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Abstract

Constraints allow developers to specify properties of systems and have those properties be main-
tained automatically. This results in compact declarations to describe interactive applications avoid-
ing scattered code to check and imperatively re-satisfy invariants in response to user input that
perturbs the system. Constraints thus provide flexibility and expressiveness for solving complex
problems and maintaining a desired system state. Despite these advantages, constraint program-
ming is not yet widespread, with imperative programming still being the norm.

There is a long history of research on constraint programming as well as its integration with
general purpose programming languages, especially from the imperative paradigm. However, this
integration typically does not unify the constructs for encapsulation and abstraction from both
paradigms and often leads to a parallel world of constraint code fragments and abstractions inter-
mingled with the general purpose code. This impedes re-use of modules, as client code written in
one paradigm can only use modules written to support that paradigm — thus, modules require
redundant definitions if they are to be used in both paradigms. Furthermore, clear distinction
between the paradigms requires developers to learn about and fully understand both paradigms
to make use of them.

In our work, we have developed a design for a family of object-constraint languages called Ba-
belsberg. Our design unifies the constructs for encapsulation and abstraction by using only object-
oriented method definitions for both declarative and imperative code. Just like assertions, our
constraints are expressed using ordinary imperative expressions, including full objects and message
sends. Unlike assertions, however, the system attempts to satisfy them if they are not currently true,
and keeps them satisfied throughout the remaining execution. We provide a semantics that guides
implementers of our design to combine Babelsberg with existing object-oriented host languages
both semantically and syntactically and to demonstrate its feasibility with an executable seman-
tics and three concrete implementations of Babelsberg. To allow developers to use the power of
constraints without having to understand the specifics of different constraint solving strategies,
we integrate an architecture for using multiple cooperating solvers. Finally, based on our experi-
ence with the concrete implementations, we propose performant implementation strategies of key
features for object-constraint programming.

We argue that our approach provides a useful step towardmaking constraint solving a useful tool
for object-oriented programmers. We also provide example code, written in our implementations,
which uses constraints in a variety of application domains, including interactive graphics, physical
simulations, data streaming with both hard and soft constraints on performance, and interactive
puzzles.
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Zusammenfassung

Die Constraint-basierte Programmierung erlaubt es Entwicklern, erwünschte Eigenschaften ei-
nes Systems zu spezifizieren, und es dem System selbst zu überlassen, diese aufrechtzuerhalten.
Dies resultiert in kompaktem, deklarativem Quelltext. Dies steht im Gegensatz zu verstreutem
Quelltext, welcher bei imperativer Programmierung oft nötig ist, um Invarianten zu überprüfen
und wiederherzustellen. Constraints bieten in diesem Sinne Flexibilität und Ausdruckskraft um
komplexe Probleme zu lösen und erwünschte Systemzustände zu erhalten. Trotz seiner Vortei-
le ist die Constraint-basierte Programmierung jedoch nicht weit verbreitet, und die imperative
Programmierung ist heute die Norm.

Constraint-basierte Programmiersprachen sowie deren Integration mit Allzweckprogrammier-
sprachen, insbesondere aus dem imperativen Paradigma, haben eine lange Forschungsgeschichte.
Allerdings beschränkt sich die Integration bisheriger Arbeiten zumeist auf reine Interoperabilität
der Paradigmen, statt deren Abstraktionsmechanismen zu vereinheitlichen. Das führt dazu, das
Constraint-Quelltext und imperativer Quelltext vermischt werden, aber nicht einheitlich benutzt
und entwickelt werden können. Das schränkt die Wiederverwendbarkeit von Modulen ein, da
diese explizit für das eine oder andere Paradigma optimiert werden müssen, oder redundante Defi-
nitionen erfordern, um in beiden Paradigmen einsetzbar zu sein. Desweiteren zwingt der scharfe
Bruch beim Paradigmenwechsel die Programmierer dazu, beide Paradigmen voll zu verstehen,
bevor sie sinnvoll eingesetzt werden können.

In unserer Arbeit haben wir ein Design für eine Sprachfamilie von Objekt-Constraint-basierten
Sprachen entworfen, welches wir Babelsberg nennen. In unserem Design sind die Konstrukte zur
Abstraktion vereinheitlicht, indem nur objektorientierte Abstraktionen und Methodendefinitio-
nen für sowohl imperativen als auch deklarativen Quelltext verwendet werden. Genau wie impe-
rativer Fehlerprüfcode können Constraints nun objektorientierte Sprachkonstrukte verwenden,
und das System kann diese in eine deklarative Form übersetzen und für den Rest der Laufzeit kon-
tinuierlich prüfen und sicherstellen. Zu diesem Design präsentieren wir außerdem eine Semantik,
welche Sprachentwicklern als detaillierte Grundlage zur Integration unseres Designs mit existie-
renden, objektorientierten Sprachen dienen kann. Die Korrektheit dieser Semantik haben wir für
Schlüsseltheoreme theoretisch bewiesen, sowie praktisch mithilfe einer ausführbaren Semantik
gezeigt. Mithilfe dreier konkreter Implementierungen unseres Designs zeigen wir weiterhin dessen
Praktikabilität. Um Entwicklern aus dem imperativen Paradigma den Einsatz von Constraints zu
ermöglichen, ohne dass diese die spezifischen Limitierungen der verschiedenen automatischen
Constraint-Lösungsstrategien verstehen müssen, präsentieren wir außerdem eine Architektur die
es ermöglicht, automatisch verschiedene Lösungsstrategien zu kombinieren, um auch komplexe
Probleme zu lösen. Schlussendlich diskutieren wir anhand der konkreten Implementierungen
deren Ausführungsgeschwindigkeit unter verschiedenen Bedingungen, sowie Erfahrungen in der
Entwicklung und Benutzung von Objekt-Constraint-basierten Sprachen.

Wir glauben, dass unser Ansatz einen nützlichen Schritt darstellt, um das automatische Lösen
von Constraints zu einem nützlichen Werkzeug für imperativen Programmierer zu machen. Das
zeigen wir auch anhand von Beispielanwendungen, in denen wir unsere Implementierungen des
Babelsberg Designs in einer Reihe von Anwendungsdomänen wie interaktive Grafiken, physika-
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lische Simulationen, Datenübertragung mit Constraints über die Performance, sowie interaktive
Puzzlespiele.
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1. Introduction

Imperative programming has become the dominant paradigm, because it works well in modeling
properties of the real world such as destructive state changes or taking actions towards a specific
goal. It is also traditionally close to the way physical computers work, and programmers have been
(and still are) trained to approach new tasks or problems by thinking in terms of step-by-step
instructions.

However, best-effort computing, the ability to parallelize algorithms, and cheap-but-unreliable
hardware are becoming more important for a variety of application domains. We increasingly dis-
cover that under these circumstances, using only imperative code can make software harder to
develop and understand, to extend and reuse, and tomaintain and debug.While another paradigm
offers clear advantages to approach a particular sub-problem in such domains, imperative program-
mers have to revert to using it through libraries or Domain-specific Languages (dsls), or even
(re-)write parts of their program in an entirely separate language . Since this requires additional
investment in learning a new language or library, alternative workarounds and “best practices” pro-
liferate to express problems imperatively that may be more easily expressed in another paradigm.
Some such problems can be more elegantly expressed using declarative, constraint-based program-
ming.

In contrast to imperative programming, constraint-based programming describes only a desired
relation that should hold, not how to achieve this. Rather than obscuring the meaning of a piece
of code with step-by-step instructions, a declarative description of the problem is handed to a
constraint solver which then determines how to achieve (and possiblymaintain) a desired outcome.
Constraint programming thus provides flexibility in the solving approach, and avoids scattering
code throughout the program to ensure that constraints are observed during execution.

Constraints offer some well known advantages over an imperative programming style. In a
number of application domains relevant to computer science they often lead to more concise and
comprehensible code. Such domains include graphical layouting, data structure repair, physical
simulations, load balancing, or interactive puzzles. For these, it is often easier to state what the rules
are rather than how to achieve them. Besides requiring fewer lines of code, the solving strategy may
be exchangedwithout having to adapt the constraint declarations, and thus performance or quality
of the solution can be tweaked easily. For problems that lend themselves well to using constraints,
the code closely mirrors the desired solution, and enables developers to understand the goal of the
program, even if the domain or the steps to achieve this goal were not previously known to them.
Finally, constraint solvers have a clean semantics when it comes to combiningmultiple and possibly
competing constraints, so the solutions to conflicts are clearly defined rather than hidden in the
program control flow. Due to these advantages, many constraint-programming systems have been
proposed over the years, with Sketchpad [115] in 1963 and ThingLab [8] in 1981 as early examples.

The limits of constraints, on the other hand, have often been understated, with constraint
programming sometimes declared to be the “holy grail” of programming: programmers supposedly
state their problem and the computer solves it [50]. In reality, while constraint solvers continue
to advance, they are by no means able to solve general problems to produce any kind of desired
outcome. In comparison to this lofty declaration, real constraint solvers are still relatively simple.
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1. Introduction

(a) Map layout and coloring (b) Circuit simulation (c) Sudoku solving

Figure 1.1.: Examples of constraints in these applications are: adjacent countries are drawn in different colors;
that a resistor obey Ohm’s law; or that a game of Sudoku may only be solved according to the rules.

While some problems can be expressed elegantly, constraint-based programmers must be aware of
the limits of available solvers. One might argue that the imperative paradigm is more popular than
constraint-based programming, because imperative programming works “just well enough” across
a wide variety of problem domains. Constraints, on the other hand, work very well for specific
kinds of problems, but then hardly at all for many other problems. An imperative program may
become large and hard to understand, but the code can still be functional. When a constraint
program becomes large, on the other hand, it can quickly approach the limits of current solving
algorithms to produce a solution in any reasonable amount of time or at all.

Following the observation that purely constraint-based systems are unfeasible, but constraints
do offer significant gains in some domains, “compound” paradigms such such as Constraint-
Logic Programming (clp) [69] or Constraint-Imperative Programming (cip) [47] were proposed
as attempts to combine the advantages of constraint programming with other general-purpose
paradigms. There have been numerous attempts to implement these paradigms, for example, em-
bedded in object-oriented programming languages. Some of these languages provide a constraint
solving layer on top of an existing programming language [23, 71, 98], others integrate constraints
directly into the underlying programming language by adding abstraction mechanisms and syntax
for constraints [80, 53, 58].

Figure 1.1 shows applications inwhich a combination of imperative and constraint programming
is particularly useful. For example, creating an imperative implementation of a Sudoku game
(Figure 1.1c) works well for the graphical parts and user interaction, that is, for describing what
should be displayed and what should happen when the user provides input. But an imperative
algorithm for even a naive Sudoku solver in object-oriented code still requires dozens of lines of
code. Using constraints, however, we can just describe the desired state that a valid Sudoku should
have:
sudoku.cells().all_satisfy { |cell| 1 <= cell && cell <= 9 }
sudoku.rows().all_satisfy { |row| row.all_different() }
sudoku.columns().all_satisfy { |column| column.all_different() }
sudoku.boxes().all_satisfy { |box| box.all_different() }

These predicates assert that all cells must have numbers between 1 and 9 and that all rows, columns,
and 3x3 boxes in the Sudokumust not contain duplicate numbers. A constraint solver can now take
care of satisfying these constraints, and solve the Sudoku in the process. This frees the developer
from writing or maintaining the code for the solving itself.

4



1.1. Challenges

1.1. Challenges

Despite their advantages, languages that integrate constraints with imperative structures have failed
to establish constraint solving as an integral part of imperative programs. Popular use cases for
constraints, such as iOS andMacintosh auto-layout, planning andoptimization, ormodel checking,
still keep the constraints completely separate from the imperative code.Webelieve this is in part due
to the inherent non-determinism in many constraint solving approaches, the lack of integration
with existing imperative abstractions, the inexperience of the programmers with the features and
limits of constraint solvers, as well as performance considerations. In this work, we look at these
challenges and propose ways to address them.

First, a goal of thiswork is to define general properties for constraints that limit non-determinism
and surprising solutions, regardless of the used solver.Manyproblemshavemultiple valid solutions,
some more desirable than others. It is often unclear or only implicitly understood what criteria
should be applied to choose a solution. Prior work on constraint languages sometimes included
support for very powerful solver features that in practice were only rarely used, but that introduced
non-determinism or allowed the solver to come up with unlikely and surprising solutions. A
programmer had to understand the capabilities of each solver to know how to restrict what that
solver could and could not choose as a solution.

Second, another goal of this work is to unify the abstraction mechanisms in a way that respects
encapsulation andmakes code re-use easier in semantically cleanway. Previous integration attempts
of constraints into object-oriented languages did not unify the constructs for encapsulation and
abstraction from both paradigms, making it hard to re-use code written in one style within code
written in the other. Prior work on cip languages requires programmers to essentially learn a
language with two very different parts. Abstraction mechanisms in the object-oriented parts —
i.e., methods and classes — are not available in the constraint-oriented code, which uses its own
abstractions. When crossing the border from imperative to constraint code, constraints can break
encapsulation to access fields of objects directly, and thus limit the re-usability of constraint code
across objects with similar interfaces, but different internal structure. Combining constraint code
and imperative code syntactically can thus lead to more confusion about their differences than
simply keeping constraints separated as a dsl.

A third goal of this work is to allow multiple solvers to cooperate, thus making efficient con-
straints solving available in a wider range of practical applications. It is in general much easier to
state constraints than to solve them — some problems are extremely difficult, and others are unde-
cidable. For example, while it is easy to ask that an + bn = cn for three integers, a solver can only
conclude that this is unsatisfiable [121]. Constraint satisfaction is an NP-hard Boolean Satisfiability
Problem (sat), but if we restrict the classes of constraints to a useful subset in a particular domain,
quite efficient solvers are available. Many practical solvers impose such restrictions on the kinds
of constraints they can solve, for example, by supporting only floats and not integers or requiring
numeric equalities and inequalities to be linear. This is apparent in many popular solvers: the
Cassowary solver [3] can efficiently solve multi-way linear equations on floats using the simplex
method; Z3 [90] is an satisfiability modulo theories (smt) solver that can numerically solve for
reals, integers, booleans, as well as record data types; Kodkod [118], Z3, and Ilog [63, 102] can enu-
merate solutions; and DeltaBlue [48] can solve multi-way constraints using local propagation. An
even more restricted approach is to only consider one-way constraints that can compute an output
value given new inputs, but not vice versa (e.g., [62, 91]). These restrictions illustrate that, while
constraint solving can be a powerful aid in programming, it should not be confused with general
problem solving. Constraint solvers are specialized to address fairly trivial problems efficiently, so
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that the developer can focus on other problems. Still, it is possible to expand the usefulness of
constraint solvers through combination.

Finally, a fourth goal to make this work more usable in practice is to improve the performance
of the solving process in general, and automatically make use solver specific features to improve
performance, such as incremental resolving or re-ordering of constraint declarations. Prior work on
cip languages suffered from performance problems when accessing variables that had constraints
on them. Additionally, although solving strategies such as incremental re-solving [48] and re-
ordering of constraint declarations can improve performance of some solvers, these optimizations
have to be applied explicitly and are specific to particular solvers. In contrast, modern imperative
language runtimes apply a number of optimizations automatically — either at compile-time or
using Just-in-Time (jit) compilation techniques — so that even unoptimized code provides good
performance.

These goals — limiting non-determinism, integrating abstractions used for both paradigms,
combiningmultiple solving strategies, and automatically optimizing solver performance—present
a number of challenges. In this work, we set out to address some of these challenges as described
below.Todo so,wepresent a novel approach,whichwe callObject-ConstraintProgramming (ocp),
to combine object-oriented code with constraint-programming in a way that deeply integrates
constraint solving with the object-oriented paradigm and its abstractions.

Constraint Solvers are Non-deterministic “Magic”

A challenge for many constraint systems has been to not only find solutions, but good solutions, ac-
cording to some optimization function. Constraint hierarchies [9, 11, 61, 119] andmore recent work
on optimizing smt solver techniques [6, 17, 95, 113] provide the foundations to define optimization
criteria for solvers, if these criteria are expressed appropriately.

In practice, humans use a lot of implicit criteria when searching for solutions to problems in
a specific context. These criteria are often not only implicit but are in part not even consciously
known, since solutions that do not satisfy them are not even consciously considered “valid”. Thus,
when the problem is put to the computer, many implicit constraints are omitted, preventing good
optimization and allowing the system to come up with surprising and undesirable solutions.

The fact that constraint solvers are often provided as black boxes without good debugging
support exacerbates this problem. While imperative execution encodes the order of operations in
its semantics, declarative programming semantics is more or less independent of the actual order
of execution. While this has a number of advantages (for example, purely declarative programs
can easily be made to scale to multiple threads of execution [111]), if something does not work as
intended the gap between actual execution and user code is vast.

Type checkers and type inference system are special forms of constraint solving systems, as are
model checkers that can, for example, compare object-orienteddesigns against the executionof their
implementation. These system can infer many interesting properties and notify the programmer
when an assumption cannot be proven. Approaches such as acceptability oriented computing [21]
or input fuzzing [14] go one step further to not only check but also attempt to correct execution
states of programs when assumptions fail to continue running.

When a constraint solver is allowed to change the execution state to satisfy a set of constraints,
implicit preferences need to be weighed: should the solver be allowed to change the values or also
the types of variables; or even the semantics of the language? Is the identity of objects important,
or can the solver substitute or conjure up new objects to satisfy its constraints? Which constraints
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should lead to a run-time error when they are violated?Which should be fixed?Which can be safely
ignored?

