facility to change the
class of the object to the anonymous subclass. We then install our
wrappers only on this instance-specific subclass.

This solution to instance-specific behavior means that there is
no run-time overhead when using objects that have no constraints
on them. Constrained objects are easily discovered through
Smalltalk’s meta-programming interface, because their class has
no name and only wraps the accessors encountered in the con-
straint. We encountered methods in the core system that check for
the class of its arguments not using the isKindOf:method (which
works correctly for instances of subclasses), but by directly com-
paring the class pointer. Although one might consider this as a
bug in the method, we are working on a solution to instance-
specific behavior that is completely transparent to these common
uses of meta-programming.

After constraint construction has interpreted the block, the gen-
erated constraint expressions are added to a Constraint object,
which is passed to the constraint solver. We explain the solv-
ing process in more detail in Section 3.3. If solving succeeds,
the method alwaysSolveWith: returns the newly created con-
straint object. This object can then be used for reflection (e.g.,
to inspect which variables participate in the constraint) as well
as to dynamically disable and re-enable the constraint. If solving
fails, an exception is raised, which must be handled by the pro-
grammer. In that case, the constraint is not added and the system
remains unperturbed.

3. Constraints on Collections of Objects

The original Babelsberg design did not support constraints on
collections directly; rather, it was proposed to use a specialized
solver for collections [5]. The reason for this were two-fold:

First, imperative control-flow structures like unbounded loops
and early multiple returns do not work with our previous de-
sign for constraint construction mode. A core problem with con-
straints over collections is that, in imperative code, predicates are
expressed through loops over the length of the collection. This

poses problems when the length of the collection is not fixed
that could lead to unbounded unrolling. In the presence of early
returns in the code block of the loop, not enough of the loop
might be unrolled and the system might miss possible solutions.
Other constraint programming systems such as Backtalk [18] or
OPL [21] deal with this by providing special collection operators
such as forall to express constraints, and by disallowing im-
perative control flow statements inside of these functions. For
Babelsberg, however, we find this solution undesirable since we
want to support ordinary object-oriented code and re-use the ex-
isting predicate methods on collections.

Second, our original design relied on the solvers supporting
the basic operations (such arithmetic) that are used in constraints.
For collections, that means the solvers would have to support field
access and variable sized collections, if these are available in the
language. Many solvers that are used in interactive systems do
not support this, however. In Babelsberg, we want to support and
use many different solvers in a cooperating fashion, and we can-
not rely on support for collections. A key issue in this extension
to our design is thus the translation of collection predicates into
constraints in a way that does not require the underlying solver to
support collections.

To model an entire Sudoku puzzle, we need to assert the
constraint given in Listing 1 for each cell. With the existing
Babelsberg design, this would either require a solver for collec-
tions that supports domains for numbers, or alternatively, loop
over the cells imperatively, as shown in Listing 2.

1 (1 to: sudoku size) do: [:index |
2 [(sudoku at: index) between: 1 and: 9]
3 alwaysSolveWith: solver].

Listing 2: Defining the domain of Sudoku cells with a loop.

The code has two main problems, however. First, if we con-
sider collections that can grow (or shrink), these constraints
would then be incorrect — they would either have to be redacted
and the loops re-executed or after adding the above constraints
once any changes to the size of the collection must be pro-
hibited. Second, many object-oriented languages including
Squeak/Smalltalk come with APIs to work with collections, and
rather than iterating manually, a method such as allDifferent,
if available on the Collection class, should work in a constraint,
because it satisfies our restrictions on constraint expressions that
they return a boolean and are free of side-effects. The developer
should not have to know that this method encapsulates a loop over
the collection to decide if it can be used in constraints:

1 [collection allDifferent] alwaysTrue.

The formal design of Babelsberg indeed does support such
methods, but only for solving in the forward direction, that is,
to execute them and use the result as a constant [7]. In this case,
solving in the forward direction would be of little use, however,
since if the result of the call to allDifferent is not already true,
there is nothing the system can do, since the result when treated
as a constant is simply false.

Supporting collections in constraints more directly is thus use-
ful in this application, and more generally in any application
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that deals with finite domain problems as well as representations
of those problems (graphical or otherwise) that are more read-
ily expressed using imperative code. This combination makes a
Sudoku application a good example of the kinds of applications
we want to support with our design.

There are a number of collection predicates that are commonly
used in constraints and that would be useful to support. For these,
we propose that implementers of Babelsberg-like languages must
check their actual implementation and decide for each if they
should allow them in a modified form of constraint construction
mode. In this mode, rather than simply executing through com-
plex methods involving loops, we convert any operations involv-
ing collection elements that are used as tests into constraints. Any
indexing variable is treated as read-only. If the test would trigger
an early return, we ignore the return and continue.

Depending on the type of recognized test, the generated con-
straints must then be added to a conjunction or disjunction. The
system determines whether to use a conjunction or disjunction if
the method uses an early return optimization. If, depending on an
element test, the method would early return true, the tests must
be combined in a disjunction, since it is enough to satisfy just one
test to have the method return the same. Otherwise, the elements
are negated and added in to a conjunction. Thus, an implemen-
tation of allDifferent as in Listing 3 would be turned into a
conjunction of pair-wise inequality constraints.

1 allDifferent
2 1 to: self length do: [:i |
3 1 to: self length do: [:j |
4 (i ˜= j and: [(self at: i) = (self at: j)])
5 ifTrue: [↑ false]]]
6 ↑ true
Listing 3: A possible implementation of allDifferent.

The code for allDifferent would be expanded into a con-
junction of constraints, because the early return is false. The
constraints in the conjunction would be for the tests to that early
return, pair-wise constraining (self at: i) = (self at: j) to
be false (with the values of i and j fixed for each constraint).
In addition, supposing the length method represents a field ac-
cess, this field is also used in the constraint, and thus the system
can track any change to this field to trigger regenerating the con-
straints on the collection.

Some common predicates available on collections in
Squeak/Smalltalk are translated as per Table 1. Note that
both the test if some element satisfies a particular predicate as
well as the test for membership—the latter being a special case of
the former—require a disjunction. Without any other constraints,
and since our design does not use Prolog-style backtracking,
they would probably always be satisfied by setting the first—or
last, depending on the concrete implementation—element of
the array. Even though this list contains only a few predicates,
in practice many languages come only with a small set of

Table 1 Mapping collection predicates to declarative representation.

anySatisfy: ∃x ∈ array : f (x)
noneSatisfy: ∀x ∈ array : ¬ f (x)
allSatisfy: ∀x ∈ array : f (x)
includes: y.∃x ∈ array.x = y

primitive collection types that are supported at a language level.
Languages with a rich collection library such as Common Lisp or
Squeak/Smalltalk [11] are built around a small number of types
and primitive operations to access and store indexed elements
in an object. Thus, implementing the special support needed
to provide these basic predicates enables their use in a variety
of contexts, including methods that are built on top of these
predicates.

An advantage of this general approach to supporting con-
straints on collections multi-directionally is that we can now also
express parts of the Sudoku user interface using constraints using
only the existing methods available for Morphs. For example, to
ensure that the cells always have the correct size to fill the Sudoku
UI, we could use the constraint given in Listing 4. Using this con-
straint, we abstract from the division operation on 2d points (the
return value of the extent method for Morphs) and we allow the
user to manipulate both the size of the Sudoku UI as well as the
size of a single cell, and have the rest of the user interface react
to update the UI consistently.

1 [sudokuUi submorphs allSatisfy: [:m |
2 m extent = (sudokuUi extent / 9)]] alwaysTrue.

Listing 4: Constraining graphical cell sizes.

3.1 Constraints on User-Defined Methods
We do not intend for language implementers to support every

possible method that a collection may have in a practical imple-
mentation, in particular if that collection may be extended with
user-defined methods. As an example, consider an iterative sum
method as in Listing 5.

1 sum
2 | answer |
3 answer := 0.
4 1 to: self length do: [:i |
5 answer := answer + (self at: i)].
6 ↑ answer

Listing 5: A possible implementation of sum.

We can of course use this method in the forward direction in a
constraint:

1 a := Array new: 2.
2 a at: 1 put: 10.
3 a at: 2 put: 20.
4 s := 30.
5 [s = a sum] alwaysTrue.
6 a at: 1 put: 100.