Adesign that attempts tomake constraint solving available in the context of imperative languages
must address these questions. It also needs to provide clear guidance to developers about what
can be expected from the constraint solver, and needs to be explicit when it cannot satisfy some
constraints and describe why.

Object-oriented Imperative Programming is the Norm

Considering the most popular languages according to language popularity indices such as Tiobe1
or GitHut2, imperative, object-oriented languages have arguably won. At the very least, we can
infer from such data that a large number of developers are at least familiar with object-oriented
programming style. Furthermore, since a large number of useful code is written in object-oriented
languages, any new language has to consider how to interface with existing work. If the conceptual
distance to object-like modules and imperative operation is too far, abstractions do not match, and
it is hard to interface with existing code, and even harder to understand how systems are working
together. This deters from using constraints when it makes sense, because they may make the
system harder to understand and maintain.

Many problems indeed are more naturally expressed with a step-wise definition in an imperative
style. Constraint languages have no notion of mutable state or sequences of events, and problems
involving user interaction are thus hard to express in a purely constraint-declarative style. However,
when a problem naturally lends itself to constraints, using a solver can reduce the size of the user
program significantly and make the code more flexible and understandable. Thus, we argue, there
is a benefit to be gained from integrating the two paradigms and making both options available to
a larger number of programmers.

For many languages, foreign-function interfaces (ffis) exist to interface with the underlying
system and other libraries, and many constraint solving libraries use such a mechanism to offer
constraint solving in general purpose programming languages. However, these libraries are often
restricted to the lowest common denominator, which are the primitive values for which a simple
mapping between the solver and the language exists.

In this work we aim towards a deeper integration of these two paradigms, to enable constraints
in a wide variety of existing object-oriented (oo) applications, by re-using the same abstractions
that exist in Object-oriented Programming (oop). An issue here is how to integrate the declarative
nature of constraints with the step-wise execution andmutable state ofoop. Tomake the resulting
system more usable, it should be fully backwards compatible with an existing object-oriented sys-
tem, inherently object-oriented in its use of abstractionmechanisms, and have aminimal impact on
the host language as to not require learning a new, separate language and syntax to use constraints.

Solvers Are Highly Specialized

Although general constraint solving is NP-hard, most constraint solvers find good solutions in
reasonable time when used in the right way for the right kinds of problems. However, to require
programmers to learn the special features for each solver is undesirable. For example, some solvers
including Cassowary and DeltaBlue have support for incremental resolving. Incremental resolving
splits thework of the solvers into twophases. The first optimizes the solver’s internal data structures

1http://www.tiobe.com, accessed December 11, 2015
2http://githut.info/, accessed December 11, 2015
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to a particular problem, and the second actually solves. If only a subset of the variables is known
to change frequently, the first phase can be optimized towards solving these, and the second phase
becomes faster as a result. Besides such specific features, most solvers are optimized for specific
domains of problems, such as linear or non-linear equations of reals or integers or boolean logic.

In oop, developers do not usually have to consider the lookup process itself or the way objects
are laid out in memory. Similarily, ocp programmers should not in general have to deal with the
choice of solver. An ocp language should, as much as possible, relieve the developer from having
to answer the following questions: Which solver is the right one for my problem, i.e., which solver
provides the best results or the best performance? If none of the available solvers can solve my
problem, why? How might I change the constraints to allow a solver to find a solution? Can I
split the constraints and hand them to different solvers which each find part of the solution? If
the solvers come up with a surprising solution, which constraints allow them to do so? Thus, to
solve a wide variety of problems effectively, a combination of different solvers is desirable, and, in
addition, the language should aid the programmer in choosing the right solver and the correct way
to invoke it to achieve optimal performance.

Practical Performance Requires Trade-Offs

Ageneral design for anocp language canbe implemented indifferentways,with different trade-offs
regarding symbiosis, performance, and applicability.An implementationwith virtualmachine (vm)
support can provide very good performance but is not always feasible. For example, an application
server can run a modified vm to make use of ocp in server code. On the other hand, code that
is written in a language with multiple vm implementations and that is meant to be executed on
many heterogeneous clients cannot rely on a modified vm to be available on each client. To make
use of ocp in that context, it must be implemented as a user-level library. In that case, the choice
of host language determines how easy syntactic extensions are and if semantic extensions can still
be reasonably debugged and accessed on a meta-level.

Dynamic, object-oriented languages achieve good performance mostly due to advanced jit
techniques. Most vms abstract from the underlying system stack and implement an abstraction
for stack frames and execute everything, from local variable access to message sends, on top of this
abstraction, rather than re-using the fast system stack. One feature of jit compilers is to lower these
abstractions onto the underlying system and thus achieve near-native performance for things like
stack frame creation and local variable access. This works well because local variables in most oop
languages simply store pointers to objects on the heap, and thus can be directly represented by a
machine word on the stack.

Variables in constraint solvers behave differently, and imperative code that interactswith libraries
of constraint solvers often has to copy variables (which the jitmeticulously mapped to the stack
for performance) into a solver-specific structure on the heap. The inefficiency may thus deter from
using a constraint solver in the first place. Languages such asKaleidoscope [80] orTurtle [53],which
integrate the constraints into the language and allow any variable to be used in constraints need
more complex data structures and are thus further removed from amachine friendly representation
that the jit can map to the stack. Just like a modern jit automatically lowers the representation
of frequently accessed variables and, for example, stores them in registers of the executing cpu,
a constraint solver must optimize its internal data structures to allow reading and re-solving for
variables that change most frequently.
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1.2. Contributions

In this thesis, wemake the following contributions towards integrating constraintswith imperative,
object-oriented languages.

1.2.1. Babelsberg, a Language Design and Formal Semantics for Object-Constraint
Programming

We present a concrete design for a family of ocp languages called Babelsberg that supports a useful
and expressive language for constraints, integrated with a host object-oriented language in a clean
way. A heuristic for its design is that when there is a choice, we favor simplicity over power, if that
power has not proven useful in practice or would make it difficult to know what the outcome of a
particular operation may be. This comes at the cost of omitting some interesting, but little used
features of constraint programming, but makes the interactions between constraints and objects
clearer. This heuristic also makes the Babelsberg design more independent of the particular host
language and solvers used in implementing it, because only a small set of key operations have to be
adapted.

For our design, we provide a formal semantics that incrementally addsocp features to an object-
oriented host language. Of particular interest here is the way we translate constraints involving
methods to the solver and our rules for restricting side effects in constraint expressions. The only
restrictions are: a) an expression that is used as a constraint must evaluate to a boolean (the con-
straint is that it evaluate to true) and b) the expression should return the same result on repeated
evaluation (so that, for example, a random number generator would not qualify). Our semantics
clarifies important design decision to guide language implementations, and omits details that are
inherited from the underlying host language. This makes flexible enough to apply to a variety
of object-oriented languages. In particular, our semantics specify: First, the interactions among
constraints on identity, types, and values. Second, the addition of a novel kind of structural type-
checking combined with soft constraints to tame the power of the solver with respect to changing
object structure and type to satisfy constraints. Third, The addition of value classes, which create
immutable objects for which identity is not significant. And fourth, a set of restrictions on con-
straints that make it easier to reason about which solutions are acceptable with respect to object
identity, type, and directionality.

We also present an executable version of our semantics to automatically verify a suite of example
programs that illustrate the problems we address. Our executable semantics includes a framework
to generate language test suites from our suite of example programs written in the executable
semantics language, so concrete implementations of our design can be automatically tested for
conformance to this semantics, and the test suite can be kept up-to-date as the semantics evolves.

1.2.2. Linguistic and Meta-Level Symbiosis with Object-Oriented Host Languages

Our syntax and semantics are true extensions and thus backwards compatible to the existing object-
oriented paradigm. Our syntax extensions merely integrate constraint definitions into the host
language, and the semantic model for Babelsberg behaves like an ordinary object-oriented language
in the absence of constraints. On the syntactic level, our additions are relatively minor, for example,
to add syntactic sugar to annotate variables and expressions as read-only for the solver, or to pass
various arguments to the solver if desired. Our syntactic integration ensures that constraint expres-
sions very closely resemble assertions (with the difference that they are actually solved, rather than
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just tested), making it easy for the programmer to write and read constraints and object-oriented
code. Our modifications to the object-oriented semantics of the host language include dynamic
typing, object encapsulation, classes and instances or prototypes with methods, and message sends.
Our design supports placing constraints on the results of message sends rather than just on ob-
ject attributes — thus, we argue, being more compatible with object-oriented encapsulation and
abstraction than prior approaches in cip.

Additionally, Babelsberg definesmeta-level facilities that allow libraries to construct soft aswell as
hard constraints, and constraints that support incremental solving. These meta-level facilities allow
access to solver-specific features, provide ways to dynamically activate and deactivate constraints,
and allow developers to build their own abstractions on top of the constraint extensions. Again, we
believe this makes our design more compatible with the spirit of dynamic, purely object-oriented
languages in which the meta-level is readily accessible.

1.2.3. An Architecture for Adding and Using Multiple Cooperating Solvers

In addition to the goals of a clean integration, a semantics that is close to anobject-oriented language,
and good performance, a useful ocp language requires sufficiently powerful constraint solving
capabilities. It is often infeasible to provide a single solving algorithm that works well across a
variety of types and operations that occur in different application domains, and users of constraint
solvers usually have to understand the limitations of the available solving strategies to use them
effectively.

As part of this work we present a design and implementation for cooperating constraint solvers
and automatic solver selection. Since most constraint solvers are specialized to work well for only a
small number of aspects of a problem, a combination of different solvers may be more appropriate
that work together to solve the entire problem. Babelsberg’s architecture provides this capability,
in a way that supports hard and soft constraints, automatically assigning constraints to different
solvers, and fast incremental re-solving of such constraints.

To complement our architecture for cooperating solvers, we also present automatic edit con-
straints as an example for automatically using solver-specific optimizations if these are available. Edit
constraints are a feature of select constraint solvers that can significantly improve the performance
of constraint solving. However, using them requires developers to know about them, understand
where they are useful, and to adapt the source code to create edit constraints. Consequently, they
cannot be be used if the concrete solver is automatically selected from a group of solvers where not
all support edit constraints. Thus, our design of automatic edit constraints shows how heuristics
can complement our cooperating solvers design, to apply solver specific optimizations to improve
the performance of the solving process.

Finally, our design also makes it straightforward to add new solvers, and it does not privilege
the solvers provided with the basic implementation, so that user code can add specialized solvers
that can then integrate with our architecture to solve more complex problems involving different
types of constraints. Our architecture works with and without vm support and we demonstrate
that it can address a variety of problems without the users learning specifically about the solving
strategies involved.

1.2.4. Implementation Techniques and Applications for ocp

We describe three working prototype systems. The first implements a vm-extension to support
ocp, and is integrated with a state of the art Ruby virtual machine and jit compiler. In the absence
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of constraints, the performance of a program written in Ruby is only modestly impacted. Two
more prototypes implement the library-based design in the Lively Kernel JavaScript environment
and in Squeak/Smalltalk, including additional language support to write constraints conveniently.
We use these prototypes to evaluate how practical language might follow the semantics while still
being practical and to explore where deviations from the semantics may be worth to explore. We
also evaluate the performance of our implementations to show that ocp is practical.

Our vm-based technique for implementing object constraint languages adds a primitive to
switch the interpreter between imperative evaluation, constraint construction, and constraint
solvingmodes.The first operates the interpreter in the standard fashion, except that the instructions
to load and store variables check for constraints, and if present, obtain the variable’s value from
the constraint solver or send the new value to the solver (which may trigger a cascade of other
changes to satisfy the constraints). In constraint constructionmode, the expression that defines the
constraint is evaluated, not for its value, but rather to build up a network of primitive constraints
that represent the constraint being added. The interpreter keeps track of dependencies in the
process, so that, as needed, the solver can be activated or the code to construct the constraint can
be re-evaluated. With our technique we allow jit compilers to optimize variables that do not
participate constraints on them in the normal fashion, and thus restrict the overhead of explicitly
creating variable structures on the heap to those variables that need to bemanipulated by the solver.

When a vm extension with a primitive is not feasible, our library-based design includes prin-
cipled restrictions that allow ocp to be implemented as user-level code without vm support. We
demonstrate that our restrictions areminimal, and that practical applications can bewrittenwithin
these restrictions.

Regardless of the used implementation technique, we present a mechanism to automatically
detect frequently changed variables and optimize the internal structures of constraint solvers to use
incremental re-solving when these variables are assigned to. Our optimization provides a speedup
of up to two orders of magnitude, and is completely transparent for the user.

Finally, we present techniques for applications to interact with constraints, and report our
experiences regarding the use of constraints in conjunction with existing applications, libraries,
and frameworks. For interactive use, we use applications using the Morphic framework in Squeak
and the Lively Kernel. We also show non-interactive, server-style applications and compare how
constraint use differs between those two types of applications.

1.3. Outline

The rest of this thesis is structured as follows. Chapter 2 concludes the introductory part and
presents and overview of the state of the art in three areas relevant to this work: First, we discuss
common techniques in constraint solvers that are used to make interaction with mutable, im-
perative state easier. Second, we present how current approaches enable the use of constraints in
imperative languages. Third, we give a general overview of different constraint solving techniques
and the theory of satisfying hierarchies of competing constraints.

In Part II we present the design and semantics of Object-Constraint Programming. In that part,
Chapter 3 first introduce the guiding principles and goals of our design using examples of various
cases of how constraints and imperative structures interact. We start by explaining how constraints
interact with primitive imperative structures and types, and incrementally build our design to
integrate with a full object-oriented language, includingmethods, object identity, and higher-order
functions. Afterwards, Chapter 4 formalizes our design into a big-step operational semantics. The
formalization follows the same incremental steps of the design, and is meant to clarify ambiguity

11



1. Introduction

and serve as a guide to language implementers. Finally, Chapter 5 present our approach for using
multiple, cooperating constraint solvers to tackle problems that are too hard for any one solver,
how the set of constraint solvers can be extended by users of an ocp language, and how the system
supports users when choosing between solvers.

Part III describes the implementation strategies that were used in our three prototype implemen-
tations of ocp. In particular, we highlight pros and cons for implementing ocp as a vm extension
versus a user-level library. In Chapter 6 we describe how constraint expressions are converted into
constraints that can be passed to actual solvers, how these solvers are selected, and how opera-
tions and methods are transformed. In Chapter 7 we show how state mutation is intercepted to
trigger constraint solving as necessary, and highlight some optimizations that we have made in
practical implementations for performance reasons. Finally, Chapter 8 presents benchmark results
to a) evaluate the performance overhead of our prototypes in comparison to unmodified, object-
oriented vms, b) compare our languages to other related languages that provide constraint solving
in a general purpose programming language, and c) show the effect of using edit constraints and
incremental constraint solving to improve the performance of some solvers.

Part IV gives an overview of our practical experience with ocp. Chapter 9 explains some coding
patterns and idioms that we have found to work well in various applications, Chapter 10 describes
a practical proposal for scoping the effect of constraints using Context-oriented Programming, and
Chapter 11 presents tools that we have built to inspect, debug, and experiment with constraints in
interactive applications.

Finally Part V discusses related and future work and presents our conclusions.
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2. State of the Art of Constraint Solving and
Constraints in General Purpose Programming

This chapter first gives an overview of the current state of the art in using constraints from imper-
ative languages, and we elaborate on relevant theory. Our work addresses a number of problems
which arise frompreviouswork in the area from the dichotomybetween constraints and imperative
programs.

2.1. Objects and Determinism in Constraints

Object-oriented, imperative code usually mutates state explicitly over time. Any changes to objects
and their structure is triggered by explicit programmer action. In contrast, constraintsmodel a set of
desired states— state changes arise from the solving of those constraints. The concrete changes are
not necessarily deterministic: when multiple equally valid solutions are possible, different solvers
may return any one or all of them. From the point of view of an object-oriented developer using
constraints, this uncertainty about the selected solution may sometimes appear unintuitive when
the solver picks a solution that the human programmer did not even consider.

Using constraints in conjunction with imperative code often requires programmers to consider
the solving process in order to use constraints effectively; even small examples contain the potential
for surprising solutions. As an example, consider a bank account application in which we want to
prevent changes that wouldmake the account balance drop below a certain threshold. Additionally,
we want to track the daily interest, but not allow it to rise above 10 euros. We add a constraint to
ensure this:

account.balance ≤ minimalBalance ∧ dailyInterest ≤ 10

We use another constraint to relate the dailyInterest to the account balance:

dailyInterest = (account.balance × 0.01)/365.0

This second constraint can conflict with the first when the account’s balance becomes large —
we define it so that the second constraint can be disregarded by the solver in that case. Already, this
example contains the potential for surprising solutions. The programmer expects the constraints to
affect the bank’s balance as well as the daily interest. However, in the absence of other restrictions,
the solver is also allowed to change the minimalBalance, or set every variable to zero.

Another issue arises from the fact that in this example, we assume that the solver knows how to
access the balance property on the account. But if another variable with a balance field is known
to the solver, can it change the value of the account variable to point to it? And what if no such
field exists? Some systems, such as Kaleidoscope or Turtle, would allow the solver to invent the field
or change the account variable in that case.While onemight argue that such behavior is desirable in
this case, it is a slippery slope. For example, consider a constraint of the form p.x > 0∨ p.y > 0 on a
point object p. There is inherent non-determinism here— the solver can choose which property to
update if the constraint does not hold. But if p lacks both properties which one should be invented?
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The Kaleidoscope language, particularly the early versions, was arguably too powerful in ways like
this that were interesting, but not useful in practice. This made it difficult to understand what the
result of a program might be and also difficult to implement efficiently [80].