After the constraint is executed, s is still 30 (since the con-
straint is already satisfied); then after setting the first element of a
to 100, s becomes 120. However, the method doesn’t work back-
wards — for example, we can’t constrain the sum of the array and
expect the system to update one or more elements to satisfy the
constraint. So the constraint in the last line below will be too hard
for the system to solve:

1 a := Array new: 2.
2 a at: 1 put: 10.
3 a at: 2 put: 20.
4 [50 = a sum] alwaysTrue.
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We have found a design pattern for user code that works well
in these situations that can provide something that works both
forward and backward. Rather than using a method that returns
the calculated sum of the elements, we eagerly update the sum
as the array changes in a variable. This can be done by writing
an ordinary method that sets up a recursive network of addition
constraints over the array elements. The sum becomes an instance
variable of our collection, and the implementation of that collec-
tion must take care to correctly initialize the constraint network
when it is created or an element is added or removed. An exam-
ple of such an initialization is given in Listing 6. The advantage
for code using the collection’s sum in further constraints is that
it is used simply as a variable — constraints on it can work both
ways, and it can even be assigned and the array changes to satisfy
the constraints.

1 initializeSum
2 self.length = 0
3 ifTrue: [[self sum = 0] alwaysTrue]
4 ifFalse: [[self sum = (self at: 1) +
5 self allButLast sum] alwaysTrue].

Listing 6: A possible initialization for a constrainable sum.

3.2 Implementing Constraints on Collections in
Babelsberg/S

Babelsberg/S implements a prototype of our scheme to support
constraints on object-oriented collections. As a result, the domain
constraint of a Sudoku puzzle can be expressed through sending
the collection predicate allSatisfy: to sudoku (Listing 7).

1 [sudoku allSatisfy: [:cell | cell between: 1 and: 9]]
2 alwaysSolveWith: solver.

Listing 7: Defining the domain of all Sudoku cells with the Collec-
tion API.

The extension to support collections directly in Babelsberg/S
leverages the fact that Smalltalk comes with only one fixed-
size pointer array type, upon which the Smalltalk collections
library builds. This type provides three methods implemented
in primitives for all low-level access: at:, at:put:, and
replaceFrom:to:with:startingAt:.

Babelsberg/S subclasses the basic Array class and overrides
the three low-level access methods to intercept any modifications
to the array. In addition, it overrides the copyFrom:to: method,
which is regularly used in Squeak to access sub-sequences of an
array.

In constraint construction mode, any array that is visited in
the dynamic extent of the execution is transparently replaced
by the Babelsberg/S subclass. Besides the overridden methods,
this subclass is a completely transparent proxy. Each element
in the array that participates in the constraint is wrapped in a
ConstraintVariable. The predicates of the collection API
are straightforward to support. The predicates anySatisfy:,
noneSatisfy:, and allSatisfy: are mapped as per Table 1.
Note that for the first relation, a disjunction over all elements
must be created. For solvers that do not support disjunctions,
Babelsberg/S forces the first element to satisfy the block. This
prevents the system from finding solutions in many cases. To find

additional solutions with solvers without disjunctions requires
backtracking in the case of unsatisfiable constraints. This is not
implemented yet, but is left for future work.

In general, any predicate method available on collections can
be used in constraints, as per our design for supporting user de-
fined methods as collection predicates. For example, predicate
methods such as allDifferent: can be mapped to pair-wise
inequalities by simply interpreting their implementation in con-
straint construction mode. Other methods that are useful in con-
straints reduce all elements of a collection and then express prop-
erties over those reductions. Reduction methods include the sum
method mentioned above, as well as the count: method that re-
turns the number of elements that satisfy a particular condition.

The constraints created with these methods are reconstructed
when the elements in the array change, but since the size of ar-
rays is fixed, the length of the linear expressions is bounded, so
in the Babelsberg/S implementation, we only initialize intermedi-
ate variables once, as the underlying array cannot grow or shrink.
Since we only need to initialize them once, this can be taken care
of by the framework.

Predicates over expressions are useful to state constraints on a
collection as a whole, rather than on each of its elements. We have
used this, for example, in our implementation of the Outside-
Sum-Sudoku. Here, all elements in a collection must sum to the
number outside the Sudoku. When one element changes, the oth-
ers must change, too, to ensure the total sum does not.

We have found few use-cases for the most general collection-
methods do:, collect:, and select: that could not be expressed
using more specific methods. These methods create new collec-
tions from existing ones. What the developer means when using
them and how to translate that meaning to the solver is less clear
in the general case, and we do not support them for now. We have
found that uses of select:, collect:, and detect: in predicate
expressions can usually be replaced by the direct predicate meth-
ods. We have found that the iteration method do: is usually just
used to express constraints on each element, and can usually be
pulled outside of the constraint block. We might lift this restric-
tion in the future if we find a significant number of uses of these
methods in constraints that are much more expressive than their
direct predicate counterparts. Until then, and for simplicity in the
implementation, we do not allow these methods in constraints.

3.3 Maintaining Constraints in Babelsberg/S
Once asserted, constraints need to continue to be satisfied un-

til they are disabled, all objects they apply to are garbage col-
lected, or the program stops. To ensure this, the Babelsberg de-
sign follows the perturbation model established by the Kaleido-
scope constraint-imperative language [14]. This model is similar
to reactive systems in that changes to one part of the system prop-
agate to other parts. In reactive systems, these changes are made
by sampling a continuous process or through discrete events. In
Babelsberg, the changes are the concrete event of assigning a new
value to a variable that participates in a constraint. These changes
then potentially propagate to other variables to keep constraints
satisfied.

Each variable that participates in a constraint implicitly re-
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acts to programmatic changes to its value by calling one or
more solvers to re-satisfy the variable’s constraints. Our wrap-
pers around accessors intercept changes to variables that were
used in a constraint and call suggestValue: on their associated
ConstraintVariable. This adds a temporary equality constraint
for the new value to the underlying constraint solver. The solver
tries to solve all constraints. If the constraints are satisfiable, the
new value is assigned. As a side-effect, other variables might
change to satisfy constraints. If the solver cannot find a solution,
a runtime error is generated and the new value is ignored.

In our Sudoku example, if a new value is assigned to a cell, the
Sudoku constraints are solved in the background. If the solver
finds a solution, the cell changes its value and the rest of the
puzzle is adjusted to keep the Sudoku solveable. That is possi-
ble because the Sudoku application interacts with the underlying
constraints.

Babelsberg/S can accommodate a variety of constraint
solvers. Currently, it supports the Squeak implementation of
Cassowary [1], and Z3 [4] through an IPC interface.

4. Evaluation

The constraints in Sudoku are easy to state, but not always easy
to satisfy. A correct solution must assign each cell a number be-
tween 1 and 9 inclusively, while at the same time ensuring the no
number occurs twice in a row, a column, or a block of 3 by 3 cells.
We argue that logic puzzles such as Sudoku are good examples
for interactive constraint applications. The user interface (written
in Morphic) is shown in Fig. 2.

Listing 8 shows the constraints necessary to solve this Sudoku
puzzle. These constraints use the Z3 constraint solver. Line 1
ensures that the user cannot change the numbers that were given
initially. In some solvers, such as Cassowary, stay constraints
can be used to express that the solver may not change a given
variable, or to only change it if the constraints cannot be sat-
isfied otherwise. Stay constraints are currently not supported
in Z3, but will be in future versions. Currently, the method

Fig. 2 The Morphic UI of the Sudoku puzzle. Some numbers (in black) are
given initially. Each free cell allows the user to input a single number
(in blue). The system can also generate hints (in red).

addConstraintsForAllGivenNumbers iterates over cells and cre-
ates a constraint that each cell that already has a value is always
equal to just that value. Lines 3–4 assert the constraint that all
cells must contain numbers between 1 and 9. Finally, lines 6–
10 ensure that no row, column, or 3 × 3 box of cells can have
duplicate numbers.