Read-only Annotations We can remove the first case of non-determinism from the above example
using the concept of read-only annotations [11]. Specifically, as minimalBalance is supposed to be
a constant in this case, wewant away to prevent the solver from changing the value of the variable to
satisfy the constraint. Borning, Freeman-Benson, and Wilson present a declarative specification of
read-only annotations, adapted from formalizations of read-only annotations in committed-choice
logic languages [84] — we review here its intuition for reference.

Intuitively, read-only annotations in a constraint mean that information can flow out of a vari-
able, but not into it during the solving process. This is also the case, for example, in many one-way
data-flow systems, including a spreadsheet. A formula to add two values in a spreadsheet can be
represented as constraints using read-only annotations. Here, the solver can only set z to be the
sum of x and y:

required x? + y? = z

Read-only annotations are per constraint, and they interact with constraint hierarchies. They
are not, however, integrated into the error functions or the comparators — for example, it is
not possible to ignore the annotation, even if that meant satisfying a higher-priority constraint.
Consider the following constraints:

required x? + 5 = y
medium y = 20

low x = 0

The solution is {x 7→ 0, y 7→ 5} — the read-only annotation on the x in the required constraint
prevents the solver from satisfying the y = 20 constraint instead of the x = 0 one.

Stay Constraints Stay constraints can remove the surprising solutions in which the solver sets all
variables to zero. When using constraints in interactive applications including mutable objects, the
state of which can change over time, it is important to consider such change in the solving process.
In particular, we want to express to the solver that, if left undisturbed, the system state should not
change over time and if it is disturbed, the changes should be minimal. Lopez, Freeman-Benson,
and Borning argue that it is important in such cases to provide the constraint equivalent of “frame
axioms” to specify that parts retain their old values as the system changes. The mechanism they
propose builds on the theory of constraint hierarchies which allows the solver to disregard some
constraints in preference to others. (We discuss this concept in more detail in Section 2.4.) These
“frame axioms”work by adding implicit, low-priority stay constraints on every variable in the system.
As far as the theory of non-required constraints is concerned, a stay constraint is simply an equality
constraint v = c for variable v and constant c with a low priority. Operationally, c will be the value
of v at the time step just before calling the solver.

Stay constraints are important in an integration of constraints into an imperative language,
because a developer used to imperative programming does not expect values to change if there is
not reason for them to do so — without them, we would often get counter-intuitive behavior. For
example, many constraints on a quad-literal — such as that opposite sides should be parallel or
that each side be perpendicular to its neighbors — can be trivially satisfied if we allow the figure
to collapse to a single point. This, however, is not usually be what we expect, but a result of an
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under-constrained system. Stay constraints alleviate this problem by guiding the solver to find
solutions that are close to the current state when the system is under-constrained.

Identity Constraints Kaleidoscope’93 introduced the concept of identity constraints [79], which
take into account a variables identity and, in conjunction with stay constraints, allow us to specify
that the system is not allowed to change the value of the account variable above. While this
addresses this particular complication, the concept alone is insufficient to prevent non-determinism.
As an example, suppose we add the following constraint to the constraints above:

account = account2

This constraint requires two variables to point to the same object. Here it is not clear whether
the solution will require them both to point to the object stored in account or that stored in
account2. Further, if these objects have different structures that can lead to non-deterministic
behavior in subsequent constraints that access their structure. Finally, the solver can also satisfy the
identity constraint by assigning both variables to yet a third object.

2.2. Uniformity for Imperative and Declarative Code

Approaches to integrating constraints with imperative code require trade-offs between the declara-
tive and imperative programming worlds. If the constraints are expressed explicitly in imperative
code, the solvingmay be brittle; when using a constraint solver library, objects have to be converted
to certain special types to be passed to the solver; in dsls, constraints may refer to object state
directly, violating the uniform access principle; and in cip languages, constraints use special behav-
ior definitions separate from methods, which violates the uniform access principle. These lead to
problems as programs grow and implementations of objects change, because the constraints have
to be kept up-to-date regarding the internal state of the domain objects.

Consider a graphical application that draws a window on a virtual desktop. The window is
rectangular, and implemented as a pair of points origin and extent. Suppose furthermore, that
the window is implemented in Ruby, and has methods to calculate the visible area and to check
whether the window is on screen. The code may look as follows:

class Window
attr_accessor :origin, :extent

def visible?
origin.x >= 0 and origin.y >= 0

end

def area
extent.x * extent.y

end
end

Suppose that this window is showing some important information that should remain visible
on the screen and fit within the area of the window. The constraints may be that the area of the
window should be ≥ 100, and the predicate method visible? should return true.

Imperative Solving In a standard imperative language without constraint solving, the standard
approach to dealing with this is to leave it up to the programmer to find some means to maintain
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the constraints. This may involve determining through which code-paths the constraints may
become invalidated and instrumenting those paths. The programmer may have to re-define the
setters for origin and extent to check that the newly assigned points do not violate the constraints.
If there are any other methods in the window that manipulate origin and extent without going
through the instrumented setters, or if the points themselves are mutable, this quickly becomes
cumbersome and error-prone. If the code-base is sufficiently large, a future developer may add a
method that invalidates the constraints without realizing.

To satisfy constraints imperatively, we can use, for example, aspects to satisfy these constraints
explicitly whenever the rectangle changes:

class WindowAspect < Aspect
def ensure_constraints(method, window, status, *args)
window.origin.x = 0 if window.origin.x <= 0
window.origin.y = 0 if window.origin.y <= 0
window.extent.x = 100.0 / window.extent.y if window.area <= 100

end
end
RectAspect.new.wrap(Rectangle, :postAdvice, /(origin|extent)=/)

This aspect defines the method ensure_constraints to execute after each assignment to either
origin or extent (line 8). In the method body, the x and y values of the origin are set to 0 if
they are negative (lines 3–4) and the window’s horizontal size is changed if the window’s area is less
than 1-00 square pixels (line 5).While this achieves the desired effect using the same object-oriented
language as the rest of the system, the programmer has to ensure that all possible code-paths are
covered by the aspect. Second, the original constraints are expressed in a form that requires the
programmer to infer what they are designed to do. The validity of the constraints must be checked
through conditional statements and branches. If there are multiple ways in which the constraints
can be invalidated, nested branching ensues, which can quickly become hard to understand [86].
Finally, it is also not trivial to tell whether the solution for the constraints is optimal. While the
above constraints seems fairly trivial, there are multiple ways to satisfy the constraints. If any of the
constraints were only preferential rather than strictly required, this will be even harder. In general,
without a declarative specification, it is not clear if the code finds an optimal solution, or just a
solution. (For example, a window with area 200 would also satisfy the minimum area constraint if
a user tries to resize the window to be smaller than 100 square pixels.)

Constraint Libaries We may choose to use a constraint solver library to satisfy the constraints
instead of using imperative code in the aspect as follows:

class WindowAspect < Aspect
def ensure_constraints(method, window, status, *args)
ctx = Z3::Context.new
ctx << Z3::Variable.new(”extent_x”, window.extent.x)
ctx << Z3::Variable.new(”extent_y”, window.extent.y)
ctx << Z3::Constraint.new(”extent_x * extent_y >= 100”)
# ... same for origin constraint
ctx.solve
window.extent.x = ctx[”extent_x”]
window.extent.y = ctx[”extent_y”]

end
end
# boilerplate code as for purely imperative approach
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This allows us to express the constraints clearly written, however, we now need to decompose the
window to create the constraints for the solver, violating encapsulation, and we have to manually
copy the solutionback onto ourwindow.Programming the constraint is very different fromwriting
ordinary code.

Domain-specific Languages For specialized domains such as user interface layouting, solvers are
available as separate dsls that describe relations between objects that can be automatically main-
tained by the runtime. Examples of suchdsls arecss [12], theMac OS X [107] layout specification
language, and the PythonGUI frameworkEnaml [27]. This approach allows programmers to spec-
ify constraints and avoid boilerplate code to trigger constraint solving and has found widespread
adoption, particularly through the Mac OS X layout system. However, these approaches require
the developer to use an additional language when programming the system. The following is an
example of an Enaml specification for our problem:

enameldef Main(Window):
Container:

constraints = [
# the rectangle area is called contents in enamel
contents_top >= 0, contents_left >= 0,
(contents_bottom - contents_top) *
(contents_right - contents_left) >= 100

]

Data-Flow and Functional Reactive Programming Some imperative languages have built-in sup-
port for data flow, which allows programmers to express unidirectional constraints between objects
and their parts. Examples of such systems are Scratch [103], the Lively Kernel/Webwerkstatt [66],
or KScript [96]. (Of these, only ThingLab includes a planner for propagation that breaks cycles
automatically. In the other systems the programmer has to break cycles explicitly.) The following
listing shows an example of one-way data-flow in the Lively Kernel/Webwerkstatt:

connect(Window, ”origin”, Window, ”origin”,
function(origin, prevOrigin) {

if (!this.isVisible()) return prevOrigin;
else return origin;

})
connect(Window, ”extent”, Window, ”extent”,

function(extent, prevExtent) {
if (this.area() < 100) return prevExtent;
else return extent;

})

These data-flow connections can observe changes to our window’s origin and extent. On
each change, a transformation function is executed with the current and the previous value and
returns the new value for the field. Here, the power of the solving is limited to uni-directional
constraints, but the dependencies are clear and understandable.

Constraint-Imperative Programming From the works of Borning on integrating constraints with
objects in ThingLab, the evolution of integration lead to cip as materialized in the Kaleidoscope
system [45] and its various extensions [80]. Related languages include Siri [59], Turtle [53], and
Soul [23]. Our constraints can be expressed using Kaleidoscope as follows:
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class Rectangle
constructor area = (n: Integer)
always: extent.x * extent.y = n

end

constructor visible?
always: origin.x >= 0
always: origin.y >= 0

end
end

rect = Rectangle.new
always: rect.area = 100
always: rect.visible?

The above code states constraints clearly, and the constructors concept modularizes the cal-
culated properties visibility and area so they can be used in constraint expressions. Such
constructors, called user-defined constraints in Kaleidoscope and Turtle, allow objects to decom-
pose themselves into elements for interpretation by a constraint solver.However, they are a separate
concept from ordinary methods, and cannot be called from imperative code and vice-versa. Con-
structors require multi-method dispatch semantics, while ordinary methods can only be used as
constants in constraint expressions. This means that developers have to duplicate behavior def-
initions if an interface is needed both in constraints and imperative code (as the area method
is, above). This, in turn, requires developers to anticipate whether certain behavior may be used
in constraints or imperative code by clients. If they do not anticipate it, clients have to revert to
accessing state directly if possible. and which concept is used depends on whether an object is used
in an imperative or a declarative context. This means that programmers have to consider both
interfaces of an object, depending on what they want to express.

***

We think that these state of the art approaches result in trade-offs between constraint-oriented
and object-oriented programming such that for some problems the problems of combining the
two outweigh the possible benefits of using a constraint solver. In particular:

• Prior approaches violate either object encapsulation or the uniform access principle by defining
constraints only on state or only on special constraint behavior definitions. This leads to prob-
lems as programs grow and implementations of objects change, as the constraints have to be
kept up-to-date regarding the internal state of the domain objects.

• They use special types that tie objects to the domains of constraint solvers. This means that
objects have to bemapped to those types either through transformations that have to be triggered
whenever the program state changes or the objects have to be built entirely from those types.

• They provide nomechanism for programmers to add solvers for both finite and infinite domains.

Instead, in this work we propose an integration of constraint-solvers with oo languages that we
call Object-Constraint Programming (ocp) to emphasize the focus on keeping oo programming
as the primary paradigm. ocp keeps desirable properties from other approaches and is, for the
most part, a continuation of cip as originally presented in [45]. Table 2.1 shows these properties as
presented above.

18



2.3. General Constraint Solving

Table 2.1.: Comparison of related approaches

Libraries dsl DataFlow/frp cip

Constraints on methods (4)
Unified State 4 4 4

Automatic Solving 4 4 4

Linguistic Symbiosis 4 4

Extensible Solvers 4 4

Bi-directional Constraints 4 4 4

The goal of the work presented here is provide tighter integration of constraints with object-
oriented languages. Using such an Object-Constraint Programming language, we should be able
to express the above problem using the methods already defined for the Rectangle class:
rect = Rectangle.new
always { rect.area == 100 }
always { rect.visible? }

2.3. General Constraint Solving

Although constraint satisfaction in general is NP-hard, there is a large number of such libraries that
restrict themselves to a particular class of problems for which they implement optimized solving
strategies. It is easy to formulate a problem that is too hard for any one of such solvers. To mitigate
this problem, most constraint programming systems include multiple solvers, but they usually
come with a fixed set that work on specific types. Developers usually choose different strategies
based on the concrete problem to get the best results or the best performance.

Constraint problems can be regarded as a graph, with n-ary operations connecting variables and
constraints. Solving the constraint problem can be achieved by considering variables as inputs and
outputs of the operations and traversing the graph to manipulate them, bit also by considering
the operations themselves and solving multiple or all operations in the graph simultaneously. For
the latter, the solving process needs a built-in understanding of the operations and the types of
variables involved.

One way of classifying solvers is by the type domain of the constraints (e.g., if they can solve for
booleans, reals, finite domains of arbitrary objects, …). Anotherway is to distinguish solvers that are
complete for a particular domain (whether they can solve any constraint involving a particular class
of operations in a general way) from solvers that can only select from a given set of functions (e.g.,
given an equation a + b = c, can the solver solve only for c given a and b, or can it solve for several
variables at the same time). A third classification that is interesting for our work is by whether
the solver supports some particular feature, such as incremental solving, constraint hierarchies, or
multiple outputs.

In the rest of this section, we present and compare solvers and relevant theory that are of partic-
ular importance to or that we have used directly with Babelsberg. This is not a completely arbitrary
selection, but for each of the presented solvers, a number of other solvers exist with similar features
that could also have been chosen1.

Local Propagation One of the earliest constraint solving algorithms found in literature is local
propagation. DeltaBlue [48] is a local propagation solver with support for acyclic constraints that

1See, for example, this catalog of solvers: http://openjvm.jvmhost.net/CPSolvers/, accessed March 9, 2015
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uses user-defined functions topropagate values. Local propagation is one of the simplest techniques
to solve constraints, but it is restricted in that it only handles equalities of variables in a general way.
For more complex relations, local propagation solvers require the user or library builder to supply
propagation functions for each direction in which they wish to satisfy the relation. In contrast to
general solving strategies, which suffer from increasing complexity and decreasing performance as
the complexity of the domains they handle increases, local propagation solvers like DeltaBlue are
especially useful for applications where a less general but fast algorithm is preferable.

Local propagation solvers model constraint systems as an acyclic directed graph of those func-
tions that can be solved one after another. To add the constraint a + b = 10 to DeltaBlue, the
programmer has to supply the functions a = 10 − b and b = 10 − a. When a is then set to 20,
the solver determines that the functions it should execute are a := 20 and then b := 10 − a. Since
the algorithm has no cycles, this solving strategy is in linear time with respect to the number of
functions once a solving plan has been created (which has to happen once per variable, and is in
exponential time). DeltaBlue supports incremental resolving by separating the generation of the
acyclic graph of solving functions from their execution. To incrementally supply multiple values
to the same variable, the same execution graph can be re-used, and only the initially supplied value
is updated.

One restriction of local propagation solvers including DeltaBlue is that, in general, they cannot
deal with constraints that have multiple outputs, as these could lead to cycles in the propagation
graph. This case arises if we tried to model a + b = c as a set of functions a = 10 − b, b = 10 − a,
and c = a + b. When only a changes, DeltaBlue cannot decide whether to update b or c (or both)
in response. An extension of DeltaBlue, SkyBlue [109], does support multiple outputs, but at the
cost of instability in the linearization of the graph and resulting non-determinism in the solutions.

The Simplex Method Cassowary [3] is an efficient solver for simultaneous linear equations using
the simplex method with support for fast incremental resolving and non-required constraints.
Solvers with these features are of particular interest in graphical applications where interactive
performance is important, and Cassowary was recently integrated intoMac OS X [107] for solving
layout constraints in the user interface. To achieve its performance Cassowary exploits the fact
that a user manipulates only very few variables in a graphical application at the same time (for
example, dragging a window and thus manipulating its position, but not its extent) and optimizes
the solving algorithm for inputs that flow from these variables.

To solve a set of linear constraints, Cassowary first transforms the constraint system into a form
where each equation is an equality between one variable and a formula and where the variable
does not occur in any other equation. To support inequalities in this scheme, Cassowary inserts
a slack variable to replace the inequality with an equality. To support non-required constraints,
Cassowary then adds error variables which take the difference from the optimal solution. Once the
constraints are in this form, called a tableau, they can already be solved or deemed unsatisfiable. As
an example, consider the constraint x ≤ y − 5 ≤ 20. This is transformed first into x + s1 = y − 5
and x + s2 = 20, and then in simplex form becomes x = 20 − s2 and y = 20 − s2 + s1 + 5. To
optimize this solution, Cassowary incrementally minimizes the sum of the squares of the error and
slack variables. In this case, setting both s1 and s2 to 0 gives the solution x = 20 ∧ y = 25.

For performant, incremental resolving the assumption is that the constraints are already known,
andonly a limitednumber of variables change.This allows the solver to re-use the existing equations
in simplex form and simply replace the constants with new values and re-optimize.
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Relaxation Ivan Sutherland’s Sketchpad system [115] used three different solving strategies —
propagation of degrees of freedom, local propagation, and relaxation. The relaxation algorithm
is a fast solver for constraints over reals. It uses an incremental approximation technique, and is
thus well suited to situations were the system is disturbed from a state in which all constraints are
satisfied and the solver is expected to find a nearby state that satisfies them again.