Note that the Squeak collection API does not contain a method
allDifferent. Babelsberg/S adds this predicate for conve-
nience. It is a normal object-oriented method in the Collection
class that iterates over all elements in the collection and tests
them for pairwise inequality. In ordinary code, this is just a test
– the constraint interpreter, however, creates an inequality con-
straint expression for each comparison, exploding the allDifferent
method into multiple constraints that the solver can understand.
This means also, that subclasses can override the method and any
different behavior will be reflected in the created constraints.

Note also that the normal accessor methods for rows and
columns from Squeak Matrix objects are used, too. The Sudoku
grid is just a subclass of Matrix that, besides a method to as-
sert constraints on the given numbers, adds the atBox: accessor
method to access each of the 9 boxes of size 3 × 3.

1 sudoku addConstraintsForAllGivenNumbers.
2

3 [sudoku allSatisfy: [:cell |
4 cell between: 1 and: 9]] alwaysSolveWith: solver.
5

6 (1 to: sudoku rowCount) do: [:index |
7 [(sudoku atRow: index) allDifferent &
8 (sudoku atColumn: index) allDifferent &
9 (sudoku atBox: index) allDifferent]

10 alwaysSolveWith: solver].

Listing 8: All constraints of a Sudoku puzzle.

As can be seen from Listing 8, the amount of code necessary
for specifying all properties of a Sudoku puzzle is very small.
With these, a solver can solve an arbitrary given Sudoku puzzle.
The constraints are completely decoupled from the specific Su-
doku puzzles and their given numbers.

In Babelsberg, constraints can be constructed, enabled and dis-
abled at run-time, and, because they work correctly with method
polymorphism, it is possible to subclass a logic puzzle to con-
struct another by adding or removing constraints only. As an ex-
ample, we have created Sudoku puzzle subclasses for Diagonal

Sudokus and Outside-Sum Sudokus. In the former, the numbers
of the two main diagonals have to be all different, and in the lat-
ter, the first three numbers in a row or a column must add up to a
specific sum.

For a Diagonal Sudoku, provided there are accessor methods
for the two diagonals, the method to create constraints is shown
in Listing 9.

1 super createConstraints. "from normal Sudoku"
2 [(self diagonalFromTopLeft allDifferent)
3 and: [self diagonalFromTopRight allDifferent]]
4 alwaysSolveWith: solver.

Listing 9: The Diagonal Sudoku.

With object-constraint programming (OCP), it does not matter
in which way a constraint variable or a constraint changes. The
constraint satisfaction automatically works on each disturbance

c© 2016 Information Processing Society of Japan 922



Journal of Information Processing Vol.24 No.6 917–927 (Nov. 2016)

of the system. Currently, the values of cells only change when
the user enters a new value into the morph that represents a cell.
If that value is not a number between 1 and 9, or the Sudoku can-
not be solved by adding this value, the solver rejects the input.
However, the constraints encode no source for the change, so it
does not matter if the change actually occurred through keyboard
input. The Sudoku could also be calculated entirely by the com-
puter, or the game could allow remote users to send values over
the network. The constraints thus provide flexibility, because the
developer does not need to know all events that might change the
puzzle.

5. Conclusions

We have argued that OCP facilitates reactive systems in which
dependencies between objects can be declared as constraints. It
modularizes the relationship between objects and decouples con-
straint satisfaction from the application. Constraints can be dy-
namically added and removed, and are maintained automatically.
This makes them useful for writing interactive applications. As an
example, we implemented applications for specifying and solv-
ing different variants of Sudoku with constraints with a graphical
user interface. The user can change the values of the constraint
variables interactively without breaking the properties of the Su-
doku. The application reacts on the user input by resolving the
underlying constraints.

There are two major directions for future work. Regarding the
implementation, we plan to implement an alternative solution to
provide instance-specific wrappers. This will improve the com-
patibility of constrained objects with existing Smalltalk code. We
also plan to support more features of the Babelsberg design as
found in its JavaScript and Ruby implementations, such as incre-
mental resolving, local propagation, and identity constraints.

Furthermore, we plan to leverage the Smalltalk meta-
programming facilities to explore how to aid developers in de-
bugging and understanding constraints. If incorrect constraints
are generated, why? If the solver cannot find a solution or is slow,
what can be done? These are still open questions for Babelsberg,
because constraints cannot be easily debugged.

Figure 3 shows how we extended the Squeak debugger to sup-
port stepping into constraints. Our debugger has an additional
pane on the top right 1©, and a special inspector on the right hand
side 2©. The debugger works as it normally would when running
imperative code, but upon entering contraint construction mode,

Fig. 3 Squeak debugger with constraints.

the debugger additionally tracks the constraints as they are cre-
ated. In the example, we assert that pt1 and pt2 should be equal
3©. From just looking at the expression we cannot tell how many
constraints would be created. We could infer from the imple-
mentation if the = method for 2d points that we will create two
constraints, one for each pair of dimensions on those two points,
but a debugger allows us to observe this fact and see the equa-
tions that have been translated for the Cassowary solver in the top
right pane. On the right hand side, we can see the details of the
first constraint and for example change its strength or the gener-
ated expression to see how that changes the program behavior.
Additionally, we can step into the procedure that assigns updated
values from the constraint solver to the program variables and
thus see the global effects of a constraint. This is particularly use-
ful to understand which solution a solver chooses for a particular
constraints and how many variables are changed in which way.
We plan to extend this prototype into a debugger that is useful to
answer different questions that arise when developing with con-
straints.

Despite these avenues for future work, we think that
Babelsberg/S is already a useful implementation of object-
constraint programming and we plan to include it in a future
release of the R/Squeak distribution, a Squeak distribution that
includes research projects considered useful for general purpose
development *1.
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Appendix

A.1 Extension to the Formal Semantics of
Babelsberg

The semantic rules presented here are an extension to the se-
mantics of Babelsberg/Objects, presented in the companion tech-
nical report to [7]. This appendix should be read as an additional
chapter after that companion report.

The syntax is augmented to include an element P©, which
ranges over the core predicates on collections such as
allSatisfy:, anySatisfy:, includes: and so on. For
languages which support re-definition of the methods that come
with the language, we assume that the element matches only
the original implementations, not user-defined re-definitions.
Furthermore, we augment the syntax to also support accessing
records using expressions.

L-Value L ::= x | e.l | e[e]
Label l ::= record label names | P©

Table A·1 gives an overview of the additional judgments used
in this extension of the semantics. We add two opaque helper
judgments. The first converts constants to label names, and the
second checks if a constant value refers to an array class type.
Both are defined in terms of the host language API. Note that
for languages the support re-definition of core classes, the second
judgment will return false if such re-definition has taken place.

Besides those additions, we only add the extended evaluation
rules for dynamic field access and the special constraint construc-
tion mode (ccm) for collection APIs. Note that we do not add a

typing rule for dynamic field access — during inlining, such ac-
cess are turned into ordinary field accesses, and their expressions
are required to stay equal to the current value.

<E|S|H|C|I|el> ⇓ <E′|H′|C′|I′|c> asLabel(c) = l
<E′|S′|H′|C′|I′|e.l> ⇓ <E′′|H′′|C′′|I′′|v>
<E|S|H|C|I|e[el]> ⇓ <E′′|H′′|C′′|I′′|v>

(E-ExpField)

<E,S,H,C,I,el>� <E′,eCl,e
′
l>

<E′|S|H|C|I|el> ⇓ <E′′|H|C|I|c> asLabel(c) = l
<E′′,S,H,C,I,e.l>� <E′′′,eC,e

′>

<E,S,H,C,I,e[el]>� <E′′′,eCl∧eC∧e′l=c,e′>
(I-ExpField)

We extend the inlining judgment to also work for statements.
This is used in the inlining judgment to translate calls to the well-
known collection predicates. These predicates will not match
the previous I-MultiWayCall rule, because their implementa-
tions have more than a single return expression, so that rule is
unchanged. Because we allow a limited subset of statements, in-
cluding assignment to locals in inlining collection predicates, the
inlining rule including statements also returns an updated scope.
In addition, the constraint expressions that are returned by the
inlining rule for statements are split into groups for conjunctions
and disjunctions — this is required to track, based on the early re-
turns that are encountered, whether of set of inlined expressions
all just one needs to be satisfied.