Constraints in Sketchpad’s relaxation algorithm are expressed in terms of error functions. Each
constraint has error functions for each degree of freedom it removes, that is, one error function
for each variable it will determine. The error functions return a real value which indicates how far
constraint is from being satisfied. For example, a constraint 2x = y2 would have the error function
2x − y2. Sketchpad solves constraints by iterating over variables one by one. For each variable, the
errors for all its constraints are calculated. Then the variable is modified by a small δ, and the errors
are recalculated. The resulting two data points per constraint serve to approximate the constraints
as linear equations. In our example, given that x is initially 5 and y is initially 3, the error is 1. We
tweak x by, for example, 0.001 and find the new error as 1.002. We determine the approximate
coefficient to be 2 by dividing the difference of the errors by our tweaking value. We subtract from
x the original error divided by the coefficient and get 4.5 as new value for x. Since the error is now
0, we are finished, otherwise we iterate until we either converge to an error below some small or
we give up.

When variables participate in multiple constraints, the sum of the squares of the errors for
each variable is used. In any case, the system iterates until it converges or stops, if it does not after a
number of iterations.An issue however, is that somemodificationwill never let the systemconverge,
and leave it oscillating. Furthermore, Sketchpad’s relaxation will generally not find a solution that
minimizes the sumof the squares of the errors,which is desirable especially in graphical applications.
Van Overveld describes an alternative relaxation algorithm for geometric constraints [97] that is
better suited to find such solutions at the cost of making constraints harder to specify by using one
displacement function per variable rather than one error function per constraint.

Backtracking BackTalk [98] is a finite domain constraint solving library that uses backtracking
and arc-consistency optimizations to search for solutions in a finite set of objects. Finite domain
solvers are very different from the aforementioned solvers, as they do not restrict themselves to a
particular set of domains for efficiency. The disadvantage is that they have to use general purpose
techniques like backtracking to find solutions, which have O(N !) complexity in the worst case.
However, optimization techniques can improve the practical performance of such solvers to make
them useful in interactive applications.

In finite domain solvers, constraints are just tests, and the solver, using backtracking, progres-
sively assigns each variable a value from its domain until all constraints are satisfied or there are
no more values left to try. The most widely used technique for optimizing this process, and the
one used in BackTalk, is arc-consistency [120], which reduces the domains of variables before and
during the enumeration of values [92, 101]. This is done by considering each constraint separately
and opportunistically removing values from the domain that do not satisfy that constraint. As
domains shrink this process can be used repeatedly to converge on the set of possible solutions
quickly. As an example, consider the problem of map coloring, where the task is to assign one
of four colors to countries on a map such that no neighboring countries have the same color. A
naïive backtracking algorithm would try to assign a color to each country in turn, and only upon
finishing all assignments would it test the solution. On the other hand, when BackTalk assigns a
color to a country, it immediately removes that color from the domains of the countries neighbors,
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before continuing the selection process. This quickly reduces the tree of choices that BackTalk has
to traverse to find a valid solution.

Satisfiability Modulo Theories Z3 [90] is a fast and comprehensive smt solver from Microsoft
Research designed for theorem proving and with support for a wide range of type domains, in-
cluding constraints over booleans, integers, reals, and finite domains. In recent years, smt solvers
have seen significant use for program analysis, verification, and testing [6]. Their popularity stems
from advances in the performance of the search algorithms, and the ability to include and combine
theories that are frequently used in those applications, including theories for the aforementioned
primitive types, but also theories for containers such as arrays, sets, and bit-vectors. Though in
many applications the main purpose of smt solvers is to check the satisfiability of a logical formula,
they also include the facility to generate a model, that is, a set of assignments for free variables in a
formula.

Roughly, Z3 solves constraints using two core modules, a congruence engine, which determines
if two formulas are equivalent and thus should be equal, and a sat Davis-Putnam-Logemann-
Loveland (dpll(t)) [20] algorithm. The role of the latter is to incrementally build a model for
the constraints by either deducing the truth value of a formula, or, if that is not possible at any
step, guessing it. The algorithm also checks if the input constraints become unsatisfiable given the
current model and backtracks if that is the case. The formulas or their negations (depending on
whether the dpll(t) algorithm guessed them to be true or false) are then conjugated and passed
to the respective theory solvers (based on the types in the formulas). The theory solvers determine
any new facts about variables and return them to the core. For example, consider the constraint
(a + 1 = 5) ∨ (a − 1 = 5). The dpll(t) core guesses that both equalities can be satisfied, and
passes a + 1 = 5 ∧ a − 1 = 5 to the real theory solver. The real theory determines that this is
unsatisfiable and returns false as a new fact. The core adds this to the set of constraints, discovers
that this fact makes the constraint system unsatisfiable, and backtracks to make the second equality
unsatisfied. The new conjunction passed to the real solver is thus a + 1 = 5 ∧ a − 1 , 5. This has
a solution, and the real solver returns it. If there are any additional constraints, the congruence
engine determines if any new equalities arise (this would be the case if a is shared between different
theories), then those equalities are added to the conjunctions and passed to all relevant theories,
which again determine new facts based on that. The process continues until a model is found, or
the core exhausts the backtracking graph.

Z3, through plugins, can bemade to support a number of additional theories andmodel finding
features, such as non-required constraints and optimization [6] or strings [122]. This makes Z3
useful for a wide-variety of problems that involve multiple types with required and non-required
constraints.

***

In summary, even though powerful constraint solvers have been around for more than 50 years,
relatively few systems have been built. Many constraint solvers still derive from fundamental ideas
that were already present in the Sketchpad system [115]. Furthermore, the constraint solvers that
have been built tend to be limited to specific application domains, making it hard to choose the
right solver given a specific problem. Table 2.2 gives an overview of the presented types of solvers
and their properties relevant for this work.
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Table 2.2.: Overview of relevant constraint solving techniques
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2.4. Constraint Hierarchies

Orthogonal to the solving strategies above is the theory for trading of competing, but non-required
constraints.We noted in the introduction that constraint solvers offer clear semantics when dealing
with multiple competing or contradictory constraints. When such constraints are used, they are
generally not all strictly required at the same time — if they are, the constraint system is simply
unsatisfiable. Instead, in many application domains it is useful to introduce hierarchies of non-
required or preferential constraints that declare desirable properties, but for which it is no error
condition if the solver cannot satisfy them. For reference, we informally review the semantics for
trading off hierarchies of competing constraints, and refer to Borning et.al. for a complete formal
treatise [11].

In a system with constraint hierarchies, each constraint has a priority, with a designated highest
priority that is called required. Highest priority constraints must always be satisfied, so in the
absence of any lower priority constraints, a constraint hierarchy is solved just like any constraint
system. The theory allows for an arbitrary number of different constraint priorities, but Badros
et.al. note that in practice only a few priorities are used in stylized ways [3]. In Babelsberg, we use
the priorities required, high, medium, and low.

As an example, consider the following constraints over the reals:

required x + y = 10
high x = 8
low y = 0

Not all constraints here can be satisfied simultaneously, but according to the theory there is a single
solution that best satisfies the constraints: {x 7→ 8, y 7→ 2}. This is the only solution satisfies both
the required constraint and the high-priority constraint.

Each non-required constraint in a constraint hierarchy as an associated error function that is spe-
cific the kind of constraint. A simple error function will just return 0 if the constraint is unsatisfied
and 1 if it is. However, for reals we can give a function that increases smoothly the further a variable
is from the desired value by returning the absolute difference of the current and the desired value.
For example, the error for x = 8 is simply |x − 8|, and the error for x ≤ 8 is x − 8 if x is larger than
8 and 0 otherwise. Thus, in our above example, the error for the unsatisfied low priority constraint
is 2.

Consider the case where two constraints at different priorities cannot be satisfied at the same
time, but would have the same error if we completely satisfy one or the other:
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high x = 2
high x = −2
low x = 0

Borning, Freeman-Benson, and Wilson [11] describe a number of different comparators for specify-
ing the desired solution in this case, locally-predicate-better and weighted-sum-better.

Locally-predicate-better finds those solutions such that any other solution would leave a cur-
rently satisfied constraint with a priority p unsatisfied, but without satisfying a higher-priority
constraint. Such a solution is called Pareto-optimal. In the above example, this excludes any solu-
tion that satisfies the low-priority constraint, because thiswould leave bothhighpriority constraints
unsatisfied without satisfying an even higher priority constraint. There are two locally-predicate-
better solutions: {x 7→ 2} and {x 7→ −2}.

Weighted-sum-better finds those solutions thatminimize these squared sumof the errors,weighted
according to their priority. To do so, each error functions is multiplied with weights that are cho-
sen such that no combination of lower priority constraint can ever have a greater weighted error
than any one higher priority constraint. Within the same priority, the weights can differ between
constraints, however. Assuming we use the same weights to both high priority constraints above,
the optimal solution to the above constraints is {x 7→ 0}, because the absolute sum of the errors
of both high priority constraints is minimal at 8. If we had a constraint of the form x + y = 10
with lower priority constraints x = 0 and y = 0, the weighted-sum-better comparator will find an
infinite number of solutions with {x ∈ [0, 10], y ∈ [0, 10]}.

While both comparators find multiple solutions, in Object-Constraint Programming we are
interested in solvers that find a solution to a collection of constraints — if there are multiple,
the solver is permitted to select one arbitrarily. This is in contrast to logic- and constraint-logic
programming, where the programmer can usually access all possible solutions.

In general, a constraintmight also consist not only of a single (in-)equality, but also conjunctions,
disjunctions, and negations of atomic constraints. Only some solvers, such as Z3, can accommodate
disjunctions and explicit conjunctions of constraints. For DeltaBlue and Cassowary, conjunctions
of constraints are implicitly specified by feeding multiple constraints to the solver, while disjunc-
tions are not allowed. For a conjunction or disjunction, if there is a priority, it applies to the entire
constraint, not to components. Thus, this is legal:
strong (x = 3 ∨ x = 4)

but this is not allowed:
(strong x = 3) ∨ (weak x = 4)
A more formal overview of constraint hierarchies is given in [11], and a summary of the the-

ory that is relevant to our discussion here was published in [33]. For convenience, the latter is
reproduced in Appendix C.

2.5. Good Performance in Practical Applications

We have discussed how constraint solvers are useful to find solutions to declaratively specified
problems. However, especially when constraints interact with imperative code in graphical appli-
cations, the system state may change frequently as imperative code manipulates variables or adds
and removes constraints between them. The system must be able to react to changes to maintain
or re-satisfy constraints quickly, without reducing responsiveness to user input.

Kaleidoscope provides a declarative semantics for assignment, type declaration, and subclassing,
where all of these are handled by a solver. However, this declarative semantics, while clean, only
models the ordinary object-oriented semantics for consumption by the solver, and thus does not
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add to the expressiveness of these constructs. Furthermore, this declarative semantics is also used if
no actual constraints are in the program. In ocp, we decided to only use a declarative semantics
for assignments of variables that are also used in constraints. This means that the performance of
purely imperative code is the same as on a purely imperative vm.

If the constraint system is in a satisfied state, and most variables that are being manipulated
are not referenced from constraints, the solver only runs for those assignments that would cause
constraints to become invalidated. However, in interactive applications consistent performance
is more important than performance that may be better on average, but where apparently similar
manipulations sometimes are very fast and at other times noticeably slow [16]. Thus, even when
the solver is run, the performance impact must be small enough so it will not noticeably affect the
responsiveness of the system.

Incremental Re-Satisfaction Not all constraint solvers are developed to provide good performance
for interactive applications [48], being used primarily for proofing ormodel finding [90].However,
of the ones that are used interactively, some solvers have explicit support for re-solving in case of
state changes with good performance. To that end, Freeman-Benson and Maloney introduce the
notion of edit constraints and incremental re-satisfaction. Their work is based on the observation
that user input is usually restricted to modify only small parts of the constraint graph at a time, for
example modifying 2D coordinates whenmoving the mouse or modifying a string by entering one
character at a time.

As discussed in Section 2.3, constraint solving can be regarded as creating and traversing a graph
of constrained variables connected by constraint-specific operations. If only a subset of the vari-
ables change frequently, the performance of the solving can be improved by generating a graph
that is optimized to be traversed by starting from these few variables. Furthermore, in graphical
applications user input should often be regarded as a non-required. Consider, for example, the
desire that a graphical object stay visible even if the user tries to drag it outside the visible screen
area. In such cases, the graphical object should follow the user interaction until it meets the border
of the visible screen area. Formally, edit constraints are again simply an equality constraint v = c for
variable v and constant c. Operationally, it is used to model changing an input value, for example
in response to the cursor position, where in this case v and c would both hold points: v would be a
point in a graphical object being moved, and c would be the cursor position. Edit constraints also
have a high, but not required priority — the system will attempt to accommodate the edit action,
but may be prevented from doing so. In the above example, if the graphical object would leave the
visible area as a result of attempting to move it too far.

Both DeltaBlue and Cassowary treat stay and edit constraints specially, allowing very fast incre-
mental re-satisfaction of a collection of constraints as new edit values stream into the system (and
the weak stay constraints provide basic stability). For DeltaBlue, this involves pre-calculating the
execution plan from the edit variables. For Cassowary, the Simplex tableau is set up so that it can
be efficiently re-optimized given new values for the edit variables.

A disadvantage that arises from having a special interface for incremental re-solving is that it
violates the uniform access principle. Changing a variable is now possible either through the edit
constraint interface, or by adding and, after solving, immediately retracting a required equality.
Unfortunately, at least for Cassowary, preparing the solver for fast incremental re-solving of a few
variables requires some re-organization of the tableau, and solving for other variables also becomes
slower as a result. This requires developers to anticipate whether a variable will only change more
or less often, and use the appropriate interface if they want to achieve the best performance.
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Summary

Developers trying to make use of constraint solving in stateful, imperative applications face trade-
offs that influence the choice of how to interface with solvers and which solvers to use.

First, the spectrum of solver interfaces ranges from specialized dsls for GUI applications, over
general constraint dsls such as the standardized SMT-LIB language [4], object-oriented libraries,
to full language-level integration in Functional Reactive Programming (frp) and cip languages.
The trade-offs here lie in how easy it is to re-use abstractions and integrate with existing imperative
code versus howwell the constraint code and thus its interactions with the system state is separated
from the rest of the application. A shortcoming of all of these state the art approaches is that they
do not integrate well with object-oriented concepts of encapsulation and behavioral abstraction.

Second, the solvers that are available vary wildly in their capabilities, performance, precision,
and the potential to find surprising solutions. Features such as constraint hierarchies, stay and
identity constraints, read-only annotations, and incremental resolving which providemore control
over the solving process and performance are not universally available. They must also be applied
explicitly, but there is little guidance or even principled rules ofwhen they are needed.This problem
is exacerbated in systems that attempt to integrate constraints at a language-level, because the
requirements of concrete applications influence how these features should be used, while at the
same time encapsulation and abstraction may make it hard to determine what features are needed
in the first place.

The work presented here is motivated by the belief that there is room for a language design with
tighter integration of constraints and object-oriented features such as methods and inheritance.
This design should allow using multiple solvers and solver-specific features in a principled manner
without breaking encapsulation andwithout requiring intimate knowledge of the different solving
procedures that are available in the system.
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3. Design of Object-Constraint Programming
Languages

Anoverarchingdesign goal is that in the absence of constraints, anObject-Constraint Programming
(ocp) implementation such as Babelsberg should be a standard object-oriented language. We thus
focus on integrating those constraint programming features that are powerful and integrate cleanly
with the underlying object structures, at the cost of omitting some possibly interesting features
that have proven less relevant in practice.

Experiencewith integrating constraints into object-oriented languages [45, 47, 46, 79] has shown
that a number of important problems involve constraints including mutable objects, method
activation, inheritance, object identity, and finite collections of objects. These kinds of constraints
presents a number of challenges and possibly confusing issues, such as the potential for finding
surprising solutions and non-determinism. If a constraint references a field that does not exist on
an object, should the solver be allowed to add it? If a constraint requires two variables to refer to the
same object, which variable should be changed? Which methods can be used in constraints? Can
they only be used in the “forward” direction, to compute a result, or can the solver also use them to
define multi-directional constraints? For the imperative programmer with little prior experience in
constraint programming, incrementally adding constraints was thus often difficult, as the possible
effects of a constraint could not be easily determined. As part of our design, we have proposed a
set of design principles to avoid such surprises, as well as restrictions on ocp languages to enforce
these principles [38]:

• Structure preservation: Asserted constraints cannot change the structure of any objects (mean-
ing the number and names of their fields, transitively). This property is enforced through a
form of dynamic structural typechecking, along with implicitly generated extra constraints that
implement frame axioms.

• Identity preservation: Similarly, newly asserted constraints cannot changewhat object a particular
variable or field stores (such changes can only flow from assignments). This property is enforced
by requiring constraints on object identity to already be satisfied at the point where they are
asserted.

• Structural/identity determinism: The structure of objects as well as the particular objects stored
in variables and fields must be allowed to change through imperative updates, and such changes
can in turn cause existing constraints to be re-solved. However, the results of constraint solving
are deterministic in terms of the final structures of objects and the identities of objects stored in
each variable/field. This property is enforced through a novel two-phase solving process that first
deterministically solves identity constraints and then solves the remaining primitive constraints
in an updated environment and heap.

• Syntactic method rules: A simple syntactic check suffices to determinewhether andhowamethod
can be used within constraints. In short, methods with side effects (writes other than to local
variables) cannot be used in constraints. Other methods whose bodies simply compute and
return a expression can be used multi-directionally in constraints— any subset of their variables
can be considered “unknowns” and solved for in terms of the other variables — provided any
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methods called as part of that expression also follow this restriction. The remainingmethods can
be used just in the “forward” direction, in order to produce a result value which can participate
within constraints.

Additional confusion arises from the gap between the semantics of a solver and the solutions
it produces and the limits of representing that solution in an imperative runtime. For example
Cassowary is complete for linear equalities over reals, but its implementation uses float values to
represent reals, so a concrete solutionmay suffer from round-off errors. Similarly, while Z3 supports
non-linear operations over reals, many of these theories are incomplete, so a way to handle solving
errors is desirable that allows the programmer to distinguish if the constraint was simply too hard
for the solver, or if it is indeedunsatisfiable. Furthermore,when expressing constraints over complex
objects, a local propagation solver such as DeltaBlue may often produce better results.

Another goal for our design is thus to abstract from the concrete implementation of the used
solvers. As long as a solver supports constraint hierarchies over some primitive types that are also in
the host language, and we can encode uninterpreted symbols and functions for it in some way, our
design should be usable with that solver. The solver should furthermore be sound (but need not be
complete), and find a single best solution— if there are multiple solutions, the solver is free to pick
any one of them. Providing answers rather than solutions, i.e., results such as 10 ≤ x ≤ 20 rather
than a single value for x, and backtracking among multiple answers, as available in for example
constraint logic programming [68], is not part of this design.

Our design should enforce our principles regardless of how the solver is implemented. In this
chapter, we approach these issues incrementally and describe our complete design in three parts:
Section 3.1 describes how constraint expressions involving only variables that have primitive type
are mapped to the solver, how the solving process interacts with these variables’ values, and how
different solvers are combined to find a solution to problems involving more types than are sup-
ported by any one solver. In this first part we focus only on primitive types, for which identity is
not relevant. In Section 3.2 we extend our design to include standard object-oriented structures,
a heap with objects for which identity is relevant, inheritance, and polymorphism. We discuss
how objects for which no solver is available can participate in constraints, and what restrictions
apply to methods that are called in constraints. Finally, in Section 3.3, we add constraints over
collections of objects to our design. The collection protocol provided in many languages allows
for powerful abstractions, and collections can map to finite domains, which are useful in a variety
of constraint problems. In this third part, we describe what types of operations on collections we
support in constraints in a generic manner that is independent of the concrete collection protocol
and implementation of any one language.

We will illustrate our design decisions using small example programs and their associated con-
straints. Programs are written in fixed pitch font, the constraints that are handed to the solver in
math font.

3.1. Constraints on Primitive Types

We describe the first set of design issues using a simple language that has only primitive types,
namely booleans, integers, reals, and strings. We call this language Babelsberg/PrimitiveTypes. In
this first step, we omit user-defined, structured classes or methods, and assume the language has
only classes that map to our primitive types, i.e., Boolean, Integer, Float, and String. The
basic language we use here is imperative with mostly standard evaluation rules. The language
includes operations on the primitive values, mutable variables, and standard imperative control
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structures such as branches and loops. Operations on the variables are executed primitively as part
of the language, rather than as message sends. It is straightforward to extend this language with
other primitive types, provided that they all are atomic — we do not have recursive types or types
that define values that hold other values (such as records, arrays, or sets). Primitive types as we
regard them map to types natively supported by the solver. They are not, however, necessarily
primitive in the host language. For example, in languages like Ruby or Smalltalk, integers, reals,
and booleans are all proper objects.

3.1.1. Declaring Constraints

The first extension over a basic imperative language adds support for declaring constraints. A
statement starting with either the keyword once or always declares a constraint. Constraints
are immediately activated and solved. A once constraint will be removed immediately after the
solver finds a solution to the current set of constraints, whereas an always constraint remains in
effect for the rest of the execution. When a constraint expression is encountered, the interpreter
constructs a closure over the expression and adds it to the constraint store. Each time the current
set of constraints must be solved, all expressions contained in this store are translated into a form
that can be passed to the solver, the solver is called, and its results are translated back.

3.1.2. Translating and Solving Constraints

The evaluation model for Babelsberg/PrimitiveTypes is mostly standard for ordinary expressions
and statements. In contrast, a statement that adds a constraint starts with a duration, namely
always or once. The expression following the duration is taken added to the constraint store
unevaluated. The only adjustment in the evaluation model for ordinary statements is that for
an assignment statement, we evaluate the expression on the right hand side of the assignment,
constrain the variable on the left hand side of the assignment to be equal to the result using a once
constraint, and then turn all the constraints over to the solver. Doing this ensures that assignment
interacts correctly with other constraints.

Here is a simple example:
x := 3;
x := 4;
always x>=10

After evaluating the first statement we hand the following once constraint to the solver to find a
value for x:

required x = 3

The solver finds a value for x, which is then used to update the environment to be x 7→ 3. After
the second statement we hand the following constraints to the solver:

weak x = 3
required x = 4

The weak x = 3 constraint is the stay constraint that x retain its previous value, while the required
x = 4 constraint comes from the second assignment. These stay constraints are generated implicitly
by the language. They contribute to our goal of not surprising the programmer. In imperative
languages, programmers expect their variables to retain their values, unless some assignment oper-
ation changes them. For example, in interactive graphical applications, when moving one part of a
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constrained figure, the user generally expects other parts to remain where they are unless there is
some reason for them to change to satisfy the constraints. As described in Section 2.1, this desire
is commonly expressed using stay constraints. As mentioned above, we assume in the design that
the solver supports low-priority stay constraints, although in practice not all do. (We describe later
how we deal with this in the practical implementations.)

After the second statement, the solver finds the solution x = 4, resulting in a new environment
with x 7→ 4. The third statement adds the always constraint to the constraint store. So after that
statement we have the following constraints:

weak x = 4
required x ≥ 10

If we use a metric comparator such as weighted-sum-better or least-squares-better, we get the
solution x = 10, since this minimizes the error for the weak constraint. If we use locally-predicate-
better, then every x ∈ [10,∞) is a solution, and the system is free to select any of them. (However,
as noted in Section 2.4, typically we would not use locally-predicate-better if we have inequalities.)

3.1.3. Constraints and Mutable State

The second extension to the standard imperative model and the second opportunity at which
constraints must be solved are assignments. Assignments are evaluated by evaluating the right
hand side as an ordinary expression. We then add a constraint that equates the variable on the left
hand side to the evaluated result of the right hand side, and turn all constraints over to the solver. If
they can be solved, the variables are updated and the temporary assignment constraint is removed
from the store. Doing this ensures that assignment interacts correctly with other constraints, and
that no constraints can be violated with assignment.

The following example illustrates using the same variable on the left and right hand sides of an
assignment statement, as well as the interaction of assignments with always constraints.

x := 3;
y := 0;
always y = x+100;
x := x+2

After evaluating the first two statements and solving the resulting constraints, the environment
has the binding x 7→ 3, y 7→ 0. The third statement causes the constraint always y = x+100
to be added to the constraint store. We then hand the following constraints to the solver to find
values for x and y:

weak x = 3
weak y = 0

required y = x + 100

This has multiple possible solutions, and the solver can select any one of them. Suppose it picks
x 7→ 3, y 7→ 103. After evaluating the next statement, we have the following constraints:

weak x = 3
weak y = 103

required y = x + 100
required x = 5
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The first two constraints are the weak stays on x and y, the third comes from the always constraint
in the constraint store, and the fourth comes from the assignment x:=x+2 (where we evaluated
x+2 in the old environment to get 5). After solving these constraints, we have x 7→ 5, y 7→ 105.

New variables must be created with an assignment statement. Thus the following program is
illegal — we would need to create x first with an assignment statement before adding the always
constraint.

always x=10;

Requiring that variables be created before equating them with something can be a source of
irritation for the programmer. Aswe show in the full formal development (AppendixA), the above
program is indeed illegal in our formal semantics. However, in practical implementations, we can
have a shortcut to allow it. It only works for equality constraints where one side is a new variable
and all variables on the other side already exist. The behavior is that the system creates the new
variable, evaluates the other side of the equality, assigns it to the new variable, and then adds the
equality constraint as an always constraint.

The program might also introduce simultaneous equations and inequalities. For example:

x := 0;
y := 0;
z := 0;
always x + y + 2 * z = 10;
always 2 * x + y + z = 20;
x := 100

Assuming the solver can solve simultaneous linear equations, after the final assignment we will
have x 7→ 100, y 7→ -270, z 7→ 90.

As an example of unsatisfiable constraints, consider:

x := 5;
always x <= 10;
x := x + 15

After evaluating the first statement the environment includes the binding x 7→ 5. After evaluat-
ing the statement that generates the always constraint, we solve the constraints

weak x = 5
required x ≤ 10

This has the solution x = 5. Then we evaluate the last assignment, resulting in the constraints

weak x = 5
required x ≤ 10
required x = 20

Note that the required x ≤ 10 constraint has persisted into this new set of constraints. These
constraints are unsatisfiable.

An interesting aspect of this semantics is how we model assignment as a once constraint be-
tween a variable and an evaluated value on the right-hand side. We derive this model from the
Kaleidoscope system. Kaleidoscope initially modeled assignment as constraints between variables
at different times in what is called a refinement model of constraints. This model, adapted from
Lucid [2], adds some complexity to the semantics. Ordinary variables are represented as a stream
of “pellucid variables,” each holding a value at a different time, and we have to ensure that values

33



3. Design of Object-Constraint Programming Languages

can only flow forward in time, and with the details of when to advance the time and thus which
values a given set of expressions can access. Later versions of Kaleidoscope switched instead to
the perturbation model, which we also use here. In this model, variables are instead represented
conventionally as holding a single value. Assignment perturbs the value of a variable, and then the
constraints are then solved to adjust the values of variables so that they are re-satisfied if necessary.

The refinement model does provide additional capabilities — for example syntax for referring
to both the current and previous values of a variable — but at a cost, both conceptually for the
programmer and also for the language implementor. At least for the common cases, we believe the
refinement model and our current model provide the same answers. Consider the unsatisfiable
constraints arising from the following program:
x := 5;
always x <= 10;
x := x + 15

This behavior we modeled with the rules for Babelsberg/PrimitiveTypes is the same as that of
the refinement model, in which the program would be equivalent to these constraints:

required x0 = 5
∀t > 0 required xt ≤ 10

weak x1 = x0
weak x2 = x1

required x2 = x1? + 15

The read-only annotations in the refinement model serve the same role as do the evaluation
rules in our current model. In the example, in our current semantics wemodel the final assignment
x := x + 15by first evaluatingx + 15 in the old environment, and then adding a requiredonce
constraint that x be equal to that value. In the refinement model, we model the final assignment as
x2 = x1? + 15, where the read-only annotation on x1 accomplishes the same thing, by preventing
the solver from changing x1 to satisfy this constraint even though the other constraint that gives x1
the value of 5 is only weak. Similarly, stay constraints in the current semantics are modeled as weak
constraints equating the variable with its current value; in the refinement model these are weak
constraints relating the variables representing the current and previous versions, with the previous
version annotated as read-only.

3.1.4. Requirements for Constraint Expressions

The expressions that define constraints have a number of restrictions. These will apply to all of the
Babelsberg languages.

1. Evaluating the expression that defines the constraint should return a boolean. (This can be
checked statically or dynamically.)

2. The constraint expression should be free of side effects.1
3. The result of evaluating the block should be deterministic. For example, an expression whose

value depended on which of two processes happened to complete first would not qualify. (This
does not arise in the toy languages here, although we do need this restriction for a practical one.)

1In a practical implementation, the programmer might be able to make cautious use of benign side effects in a con-
straint expression, for example, for caching or constructing temporary objects that are garbage collected before they
are visible outside the constraint. In the formal semantics, however, we simply disallow side effects in constraint
expressions.
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An intuitive reason for these restrictions is that there are two interpretations for each constraint
at a particular step in the execution of a program in our design: first, saying the constraint is satisfied
is equivalent to saying that the result of evaluating the constraint expression is true; and second,
saying the constraint is satisfied is equivalent to saying that the generated constraint was satisfied
by the solver. The behavior of an interpreter or compiler for an implementation of the Babelsberg
design shouldmatch this interpretation. Thus, we need to be careful not to hand constraints to the
solver that it may think are satisfiable, but which are, in the semantics of the imperative language,
not so.

3.1.5. Control Structures

Babelsberg/PrimitiveTypes includes if and while control structures. These work in the usual way,
and allow (for example) a variable to be incremented only if a test is satisfied, or an always con-
straint to be conditionally asserted. The test for an if statement is evaluated, and one or the other
branch is taken — there is no notion of backtracking to try the other branch. Similarly, a while
statement executes the body a fixed number of times — there is no possibility of backtracking to
execute it a different number of times.

The test in an if or while statement can use short-circuit evaluation when evaluating an ex-
pression involving and and or. For example, this program results in x 7→ 100 (and does not get a
divide-by-zero error):

x := 4;
if x = 4 or x / 0 = 10
then x := 100
else x := 200

For simplicity, our formal rules do not include short-circuit evaluation — adding it would be
straightforward but would require additional, but not very interesting rules.

Constraints with conjunctions or disjunctions are just turned over to the solver, rather than
being evaluated using short-circuit evaluation. We could also add if expressions to the language
(distinct from if statements). However, since there is a simple translation from if expressions to
conjunctions and disjunctions, we do not include them. (If we did have them, theywould also need
to simply be turned over to the solver.) For example, the following two constraints are equivalent,
and have the solution x 7→ 10:

x := 0;
always if x = 4 then x = 5 else x = 10
always (x = 4 and x = 5) or (x != 4 and x = 10)

In either case, we would turn the entire constraint over to the solver to find a solution for x.

3.2. Constraints on Objects and Messages

While the previous section illustrates the fundamental interactions of constraints with variable
assignments and their integration with control structures and the syntax of the language, this
section will illustrate how this extends to a fully object-oriented language. For this next language,
which we call Babelsberg/Objects, we will add mutable and immutable objects that reside on the
heap or the stack, respectively. We also illustrate constraints over object identity, constraints on the
results of messages sends and how these are handed to the solver, as well as the limitations as to
which kinds of messages can be used in constraints.
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3.2.1. Objects, Structure, and Identity

Babelsberg/Objects has ordinary objects that reside on the heap and have a unique identity. Allow-
ing constraints over object identity is useful for example for defining data structures (for example
a circular linked list) or when modeling aspects of the real world [79]. For example, it is clearly dif-
ferent if two train tickets are valid for the same or an equal train. Thus, we add identity constraints
to the language (following Smalltalk syntax, written ==, in contrast to = for equality constraints).
For two objects p and q, if p and q are identical, they must also be equal, but the converse is not
necessarily true — if p and q are equal, they might or might not be identical.

Among our restrictions on constraint expressions in Section 3.1.4 was that they must be free of
observable side-effects. In this language, we consider creating an object a side-effect. This is because
object creation could potentially be observed using a meta-protocol, it modifies the heap, and
newly created objects can be tested for identity, which would be equivalent to testing against a
random number. Thus, new objects cannot be created as part of constraints.

Since ordinary objects cannot be created in constraint expressions, Babelsberg/Objects includes
value classes as well as ordinary, full-featured, classes. Instances of value classes can be created in
constraints. They are immutable after object creation2, and object identity is not significant for
them — an identity test performs a test for equality of structure and fields. However, value classes
are more than simple record declarations, since they support methods and inheritance.

In a practical implementation of Babelsberg, ideally the host language will itself support value
classes, so that we can use them directly. A number of existing languages have proposals or support
for value classes, such as Java3 or Scala4. If not, the implementationmay relax someof the restrictions
we have on creating ordinary objects in constraints, and instead enforce appropriate conventions
about object modification and not testing the identity of objects that were created in constraints.

We will now show how our complete, object-oriented design encodes the principles from Chap-
ter 3: Identity preservation, structure preservation, and identity/structural determinism.

3.2.2. Identity Preservation

In addition to the stay constraints that variables of primitive type stay equal to their primitive
values, we now also automatically generate stay constraints on variables that store references. Thus,
a variable continues to refer to the same object (and no just an equal one) unless reassigned. This
requires the solver to support uninterpreted values — the stays ensure that the variables are equal
to the (uninterpreted) references that they hold, not to the objects on the heap. In addition, we add
stay constraints for each field of an object. Since all practical solvers find minimal solutions (rather
than inventing variables that are not mentioned anywhere), these stay constraints ensure that the
solver cannot remove fields of an object if not all have been explicitly mentioned in constraints.

Consider the following example:
p := new {x: 2, y: 5};
a := p;
always a == p

The first line creates a new object with two fields on the heap. When evaluating the second line,
these are the generated constraints:
2For use with e.g., distributed systems applications, we would also want to restrict instances of value classes to only

hold references to primitive types or to other value class, but this restriction is not needed for our purposes here.
3http://openjdk.java.net/jeps/169, accessed December 11, 2015
4http://docs.scala-lang.org/sips/completed/value-classes.html, accessed December 11, 2015
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weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5

required a = r

The reference r is an uninterpreted constant. We assume the solver understands uninterpreted
function symbols. The uninterpreted function H in the second constraint above is used to model
the heap’smapping from references to objects. The solver cannot change thismapping, only update
the fields if a higher priority constraint requires it. Marking this constraint as required ensures that
the solver’s solution will always agree with what is on the heap — namely, that reference r points
to an object that has only an x and a y field. We introduce variables for the values of these fields and
add weak stays to these, so the solver can find solutions that update parts of objects.