We define a helper rule to inline collection predicates:

<E′|S|H|C|I|e0> ⇓ <E′′|H|C|I|v>
E;H 
 v : T isBasicCollection(T) = true
<E0|S|H|C|I|e1> ⇓ <E1|H|C|I|v1>

...

<En−1|S|H|C|I|en> ⇓ <En|H|C|I|vn>

eC = (e=v ∧ e1=v1 ∧ · · · ∧ en=vn)
lookup(v,l) = (x1 · · · xn,s; return c)
enter(En,S,H,C,I,v,x1 · · · xn,e1 · · · en)

= (E′,Sm,H,C,I)

preparePredicate(E, S,H,C, I,e.l(e1,. . .,en))
= (E′, Sm, s; return c, eC)

(PreparePredicate)

This rule sets up the required equalities for all the arguments
and the receiver, and is essentially the same as I-Call. As an ad-
dition, it limits any inlining to collection predicates that return a
constant as a final statement. In the two rules that follow, this
constant is further limited to be either true or false.

preparePredicate(E,S,H,C, I,e. P©(e1,. . .,en))
= (E′, S′, s; return c, e0)

c = true <E′,S′,H,C,I,s>�� <E
′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P©(e1,. . .,en)>� <E′′,e0∧e1,eC>

(I-PositivePredicate)
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Table A·1 Judgments and intuitions of additional and changed semantic rules.

Opaque Judgments
asLabel(c) = l Constant c converted into a label yields l

isBasicCollection(T) = c When type T corresponds to a known basic collection type that is supported in constraints with predicates, c is true.
Constraint Solving
<E,S,H,C,I,e>� <E′,e0,e

′>
Inlining expression e in S is equivalent to e′ in E if eC evaluates to true.

<E,S,H,C,I,s>�� <E′,S′,e0,ec,ed>

Inlining statement s is equivalent to solving conjunction of constraint expressions eC and the disjunction of constraint expres-
sions eD if e0 evaluates to true. This inlining step returns an updated environment E′ and scope S′.

Helper Rule
preparePredicate(E,S,H,C, I,e.l(e1,. . .,en)) = (E′,S′, s; return c, eC)

Preparing the method call e.l(e1,. . .,en) for inlining returns and updated environment E′, the fresh method scope S′, the
method body s; return c, and is valid if eC evaluates to true.

preparePredicate(E,S,H,C, I,e. P©(e1,. . .,en))
= (E′,S′, s; return c, e0)

c = false <E′,S′,H,C,I,s>�� <E
′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P©(e1,. . .,en)>� <E′′,e0∧e1,eC ∧ eD>

(I-NegativePredicate)

We use two separate rules for inlining through collection predi-
cates that return true or false as their final statement. For meth-
ods that return true any disjunction, which would be created by
an early return true, does not have to be fulfilled, as even without
the early return the method would return true. Conversely, when
the method returns false, fulfilling any conjunction will not suf-
fice, because that would simply prevent an early return false, but
not the final return statement.

Since we now allow inlining through a limited subset of state-
ments, we add inlining rules for those. Note that these rules can
only come into play through an I-*Predicate. Furthermore, all
rules not supplied here still lead to a failure to evaluate an I-
*Predicate rule, and fall back to the previous I-Call rule to set
up a one-way constraint on the result of the call.

S(x)↑ E(xg)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v>
<E′,S,H,C,I,e>� <E′′,e0,e

′>
S
′ = S

⋃{(x, xg)} E
′′′ = E′′

⋃{(xg, v)}
ec = (e0 ∧ e′ = v ∧ xg = v)

<E,S,H,C,I,x := e>�� <E
′′′,S′,ec,true,false>

(I-AsgnNewLocal)

Assignments are only permitted to local variables. Since we
can only start the statement inlining rules from a collection pred-
icate P©, we start with a fresh scope and any local variable must
be newly created first. In this case, assignment is turned into a
required equality between the fresh variable name and the initial
value. Note that we are using the expression judgment to evaluate
the right-hand side, but we disallow any changes to the heap or
the constraint stores.