The third line adds a constraint a = p, which from then onwards ensures that any assignment
to either of those variables is reflected on the other.

The stay constraints above would be enough to ensure that the identity of p cannot change in
this case. However, consider the following example:

p := new {x: 0};
a := new {x: 2};
always p.x > 0

Here, the desiremay be that the system change p.x to be larger than zero.However, the resulting
constraint system using only weak stay constraints would allow the solver to satisfy the constraint
bymaking p point to the reference stored in a! This in itself may seem useful for some applications,
but it is a slippery slope. There is inherent non-determinism in allowing such a change, because
we cannot tell which reference p will point to afterwards. This becomes especially apparent if
we changed the last constraint to always p.x = 0 || p.x = 3. Here, the system may even
choose to change p to point to the second object and change that object’s x field, depending on
the comparator used.

An additional issue arises with explicit constraints on object identity. Such constraints are useful
for specifying real-world requirements that two variables denote the same actual object and to
describe cyclic structures. Kaleidoscope had many of the same goals as Babelsberg, as well as some
of its features (including explicit constraints onobject identity), but didnot have the rules presented
here to tame the power of the constraint solver when solving such constraints. Experience with that
language in particular demonstrated that identity constraints can have non-obvious consequences
in an imperative language. As an example, suppose we create the following constraint:

p := new {x: 0};
a := new {x: 0};
always a == p

This identity constraint requires two variables to point to the same object. It is not clear whether
the solution will require them both to point to the object stored in p or that stored in a. The solver
could also satisfy the identity constraint by assigning both variables to yet a third object5. Adding
a read-only annotation on one of the variables does not suffice, because that would prevent the
system from re-satisfying the constraint if we later assign to the variable that is not read-only.

5One could also imagine an isDistinct identity constraint to express that two variables should not refer to the same
object— however, this would almost always lead to non-determinism, as the solver would be free to pick any object
to re-satisfy the constraint if one of the variables were assigned to be identical to the other.
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To address these problems, we employ a principle of identity preservation: newly asserted con-
straints cannot change which object a particular variable or field stores. When ordinary constraints
are asserted, wemake all stay constraints that equate variables and references be required. Second,
we require all identity constraints are already satisfied at the time they are asserted — they are only
tested at the time they are asserted, and not handed to the solver. Only during later assignments will
the system re-satisfy the constraint deterministically. Third, to be able to enforce these properties,
we do not allow identity constraints to be mixed with non-identity constraints. If either of these
conditions is not met, we treat the constraint as unsatisfiable. While this design places a bit more
burden on the programmer, we believe that the programmer effort is more than made up for by
the strong guarantee provided by the language.

3.2.3. Structure Preservation

With objects and, in particular, references to their fields being allowed to appear in constraint
expressions, situations can arise in which the solver could come up with an undesired or sur-
prising solution. In this section, we will use Point and Rectangle as value classes. To distin-
guish them from ordinary classes, we will create instances just by supplying the arguments, e.g.,
Point(10, 20), whereas instances of ordinary classes will be created using the newmessage, e.g.,
new Window(...). Finally, to foreshadow the formal semantics, for simplicity we omit details
about object creation, method lookup, and inheritance (which are completely standard and inher-
ited from the host language).

The following example assumes that a Window has a topLeft field, which contains an instance
of the value class Point:

a := new Window(Point(0, 0));
always a.topLeft = Point(10, 10)

If we translate these constraints using required stays on variables with references (as per Sec-
tion 3.2.2), but with weak stay constraints for other variables, we get the following constraints:

required a = r
required H(r) = {topLeft : topLeftr}

weak topLeftr = {x : 0, y : 0}
required H(a).topLeft = {x : 10, y : 10}

In this example, no structurally surprising solutions are possible — the solution is for the solver
to replace topLeft with a new value class object that has the correct values for its x and y fields.
However, supposewehad asked the solver tomake thetopLeft field of thewindowabove be equal
to a 3-d point: always a.topLeft = 3DPoint(10, 10, 10). Should the solver be allowed to
add a z field, so that a.topLeft suddenly has a different structure? After all, we have asked it to
ensure that a be structurally equal to an object having such a field. While such behavior may seem
desirable in this case, it can cause non-determinism.What if the constraint is of the following form:

always a.topLeft = 3DPoint(10, 10, 10) || a.topLeft = Point(20, 20)

Should the solver be allowed to change the structure of a depending onwhat works best with other
constraints? If a currently has no fields at all, which ones should it gain?

Allowing such constraints, although it adds to the power of the system, would make programs
using themharder to understand, as the structure of an object cannot be determined just by looking
at the code. To avoid this, we employ a principle of structure preservation: the solution to a newly
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asserted constraint will never change the structure of any objects, where we take structure to include
the names and number of an object’s fields (and thus, implicitly also its size), recursively.We enforce
this principle by employing a form of structural type-checking at run time, just before sending
constraints to the solver. Our checks ensure that all structural requirements of the given constraints
are already satisfied in the current environment andheap. For example, before solving the constraint
on the topLeft of our window, a Babelsberg language must check that the field already all fields
required to make it equal to a point, and will raise an exception if that is not the case.

Furthermore, constraints on parts of a structure are translated to the solver in a way that disal-
lows changing any but the last part of the structure that is named in the constraint. Consider the
following constraint for a tree of instances of value classes:

a := {b: {c: {d: 5}}};
always a.b.c.d = 10

The desired outcome is clearly that the solvermakes the d field of the object c equal to 10. However,
a valid solution might be to set c to a different object that has the right d value, or even change
b or a. These solutions are undesirable, and we prohibit it by translating this expression to the
following constraints:

required a = b : bv
required bv = c : cv
required cv = d : dv

weak dv = 5
required a.b.c.d = 10

Value Classes as Sugar Value classes are in fact not necessary for Babelsberg — there is a simple
transformation that can be used to remove them. However, they are useful in practice, since using
them can make Babelsberg/Objects programs much clearer and simplifies an implementation of
Babelsberg that follows our restrictions. However, showing how they can be eliminated is useful
to illustrate how our structural type checking avoids verbosity in the constraints.

To eliminate a use of a value class in a constraint expression,we can instead create a new (ordinary)
instance outside of the constraint, and in the constraint replace it by appropriate constraints on
the attributes of the (new) instance. Consider again a constraint on the center of a rectangle:

always r.center() = Point(10,20)

We can rewrite this as:

point1 := new MutablePoint(0, 0)
always r.center() = point1 && point1.x = 10 && point1.y = 20

If the new value class instance is created using expressions, we need to add appropriate read-only
annotations in the rewritten code. For example,

always r.center() = Point(d?, d? + 10)

is rewritten as:

point1 := new MutablePoint(0, 0)
always r.center() = point1 && point1.x = d? && point1.y = d? + 10

The read-only annotations are necessary since we do not want to satisfy the constraint by chang-
ing d.
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A remaining issue is that r.center() returns a new computed point, which we disallow if
points are not instances of a value class, as creating newobjects on the heap is considered a side-effect.
We can handle this in the following way: when, during our inlining, a constructor is encountered,
the object is allocated in a special part of the heap that cannot be reached by user code (using pointer
magic or vm introspection or the like). The constructor of the object is not inlined; instead, each
argument expression is required to be equal to a field on the new object. This implies limitations
on how these objects are constructed, in that their constructors can only assign each argument
to a field, in order, and not do any computation. Given these limitations, we will have created a
fresh and hidden reference with required equalities on all of its parts, which makes it effectively
immutable. Constraint inlining then proceeds with this object. Note that the identity of this new
instance created during this rewriting cannot escape from the constraint, since value constraints
cannot contain identity tests that could propagate the identity to the outside.

Finally, we might create an instance of a value class outside of a constraint expression. These
uses of value classes can be replaced by ordinary classes that have no methods that change the state
of the instance after it is created, and that override the default identity test method to test for field
equality instead. For this transformation for statements that create value class instances outside of
constraint expressions, we rely on the fact that value class instances cannot be changed after they
are created. To illustrate this, consider an example using value classes, and suppose that in fact value
class instances were mutable.

a := Point(10,20);
b := a;
a.x := 30;

At the end of this program a = Point(30, 20), but b = Point(10, 20). However, if we do
the same thing with mutable objects:

a := new MutablePoint(10,20);
b := a;
a.x := 30;

then both a and b have x = 30 (since they are identical).

3.2.4. Deterministic Updates to Structure and Identity

Of course, imperative programs do need to sometimes update the structures of objects and change
which objects are stored in particular variables and fields. In Babelsberg we must therefore allow
such updates. The challenge, then, is to provide this expressiveness while at the same time avoiding
non-determinism in the structures or identities of objects.

To that end,we allow arbitrary updates to objects and variables through ordinary assignment but
impose a principle of structural and identity determinism: all solutions to the violated constraints
must agree on the structures of all objects and the identities stored in all variables and fields. The
key observation is that changes to structure and identity can only occur through an assignment
statement, and the inherent directionality of an assignment ensures a deterministic “flow” to other
variables in order to re-establish violated constraints. An assignment statement may then cause
violations in both identity constraints as well as ordinary “value” constraints.

As described in above, constraint solving is not allowed to modify references stored in variables.
To allow this during assignment,we therefore introduce a two-phase approach to constraint solving
as part of an assignment statement. In the first phase, all identity constraints are re-established as
described above. In this phase, the stay constraints on identities and value class structures are weak,
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and the solver may update the structure of objects and change which objects are stored in particular
variables and fields, but it will do so deterministically. In the second phase, all other constraints
are solved in the context of this updated environment and heap, using the restrictions described
earlier, and with required stay constraints on the structures and references stored in variables.

Assigning Mutable Objects So far we have described how assignment to a variable is handled
with primitive objects on the right hand side. We have not addressed the case of mutable objects
with substructure on the right-hand side. Consider the following midpoint line:

line := {start: new MutablePoint(0,0),
end: new MutablePoint(1,1),
midpoint: new MutablePoint(0,0)};

always line.midpoint = line.start.addPoint(line.end).scaleBy(0.5);
line.midpoint := new MutablePoint(0, 0)

There are two ways to look at such an assignment: a) the assignment asserts equality between
midpoint and MutablePoint(1, 1) — both mutable objects — not their x and y parts. So
the solver could also modify the parts of the newly assigned point to satisfy the constraint. This
seems counter-intuitive, so presumably the right-hand side of an assignment should be read-only
to the solver. On the other hand, there are use-cases for constraints for example in input rectifica-
tion [78], where programmers may expect the system to fix the assigned object, rather than reject
the assignment.

For now, we consider the behavior in this case to be implementation defined. One practical
solution marks the assigned objects’ parts with strong stay constraints. This means that, as long
as other constraints allow, the solver will not change the new position for the midpoint, but if it
cannot use the new midpoint, it can also try and fix the parts of the right-hand side.

3.2.5. Control Structures and Methods

The full Babelsberg/Objects design still has the simple if and while control structures that were
introduced for Babelsberg/PrimitiveTypes. In addition, however, Babelsberg/Objects includes
methods. Following our overarching design goal of having a standard object-oriented language in
the absence of constraints, in imperative execution mode, methods are standard. Suppose we are
evaluating x.m(a, b). We first look in x’s class for a method with selector m, then its superclass,
and so on up the superclass chain. If no suchmethod is found, it is an error. 6 Otherwisewe evaluate
the body of the method in a new scope, and return the result. Arguments are passed by value (with
pointer semantics), as in most standard object-oriented languages. For instances of primitive types
and value classes, the argument can also be copied (since we cannot tell the difference between
sharing and copying in this case).

We can now write constraints on the results of message sends, such as the following constraint
on the x coordinate of the center of a rectangle r:

always r.center().x() = 100;

The constraint here is on the result of sending the message center to r, then sending the x
message to that, and finally sending the =message to the result. Depending on how the rectangle

6Note that we could have chosen to give the system additional power to invent a new method or convert an object to
an instance of a different class to satisfy a method lookup. However, similar behavior has not been useful in practice
in the earlier Kaleidoscope [45] and BackTalk [98] systems, and would also go against our goal of keeping close to a
standard object-oriented language.
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is stored, the rectangle’s center may well be computed in the centermethod rather than simply
being looked up; and even xmight be computed rather than being stored, for example if the point
is stored in polar coordinates.

Constraint expressions in this design are not simply executed, but instead interpreted using
an additional evaluation mode we call constraint construction mode ( ccm). While in the simple
Babelsberg/PrimitiveTypes design presented before we assumed that the solver primitives and
its operations are essentially the same as those in the imperative language, constraint expressions
on objects and messages are now translated into the language of the solver. We still assume the
solver can deal with some primitive types, but it does not know about methods or inheritance.
For simplicity, we will assume that the solver can understand uninterpreted symbols and records.
We will show later that this is not strictly necessary to implement a practical ocp language, but it
simplifies the description of the design. In this full design of Babelsberg, we treat all operations on
objects such as a + b in an object-oriented fashion, so that this means “send the message +with
the argument b to the object a,” with the meaning of + in this expression (and in constraints such
as a + b = c) depending on the class of a.

As with the previous languages, semantically, after every statement execution that could po-
tentially invalidate constraints, the current set of active constraints is translated, solved, and the
environment is updated with the solution (or the program halts with an exception). A practical
implementation can optimize by caching the translated constraints and only invalidate the cache
as necessary, or only solve a subset of the constraints.

Methods implemented as primitives in the host language (such as + on integers), are translated
into the equivalent operations in the solver and the participating objects are unboxed. For a lan-
guage like Java, which has true primitive values, the operations can still be translated directly, but
primitive methods on boxed types like Integer, Float, Boolean, and so forth are translated into
primitive operations on their unboxed equivalents. When we encounter a message in ccm that is
not a primitive, we do a normal method lookup, transform, and inline the method body, and then
continue to evaluate the inlined body in ccm.

Here is a simple example of using a method in a constraint. Suppose we add a doublemethod
to Float, and then use it in a constraint:
def double()
return 2 * self

end

x := 0;
y := 0;
always y = x.double();
y := 20

After the program runs, y will be 20 and x will be 10. During the execution if the always
statement, the constraint expression y = x.double() explodes into the following network of
constraints:

required self = x
required y = 2 ∗ self

This conjunctionof constraintsworks equallywell for determiningxordeterminingy, even though
double is actually a message to x. However, not all methods can be used in this manner. There
are a number of restrictions on methods to allow them to be used in this way, which we discuss
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in more detail in Section 3.2.6. Briefly, if they have side effects the transformation fails. If they
consist of more than just a single return statement they can only be used in the forward direction in
constraints, i.e., they return value will be passed to the solver as a constant, and all their arguments
are marked as being read-only for the solver. Creating an instance of an ordinary class is regarded as
a side effect, so methods that can be invoked by constraint expressions can only create instances of
value classes. If we we encounter a side-effect, the transformation fails. If we encounter a complex
expression or statement that we cannot transform, we evaluate it normally and only use its result.

As an example for a constraint in which amethod can only be used in the forward direction, sup-
pose we have always c = x.m(a, b), and method m has multiple statements so that it cannot
be translated and passed to the solver. We will evaluate the method and pass the equality between
its result and c to the solver, as well as required equalities for x, a, and b to keep their current values.
This allows the system to find an assignment for c given values for x, a, and b, but not any other
direction. If any other constraints are such that the correct solution involves finding a value for b
given values for c, x, and a, a practical system will halt with an error that the constraints are too
hard for it to solve, due to a method called from the constraint that cannot be inlined (or in the
formal semantics, we get stuck). However, in contrast to all the previous examples of constraints
that were too hard, the fact that they are too hard is a limitation of the transformations we use for
methods called by constraints, rather than being a limitation of the solver.

On the other hand, if method m can be used multi-directionally, so that for example we can find
a value for b given values for x, a, and c, then in the semantics the method is translated and inlined
so that the resulting constraint expression can be turned over to the solver. This done by creating a
scope and fresh variable bindings for method m and inlining the returned expression with respect
to that environment. The parameters are constrained to be identical to the argument names used
in the fresh scope for the method, and the receiver is constrained to be equal to self in the new
scope.

Here is a more complex illustrating this translation and inlining step. We create a constraint
on the center of a rectangle, where the center is a computed value rather than being stored as an
instance variable. (Both Rectangle and Point are value classes in this example.)

r := Rectangle(Point(2, 2), Point(10, 10));
always r.center() = Point(10, 20)

The centermethod for Rectangle is defined as follows:

def center()
return (self.upper_left + self.lower_right) / 2;

end

Note that since Point is a value class, we can make an instance of it in the constraint expression
itself (“Point(10, 20)”), and also in the centermethod, since we are doing point addition and
division in that method.

The constraint is evaluated in the following way. The code for the rectangle’s centermethod
is found via standard object-oriented method lookup. It is inlined to construct an equality
constraint between a new point with x=10 and y=20 and the result of evaluating (self.up-
per_left + self.lower_right) / 2. Constructing the center point from the first expres-
sion, as well as looking up and inlining the = method on it, explodes into a network of simpler
constraints, all required, that can then be handed to the solver in one conjunction. The table below
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shows how the constraints are constructed, and in particular how the local names are translated
into a global solver environment by making them unique.

// constraint for the receiver of the center method
required self1 = {upper_left : {x : 2, y : 2}, lower_right : {x : 10, y : 10}}

// the point addition called from the center method
required self2 = self1.upper_left
required arg1 = self1.lower_right

// the point constructor called from the point addition method
required x1 = self2.x + arg1.x
required y1 = self2.y + arg1.y

// point division by scalar called from center method
required self3 = {x : x1, y : y2}
required arg2 = 2

// point constructor called from point division method
required x2 = self3.x / arg2
required y2 = self3.y / arg2

// point constructor for the static point
required x3 = 10
required y3 = 20

// and for the point equality
required self4 = {x : x2, y : y2}
required arg3 = {x : x3, y : y3}
required self4.x = arg3.x ∧ self4.y = arg3.y

As mentioned, for each variable name in a scope a unique global variable name is created. The
solver works only on the global names. During evaluation, each local name maps to a global name,
which in turn maps to a value. Entering the center method creates a local environment in which
self is bound to the rectangle by value. A global alias self1 is created and constrained to refer
to that same value. Similarly, the global alias self2 is a point, namely the upper left corner of the
mutable rectangle. This alias is then used when we explode the +message to that point. self3 is
also a point, namely the new point that is returned by the point addition method and now used as
receiver of the scalar division method on points. For methods that take arguments, global names
for the argument names are created and constrained similarly. For example, arg1 is the global name
in this exploded constraint for the argument to the +method for Point. Thus, the solver never
has to deal with different scopes or name clashes.

Now consider a similar example but using mutable rectangles and points on the heap, using the
translation when using their constructors in constraints as defined in Section 3.2.3.

// stays for the heap
required H(r) = {upper_left : pul , lower_right : plr}
required H(rul) = {x : x1, y : y1}
required H(rlr) = {x : x2, y : y2}
required pul = rul
required plr = rlr
required x1 = 2
required y1 = 2
required x2 = 10
required y2 = 10
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// the center method
required self1 = r

// the point addition called from the center method
required self2 = H(self1).upper_left
required arg1 = H(self1).lower_right

// the point constructor called from the point addition method
required H(rc) = {x : x3, y : y3}
required self3 = rc
required x3 = H(self2).x + H(arg1).x
required y3 = H(self2).y + H(arg1).y

// point division by scalar called from center method
required self4 = self3
required arg2 = 2

// point constructor called from point division method
required H(rd) = {x : x4, y : y4}
required self5 = rd
required x4 = H(self4).x / arg2
required y4 = H(self4).y / arg2

// point constructor for the static point
required H(rs) = {x : x5, y : y5}
required self6 = rs
required x5 = 10
required y5 = 20

// and for the point equality
required self7 = self5
required arg3 = self6
required H(self7).x = H(arg3).x ∧ H(self7).y = H(arg3).y

Before we inline the methods, we create appropriate stays on the heap. Entering the center
method creates a local environment in which self is bound to r, which is a reference to the
mutable rectangle on the heap.We create aliases for the receivers and arguments as before, but now
treat constructors specially, in that we create a new reference on the heap, bind it to a new self
alias, and use the arguments to the constructor as constraints on the parts of the object, in effect
turning the assignment of these arguments to the parts of the newly created object into required
equality constraints. This means we execute constructors in a sort of “mixed mode,” in which
heap objects are created as needed and their arguments are turned into equality constraints on
their fields. This implies limitations on the constructors, namely that they be just methods binding
arguments to the fields of the newly created object, without any control structures.

This example also illustrates another reason why we need to solve for object identity and type
before values (cf. Section 3.2.4) — if r had been an instance of a class with a different implemen-
tation of the centermethod, it would have been inlined in a different way and created different
constraints. For the same reason the receivers of messages sent in constraint expressions cannot be
allowed to change their types, because this, too, may change which method should be executed in
response to the message.7

7Note thatKaleidoscope did allow such changes to the receiver and could try differentmethods to satisfy the constraints.
We decided that such behavior made the solving process very unpredictable and decided against it.
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Methods called in the ordinary way can also create new constraints, which then persist after the
method returns. Here is a simple example. Suppose we have a BankAccount class that includes a
balancemethod. We can then define the following method:

def require_min_balance(acct, min)
always acct.balance() >= min?

end;

Nowsupposewe callrequire_min_balance(a, 10)on someaccounta (as anordinarymethod
invocation, not from a constraint expression). Thereafter the balance in the account amust be at
least 10 (a persistent constraint). We use a ? annotation on the variable min to make it read-only
with respect to this constraint — otherwise the solver would be free to change either the account
balance or the local variable min, hiding any effect of the constraint.

Note the consequences of calling this method with arguments passed by value (with pointer
semantics):

a := new BankAccount();
m := 10;
require_min_balance(a, m);
m := 100

Even though we reassigned m, the minimum balance for the account stays at 10, since we passed m
by value. Of course, we are passing the account a by its pointer value as well:

a := new BankAccount();
require_min_balance(a, 10);
a := new BankAccount()

After the second assignment, a is bound to a new account — but the minimum balance constraint
is on the previous instance of BankAccount (which can be garbage collected since there are no
references to it). However, in general implementing suchmethods requires that the semantics keep
the local variables in such a method invocation as long as the constraints it creates are active and
any one of the variables is still referenced from the outside.

If we do want a constraint that continues to be enforced even if the account or the minimum is
rebound, we can instead write a method that is a minimum balance test and use it in a constraint:

def has_min_balance(acct,min)
return acct.balance() >= min;

end

a := new BankAccount();
m := 10;
always has_min_balance(a, m?);
m := 100

Programmers will need to be aware of the different semantics for these two cases, and select the
appropriate variant when it makes a difference. Note the placement of the read-only annotation
on the variable m in the always constraint — it would make no sense to place it on min in the
has_min_balancemethod, since a read-only annotation outside of a constraint expression does
not have any meaning.

As a common pattern, placing constraints inside methods allows programmers to express struc-
tural integrity constraints inside the constructors for objects, and thus ensure they are satisfied
throughout the lifetime of the object. This next example ensures that a bank account is always
initialized with a minimum balance (defaulting to zero):
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def initialize(initial_balance, min = 0)
self.balance := initial_balance;
always self.balance >= min?;

end;

3.2.6. Additional Restrictions on Constraint Expressions

Methods can of course have side effects, but such methods cannot be used in the expressions
that define constraints. (This is one of the restrictions noted in Section 3.1.4 on requirements for
constraint expressions.) This subsection describes some consequences of this restriction when we
have objects, methods, and object identity. There are also some additional restrictions on methods
called from constraints that are used in other than the forward direction, discussed below.

Side-effects in Methods Regarding side effects in methods, consider the popmethod for a class
Stack, which has a side effect as well as returning the value popped from the stack. This program
fragment is OK:

x := stack.pop()

This works, because the RHS of the assignment is evaluated first, and then we set up a once
constraint using the value popped from the stack. (Thus the RHS of an assignment can have
side effects, in contrast to always or once constraints.) In contrast, this fragment is not allowed,
because we cannot repeatedly evaluate the constraint expression as a test:

always x == stack.pop()

Instances of Ordinary Classes As noted previously, we consider creating an instance of an ordinary
class a side effect, somethods that can be invoked by constraint expressions can only create instances
of value classes and not ordinary classes. As noted previously, a practical implementation might
be able to allow cautious use of benign side effects in constraint expressions, including creating
instances of ordinary classes. For example, constructing a temporary instance of an ordinary class
that is garbage collected before it is visible outside the constraint should not be a problem.However,
In the design and formal semantics, however, we simply disallow such side effects in constraint
expressions.

Nested Constraints Creating a constraint is a kind of side effect, at least potentially, so another
consequence of the prohibition on side effects in constraint expressions is thatmethods called from
a constraint expression cannot themselves create other constraints, or call further methods that do
so.

One issue is that adding more identical constraints is not an idempotent operation when using
constraint hierarchies. The following program illustrates this:

def test(i)
always medium i = 5;
return i + 1;

end

x := 0;
y := 0;
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always medium x = 10;
always y = test(x)

Suppose we are using a least-squares solver. Every time we evaluate the expression y=test(x),
we add another medium constraint that x = 5. Since we are finding a least squares solution, this
nudges xmore toward 5 each time, diminishing the influence of the x = 10 constraint. However,
if we used a local comparator, re-adding the soft constraint would not change the resulting solution.
Since we want our design to be independent of such details, we must disallow this use.

Another reason why nested constraints are disallowed is because the method that adds soft
constraints might itself be invoked by a soft constraint — for example, suppose that in the above
program we instead had always weak b = test(a). What should the priority of the inner
constraint be? We would need an algebra for combining priorities.

Finally, allowing nested constraints means wewould have to solve eagerly rather than translating
and inlining the expression and then solving all resulting constraints at once.Consider the following
example:
def test(x)
y := 11;
always y = x;
if y > 10 then return x else return 11

end

a := 5;
always b = test(a)

The expected outcome is that the method test always returns a value larger than 10. If we do not
solve eagerly, however, y = 11 and a = x = 5when we evaluate the if statement. Thus, when
used in a constraint, this method could return a value smaller than 10 (in this case 5).

Assignments Methods called by constraints can assign to variables. If there are assignments, the
method can only be used in the forward direction in constraints that call it (i.e., to compute the
result given the inputs). However, programmers must be careful with assignments that would be
visible outside the method. A valid use-case for global assignment is caching and lazy initialization,
but it would produce unpredictable results if, for example, a global counter were incremented and
returned on each call.

3.3. Constraints on Collections of Objects

While it is not strictly necessary to include collections such as arrays or sets in Babelsberg, sup-
porting collections is useful in a variety of applications that use constraint-based programming. In
particular, finite domain problems such as those found in logic puzzles often lend themselves well
constraint-solving techniques, while their graphical representation and user-interface is usually
more readily expressed using imperative code. This combination makes them an ideal example of
the kinds of applications we want to support with this design.

3.3.1. Constraints on Collection Predicates

Until now,we have expressed constraints that correlate single variables or fields. Suppose that arrays
in our language have a length field and a number of indexed fields starting at 0, and that we can
access these fields using square bracket notation. Thus treat the length and fields of an array as
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its structure, and use the same structural compatibility checks for the existence of array elements
that we do for the existence of fields in a object. Thus, we would not, for example, grow an array
to allow a constraint on its ith element to be satisfied if it did not already have an ith element. If
we want to express that all fields in such an array should be pairwise different, we can do so in
Babelsberg/Objects with a loop:

i := 0;
while i < array.length do (
j := 0;
while j < array.length do (
if i != j then always array[i?] != array[j?]
j := j + 1);

i := i + 1)

Such a constraint could be used, for example, in the implementation of a Sudoku game [83], to
express the constraint that numbers must not repeat per cell, line, or column.

The above code has twomain problems, however. First, if we consider collections that can grow
(or shrink), these constraints would then be incorrect — they would either have to be redacted
and the loops re-executed or after adding the above constraints once any changes to the size of the
collectionmust be prohibited. Second, many object-oriented languages include a set of application
programming interfaces (apis) to work with collections, and rather than iterating manually, a
method such as all_elements_different, if available on the Array class, should work in a
constraint:

always array.all_elements_different()

There are a number of collection predicates that are commonly used in constraints and that
would be useful to support. For these, we propose to check their actual implementation and allow
them in a modified form of ccm. In this mode, rather than simply executing through complex
methods involving loops, we convert any operations involving array elements that are used as tests
into constraints. Any indexing variable is treated as read-only. If the test would trigger an early
return, we ignore the return and continue.

Depending on the type of recognized test, the generated constraints must then added to a
conjunction or disjunction. The system determines whether to use a conjunction or disjunction if
the method uses an early return optimization. If, depending on an element test, the method would
early return true, the tests must be combined in a disjunction, since it is enough to satisfy just
one test to have the method return the same. Otherwise, the elements are negated and added in
to a conjunction. Thus, an implementation of all_elements_different with the following
implementation would be turned into a conjunction of pair-wise inequality constraints:

def all_elements_different()
i := 0;
while i < self.length do (
j := 0;
while j < self.length do (
if i != j && self[i] = self[j] then return false;
j := j + 1);

i := i + 1);
return true

end
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Table 3.1.: Mapping from collection predicates to declarative representation
every ∀x ∈ array.f (x)
some ∃x ∈ array.f (x)

member y.∃x ∈ array.x = y

The above codewould generate a conjunction of constraints, because the early return isfalse. The
constraints in the conjunction would be for the tests to that early return, pair-wise constraining
array[i] = array[j] to be false (with the values of i and j fixed for each constraint).

Some commonpredicates available on collections inCommonLisp are translated as per Table 3.1.
Even though this list contains only a few predicates, in practice many languages come only with
a relatively small set of collection types that are supported at a language level. Languages with a
rich collection library such as Common Lisp or Squeak/Smalltalk [65] are built around a small
number of types and primitive operations to access and store indexed elements in an object. Thus,
implementing the special support needed to support these basic predicates enables their use in a
variety of contexts, including methods that are built on top of these predicates. Examples for these
are the Common Lisp methods noteverywhich simply uses a negation of the predicate used in
some or notany, which is the negation for every.

3.3.2. Constraints on User-Defined Methods

We do not intend to support every possible method that a collection may have in a practical im-
plementation, in particular if that collection may be extended with user-defined methods. As an
example, consider an iterative summethod:
def sum()
answer := 0;
i := 0;
while i < self.length (
answer := answer + self[i];
i := i + 1);

return ans
end

We can of course use this method in the forward direction in a constraint, according to the rules in
Section 3.2.6:
a := new Array(2);
a[0] := 10;
a[1] := 20;
s := 30;
always s = a.sum();
a[0] := 100

After the always constraint is executed, s is 30; then after the final assignment to a[0], s becomes
120. However, the method does not work backwards — for example, we cannot constrain the sum
of the array and expect the system to update one or more elements to satisfy the constraint. So the
constraint in the last line below will be too hard for the system to solve:
a := new Array(2);
a[0] := 10;
a[1] := 20;
always 50 = a.sum()
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We have found a design pattern for user code that works well in these situations that can provide
something that works both forward and backward. Rather than using a method that returns the
calculated sum of the elements, we eagerly update the sum as the array changes in a variable. This
can be done by writing an ordinary method that sets up the appropriate network of addition
constraints. The sum becomes an instance variable of our collection, and the implementation of
that collection must take care to correctly initialize the constraint network when it is created or an
element is added or removed:

def initialize_sum()
if self.length = 0 then
always self.sum = 0

else (
sub_array := new Array(self.length - 1);
i := 1;
while i < self.length do (
sub_array[i - 1] := self[i];
always sub_array[i - 1] = self[i];
i := i + 1);

always self.sum = self[0] + sub_array.sum)
end

The advantage for code using the collection’s sum in further constraints is that it is used simply as a
variable — constraints on it can work both ways, and it can even be assigned and the array changes
to satisfy the constraints. We will discuss additional useful design patterns such as this in Part IV.

Summary

Our design captures design principles to control the power of the solver in object-constraint pro-
gramming languages to avoid surprising or non-deterministic behavior. These restrictions force
developers to declare identity constraints and value constraints separately, but in return they guaran-
tee that object structure cannot change when solving for values.We achieve this by using two-phase
solving approach where first identities and structures are determined to satisfy any identity con-
straints and, in a second phase, value constraints are solved without further changes to the object
structures. This remove non-determinism and surprising behavior with respect to the structure of
objects — structure can only change through identity constraints or assignments.

These restrictions are motivated from experience with earlier Constraint-Imperative Program-
ming languages. However, more experience with this style of programming may uncover the need
for additional rules or some rules may turn out to be too strict for certain application domains.
Some applications may want to have some way to backtrack over or continue execution concur-
rently formultiple different solutions. In future workwe plan to investigate Prolog-style backtrack-
ing to make multiple solutions accessible from the imperative paradigm. Additionally, our design
supports primitive types such as strings, numbers, or booleans as well as objects with named and
indexable fields. However, additional support may be required for constraints over dictionaries,
streams, or other structures.
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4. Key Semantic Rules for Object-Constraint
Programming Implementations

This chapter presents an overview of a formal development of the Babelsberg design that can be
used to guide practical implementations [38], and gives and idea of the minimal requirements
on the solver and language to implement our design. The full formal development that lists all
semantics rules extensively is given in Appendix A.

The semantics ismeant to as simple as possible, while still encompassing themajor aspects ofocp
and the important designdecisions in its Babelsberg form.BecauseBabelsberg integrates constraints
in an existing object-constraint host language, the semantics omits constructs such as exception
handling for constraint solver failures, class and method definitions, and syntactic sugar, that are
intended to be inherited from the host language. Our semantics instead focuses on the expression
of standard object-oriented constructs that need to be modified to support the Babelsberg design.
We present the rules in the same increments as we did the design. First, Section 4.1 presents the
core semantic judgments to add constraint solving to a simple imperative language that has only
primitive reals, integers, and booleans. Second, Section 4.2 discusses how to integrate method
lookup and dispatch, identity constraints, and the interaction with the heap into the constraint
solving processes, and briefly presents two theorems for key properties (proofs for which have been
previously published [39]). Third, Section 4.3 discusses the additional requirements and limitations
of our design to declare constraints over collections.

What follows is a discussion of only the most relevant technical issues, with the full set of judg-
ments and rules given in the appendix. Besides ordinary imperative evaluation, we need to concern
ourselves with a) how to model translating of constraint expressions into a form suitable for the
solver and solve them and b) how to modify imperative assignment rules to re-satisfy constraints
if they would become invalidated.

4.1. Primitive Types

The basic language that has only primitive types is modeled using standard imperative semantics
with an environment to hold bindings from names to values and primitive control structures. The
boolean type is required to make meaningful Babelsberg programs, since by definition constraint
expressionsmust return either true or false (with the solvers task tomake them true). For this initial
language, we also add reals, integers, and strings, including operations on them to do arithmetic,
comparison, and boolean operations.