S(x) = xg E(x′g)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v>
<E′,S,H,C,I,e>� <E′′,e0,e

′>
S
′ = S \ {x, xg} S

′′ = S′
⋃{(x, x′g)}

E
′′′ = E′′

⋃{(x′g, v)}
ec = (e0 ∧ e′ = v ∧ x′g = v)

<E,S,H,C,I,x := e>�� <E
′′′,S′′,ec,true,false>

(I-AsgnLocal)

Since we do not allow creating additional constraints even in
this extended inlining mode, there is no need to solve constraints
when we re-assign to a local variable. Furthermore, since re-
assignments are needed for looping over collection indices, and
these indices are also used to then access the collection, we cre-
ate a fresh global name for every re-assigned variable. This way,
every re-assignment turns into a new variable for the solver.

<E,S,H,C,I,skip>�� <E,S,true,true,true> (I-Skip)

<E,S,H,C,I,s1>�� <E
′,S′,e1,eC1,eD1>

<E′,S′,H,C,I,s2>�� <E
′′,S′′,e2,eC2,eD2>

eC3 =eC1 ∧ eC2 eD3 =eD1 ∨ eD2

<E,S,H,C,I,s1;s2>�� <E
′′,S′′,e1 ∧ e2,eC3,eD3>

(I-Seq)

The skip and sequence rules are straightforward. The con-
junction and disjunction expressions from the sequences are con-
nected appropriately.

s = if e then return true else s1

<E,S,H,C,I,e>� <E′,eC,e
′>

<E,S,H,C,I,s>�� <E,S,eC,true,e
′>

(I-IfThenReturnTrue)

s = if e then return false else s1

<E,S,H,C,I,e>� <E′,eC,e
′>

<E,S,H,C,I,s>�� <E,S,eC,e
′=false,false>
(I-IfThenReturnFalse)

We only support if-clauses used as early returns in this ex-
tended inlining mode. As described in Section 3, if the early
return would return true, the inlined conditional is used in a dis-
junction, otherwise it is used in a conjunction.
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s0 = while e do s

<E|S|H|C|I|e> ⇓ <E′|H|C|I|true>
<E′,S,H,C,I,e>� <E′′,e0,e

′>
<E′′,S,H,C,I,s>�� <E

′′′,S′,e1,eC1,eD1>

<E′′′,S′,H,C,I,s0>�� <E
′′′′,S′′,er,eCr,eDr>

e′ = e0∧e′∧e1∧er eC = eC0∧ eCr

eD = eD0∨eDr

<E,S,H,C,I,s0>�� <E
′′′′,S′′,e′,eC,eD>

(I-WhileDo)

s0 = while e do s

<E|S|H|C|I|e> ⇓ <E′|H|C|I|false>
<E′,S,H,C,I,e>� <E′′,e0,e

′>

<E,S,H,C,I,s0>�� <E
′′,S,e0∧e′=false,true,false>

(I-WhileSkip)

Finally, the while construct is now supported during inlining.
Note that the loop condition is inlined and required to stay at its
value. This prevents the solver from being able to change the loop
condition to, for example, satisfy the collection predicate only on
a subset of the collection.

There is an issue with these rules: they may generate con-
straints that are too strong. Consider the following method:

1 def some_or_none()
2 i := 0;
3 while i < self.length do (
4 if self[i] > 10 then return true;
5 if self[i] < 0 then return false;
6 i := i + 1
7 );
8 return true
9 end

10 always ary.some_or_none()

The constraint ensures that at least one element in the array is
larger than ten, or else all elements are negative. Here, the con-
straint would be satisfied if:

∃(x, i) ∈ ary. (x > 10 ∧ (∀(y, j) ∈ ary.¬(y < 0) ∨ j > i))
∨

∀(x, i) ∈ ary.¬(x < 0)

But the I-PositivePredicate rule would always require the con-
junction to be satisfied, so the solver would have to solve this
stronger constraints instead:

∀(x, i) ∈ ary.¬(x < 0)

We have decided to avoid additional complexity in the rules to
support generating the proper constraints in these cases. The code
above could easily be rewritten to use two methods which each
test one property, and then use these in a disjunction. Since the
set of supported collection predicates P© is defined as part of the
language, such methods may simply not be included in that set.
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