The first key extension over a simple imperative language is the addition of a global set of active
constraints to the state (besides the standard environment). The second is the addition of a symbol
(ρ) to range over a finite and totally ordered set of constraint priorities, which is assumed to include
a bottom element weak and a top element required. Although we used read-only annotations
in the examples presented throughout Chapter 3, we do not need them to model an ocp language.
(The semantics of read-only annotations are well understood and may easily be added.) As the
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third addition over a standard imperative language we must add the always and once primitive
statements, which declare constraints.

4.1.1. Translating and Solving

The first issue we must address to add constraint capabilities to a standard imperative semantics
is to define how expressions in the language are passed to the solver and its solutions applied. In
addition to a normal imperative judgment to execute through statements, we add judgments to
translate and solve constraints. Translation in the imperative language can be straightforward if
we define that our solver language is source compatible with the imperative language. However,
to implement our “frame axioms” (cf. Section 3.1.2), we automatically generate low priority stay
constraints on the current state of the world before passing any constraint to the solver. This is the
purpose of the following two non-standard judgments in the formal semantics:

stay(x=v, ρ) = C

stay(E, ρ) = C

The intuition for these judgments is that, given a current state, they produce a compound
constraint expression, by going over each variable binding in turn and generating a simple equality
constraint between the variable and its value with the priority ρ. Given these, we add them in a
conjunction with the constraint expression and pass them directly to a solver, using a second type
of non-standard judgment:

E |== C

The intuition for this judgment is that solving a constraint C generates a completely new system
state (E) that has correct bindings to satisfy the constraint. Like the syntax for solver and imperative
language, we can also define the environment generated by the solver to be trivially equal to the
primitive global environment. Solving itself happens in a call to the constraint solver, which we
treat as a black box. Our only assumption is that the solution is optimal according to the solver’s
semantics, as discussed earlier.

4.1.2. Re-satisfying Constraints

The second major issue to address an implementation of ocp is that assignment may invalidate
constraints, and that the solving process must consequently potentially run during assignment. Al-
though optimizations are possible, formally we can just replace the ordinary imperative assignment
rules entirely and always run the solver for an assignment. Consider the following snippet:

x := 2 + 5

A standard, imperative assignment rule simply evaluates the right-hand side, and then updates the
binding in the environment to reflect that x is now 5. However, since xmay have constraints on
it, we replace this rule with one that also evaluates the right-hand side first, but then constructs an
equality constraint once x=5 and solves that using the translation and solving process described
above.
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4.2. Objects and Messages

In addition to primitive values and control structures, we also want to support constraints on
objects that live on the heap, have identity, and respond to messages. The semantic rules are still
mostly standard imperative rules, including rules to create new objects, access fields, sendmessages,
or compare object identity. In addition to our rules to assert and maintain constraints, we also
now add slightly non-standard structural typechecking rules to test if the constraint expressions are
valid. Another important change over an ordinary object-oriented languages concerns side-effects
in expressions. Since message sends are expressions, and method bodies can add constraints, both
our global constraint store as well as all program state may be affected by solving operations that
occur withinmethods. This indicates problems regardingmodularization ofocp programs, which
we will discuss in Section 11.2 and Section 13.1

In the previous section, we assumed our simple primitive language can, for the most part, be
considered to be the same as the solver language. This is no longer possible, since there are no
solvers that understand and are able to resolve heap allocations and object-oriented message sends.
We do impose additional requirements on the solver, however. The solver now must be able to
handle records and uninterpreted symbols, which we can use to represent objects with fields and
pointer references, respectively. Otherwise the semantics still treats the solver as a black box.

The semantics for this language, although omitting collections and cooperating constraint
solvers, illustrates the key principles we want for an ocp language.

4.2.1. Translating and Solving

To deal with allocations and message sends that may occur in constraint expression, we extend
the set of implicit actions that occur when a constraint is asserted. The stay constraints are simply
extended to also assert identity constraints for heap objects. As a second step, we add judgments
to recursively translate message sends in constraint expressions into a form suitable for the solver
by inlining methods and also adding constraints for assumptions about object fields and identities
along the way. This way, we can eagerly unroll loops and inlinemethods for the solver, by requiring
that relevant objects and values stay constant. This is expressed in the formal semantics using the
following non-standard judgment, which represents a mix of symbolic and ordinary execution:

<E,S,H,C,I,e> <E′,eC,e′>

The intuition for this rule is: Given a global environment (E), a current local scope (S), a state of
the heap (H), and a set of ordinary (C) and identity constraints (I), translating expression e for the
solver yields an updated global environment (E′), a set of assumptions to make the inlining valid
(eC ), and an inlined expression (e′). In our inlining rules, we translate local variables by generating
global names for them, since we do not want to assume that the solver can use multiple scopes.
Arguments to method calls are constrained to be equal to the expression that generated them, and
receivers are constrained to stay identical to what they are at the moment.

As a third step before solving, we must ensure that no heap updates occur as part of executing
the constraint expression, because the solver does not know about the heap. To do so, we must
structurally type check the constraint expression. This process enforces our structural compatibil-
ity principles presented in Section 3.2.4 by checking whether no unbound variables occur in the
expression and whether all field accesses are valid. These assertions are just checked: the system
will never change anything to enforce them and if one is violated it is just an error. We require the
programmer to ensure that an object with the expected fields is first assigned to a variable used in
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object constraints, just as a programmer would need to ensure that an object with the expected
fields was assigned to a object-valued variable in a standard language. In the formalism, these checks
are represented by the following two judgments:

E;H ` e : T

E;H ` C

The intuition for the first judgment is that expression e has type T if it does typecheck given
environmentE and headH. The intuition for the second judgment is that if it passes, the constraint
C is well formed, that is, its constraint expression is has a boolean type. New object construction
on the heap does not typecheck, since constraints must be side-effect-free. Method calls also do not
typecheck: we have already inlined method invocations at this point. Finally, identity constraints
do not typecheck: they are solved separately and should not appear in ordinary constraints.

Besides these two additional steps, solving essentially proceeds as before, with the solver gener-
ating a new global environment, and mapping the generated global names for local variables back
into their local scopes.

4.2.2. Re-satisfying Constraints

As for the primitive semantics, the assignment rules are replaced to invoke the solver. The situation
is complicated for a full ocp language, however, due to the existence of fields and a heap. For
assignment, we now distinguish assignments to a new local name, an existing local name, or to a
field.

For new locals, we do not invoke the solver at all, and simply use a standard rule for creating the
bindings in the environment and heap. To tame the power of the solver, we add the two-phase
solving described in Section 3.2.4 for the other types of assignments. For assignments to existing
locals or fields, we use the same scheme as before treating assignment like a once constraint, but
nowwe do it twice: the first time we solve, we omit the typechecking step. Remember that identity
comparisons do not typecheck, so if we did the typechecking when assigning an object on the heap
that has identity, the constraint would be rejected. The first attempt at solving thus allows updating
variables that store pointers to objects. The second solving process then assumes that all identities
are fixed, and we typecheck under the new environment before allowing the solution to return.
This ensures that the solver still cannot generate fields or modify the structure of objects during
solving.

Key Properties In prior publications, we have presented and proven two key properties of our
formalism for a simpler language, called Babelsberg/UID [38, 40]. The first theorem formalizes
the idea that any solution to a value constraint preserves the structures of the objects on the en-
vironment and heap. The second theorem formalizes the idea that all solutions to an assignment
will produce structurally equivalent environments and heaps (provided we start in a well-formed
configuration where all identity constraints are satisfied). Both theorems are presented in their
updated form in the Appendix A.2.3.

4.3. Collections of Objects

In this final extension to Babelsberg/Objects, we support a limited number of predicates on col-
lections. These additional rules illustrate the facilities to support higher-order functions in this
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design. The semantics are a straight extension from the full object-oriented language. The main
addition is the inclusion of an element P© , which ranges over the core predicates on collections
such as every, some, member. For languages which support re-definition of the methods that
come with the language, we assume that the element matches only the original implementations,
not user-defined re-definitions.

This syntactic element reflects that a language implementer would have to manually check and
decide which collection predicates in the language are available and safe to use in constraints. This
means that the main work in implementing and ocp language with support for collections is to
check the core language methods and add facilities to recognize and allow relevant predicates in
constraints.

Besides this addition, supporting collections only requires some fairly minor extensions to the
rules. We must extend the inlining judgment to also work for well-known collection predicates,
that must be inlined over multiple statements. To support this, the constraint expressions that are
returned by the inlining rule for statements are split into groups for conjunctions and disjunctions
— this is required to track, based on the early returns that are encountered, whether a set of inlined
expressions all need to be satisfied or if just one needs to be satisfied, as explained in Section 3.3.1.

There is a noteworthy problem with our design and formalism to determine constraints from
early returns: they may generate constraints that are too strong. Consider the following method,
which tests if either at least one element in the array is larger than ten, or else all elements are
negative:

def some_or_none()
i := 0;
while i < self.length do (
if self[i] > 10 then return true;
if self[i] < 0 then return false;
i := i + 1

);
return true

end

always array.some_or_none()

Here, the constraint would be satisfied if:

∃x ∈ array.x > 10 ∨ ∀x ∈ array.¬(x < 0)

But our design (and formal rules) would always require the conjunction to be satisfied, so the solver
would have to solve this stronger constraints instead:

∀x ∈ array.¬(x < 0)

This problem can be circumvented, but would make the design and the formal rules more com-
plex. We have decided to avoid this additional complexity, because the code above could easily be
rewritten to use two methods which each test one property, and then use these in a disjunction.

4.4. Executable Specifications

Although a formal semantics can elucidate many details of how a programming language design
is intended to work, and proof strategies exist to show the formalism accurately reflects those
details, it is as easy to make mundane mistakes in a formal semantics as it is in any formal language.
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Providing an executable form of a semantics and running example programs helps catch such
issues. Additionally, we would like to derive test suites from executable semantics to verify concrete
implemented languages against the formal design. Regardless of whether the implementations
evolved before or alongside the formal semantics or whether the implementation was created
following the principles of the formalization, language specifics and optimization add complexity
and make the conformance hard to show.

Creating an Executable Semantics A number of systems support practitioners in generating exe-
cutable semantics from formal specifications, one of which is Relational Model Language [100].
Relational Model Language is a programming language to generate executables from big-step se-
mantics. It provides relations as basic building blocks for the semantics and translates these to C.
We have implemented the semantics of Babelsberg/Objects in Relational Model Language [35];
we created a parser for Babelsberg/Objects, implemented all the judgments and their rules as Rela-
tional Model Language relations and corresponding rules, and finally created an interface to the Z3
optimizing solver [6] to implement the E;H |== C judgment.

Translating our big-step operational semantics into Relational Model Language is straightfor-
ward. The opaque judgments for method lookup and type conversion are simply expressed as
dictionary lookups by method name and Relational Model Language-level typecasts, respectively.
The solver judgment, however, requires more work and requires in particular:

• Translating the syntax of the semantic’s constraint expressions into Z3 syntax. This involves,
besides a simple syntactic conversion, to convert operations into their type-specific equivalents
in Z3, and generating declarations for the global program state, all used variables, as well as all
labels and references that are used in the constraints. Furthermore, we have to encode strings
and string operations (which are not natively supported in Z3).

• Defining Z3 types that encompass all types of the semantic language, to simulate a dynamically
typed language with Z3’s statically typed variables. This is achieved bymaking all variables union
typed, with record, real, boolean, string, and reference type parts.

• Retrieving the solver output and generating a fresh environment and heap from the solution.

For implementation details on these steps, we refer to our technical report [35].

Generating Specification Test Suites Many languages, such as Ruby1, Perl2, or Java3 provide an
extensive test suite to check concrete implementations for conformance to a (sometimes infor-
mal) specification. These test suites include programs written in the implemented language and
check their results. Babelsberg, however, is not a design for a single language, but for a family of
languages — of which our semantics language Babelsberg/Objects may be seen as one. We thus
provide a framework to transform the test suite for Babelsberg/Objects into test suites for the other
implementation languages.

The example programs given in Chapter 3 are designed to clarify corner cases and document
design decisions. As part of testing our executable semantics, we have created a test suite from these
programs that can automatically verify that the formal language produces the expected results. As
the semantics of Babelsberg evolves, we can adapt and extend the suite.

From these programs, we also derive executable specifications: test suites that automatically test
if the actual implementations correspond to our semantics. To that end, we have created a frame-

1http://rspec.info/, accessed February 25, 2015
2http://perl6.org/specification/, accessed February 25, 2015
3http://openjdk.java.net/groups/conformance/, accessed February 25, 2015
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work to generate language-specific test suites. To use this framework, a language implementations
only has to provide syntax transformation rules to convert the tests from the Babelsberg/Objects
language, and a scaffold that implements the methods used in the tests. The framework provides a
template for the source transformation in form of Relational Model Language rules. A language
only needs to complete these rules to generate a test suite.

Summary

The key rules of ocp languages and where their semantics differ from well-known imperative and
object-oriented semantics are very few. The rules we presented here implement the translation
of expressions into constraints and the interaction of the imperative environment and heap with
the constraint solver. The full formal development that lists these key rules embedded into a full
imperative and object-oriented operational semantics is given in Appendix A.

We have found it useful to approach these key properties incrementally and develop them in
conjunction with an executable version of the semantics that can run our design examples as
tests. The executable version maps directly to the formal rules. Thus, any changes to the design
and semantics were verified by running example programs against the executable version of the
semantics as well as against our implementations, besides a formal analysis of our rules. We expect
that future extensions to the semantics to formalize our design for cooperating solvers (presented
in Chapter 5) can be developed in the same manner.

The semantics given here and in the appendix defines a useful subset of the Babelsberg family of
object-constraint languages. Compared to our design, the semantics imposes additional restrictions
in the interest of reducing the complexity of the rules. These restrictions may turn out to be too
conservative for practical Babelsberg applications, and more complex rules might be warranted
of they can enable more general use cases for multi-directional constraints or constraints over
collections while keeping with our key properties intact.
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So far we have shown constraints over integers and objects referring to other objects or integer
fields, but assuming the host language supports more primitive types than just integers, we need
to consider whether the following should be valid:

x := 5;
x := ”Hello”;

Since we are modeling a language that should be a straightforward extension of existing object-
oriented languages, including dynamic languages, we want to allow variables to be able to change
their type. Thus, when we execute the above we get the following constraints when executing the
second statement:

weak x = 5
required x = ”Hello”

It is easy to see that the final result should be x 7→ ”Hello”. The changed typemight propagate
through an always constraint:

x := 5;
y := 10;
always y = x;
x := ”Hello”;

The final result is that both x and y are strings.
There is also a potential interactionwith overloadedoperators. Suppose that for strings+denotes

string concatenation:

x := 5;
y := 10;
always y = x + x;
x := ”Hello”;

After the always statement we have x 7→ 5, y 7→ 10. Then after the final statement, we have the
constraints

weak x = 5
weak y = 10

required y = x + x
required x = ”Hello”

This has the solution x 7→ ”Hello”, y 7→ ”HelloHello”.
Non-determinism can arise for primitive types as well as values:

x := 3;
always weak x = 5;
always weak x = ”hello”;
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Here the solver is free to choose either an integer or a string for x. This may seem strange, and
also not really in keeping with the spirit of the goals for our languages with respect to avoiding non-
determinism. However, as mentioned in Chapter 3, we are looking to avoid non-determinism in
solutions involving object identity and object structure. In this example, both integers and strings
are primitive types without identity or structure, and thus the above program should be legal.
However, when we consider a language where both integers and strings are boxed as objects for
which identity is important or that have some non-identical structure (like a length field on a
string), then the above would be illegal. Regardless, we need a solving strategy that can deal with
different types or objects.

5.1. Cooperating Solvers Architecture

In practice, it is often infeasible to provide a single constraint solver that works well for all types or
operations involved of a problem; instead, different solvers may be more appropriate than others
for some aspects, and which need to work together to solve the problem.

Prior work on constraint-programming systems including Sketchpad [115], ThingLab [8], and
Kaleidoscope [47] recognized this need for letting multiple solvers cooperate. However, these
systems did not include a general architecture for letting multiple solvers cooperate, but rather
included a fixed set of solvers with a meta-solving strategy that was hand-coded to connect these
solvers in the appropriate way. In a similar vein, specialized solvers such as Ultraviolet [10] or
DETAIL [60] combine multiple decision strategies to solve more complex problems. (In the case
of Ultraviolet, these were a local propagation solver for functional constraints, a local propagation
solver for constraints over reals, a solver for simultaneous linear equations, and an incomplete
solver for simultaneous linear inequalities.) However, these, too were inflexible to extend.

In another avenue, there is much recent work in the area of smt solvers [93], mostly focused on
the context of model checking and program verification. As described in Section 2.3, smt solvers
communicate through shared variables, inferring equalities on those variables. This is powerful,
but has certain limitations. Most commonly, a limitation is that the method is incomplete for a
number of theories, but more importantly for the work presented here, it does not deal at all with
soft constraints, whereas our design explicitly requires them.

Thus, we find a need to combinemultiple cooperating solvers in a general way, while at the same
time supporting soft-constraints and, ideally, fast incremental re-solving. Borning [7] proposed
an architectural design that puts minimal requirements on the component solvers, but still allows
for more powerful interactions in parts of the constraint graph. As part of this work, we have
implemented and evaluated this architecture in practice.

At the top level, constraints and constraint variables are simply viewed as a bipartite graph. The
constraints are partitioned into regions that are connected via read-only variables. Each constraint
belongs to exactly one region, but regions may share variables. This happens if variables occur
in multiple constraints that belong to different regions. Such variables, however, must then be
read-only in all but one of the regions.

In this architecture, the regions must form an acyclic graph, so that solving can simply proceed
from the upstream to the downstream regions, propagating variable values. This architecture pro-
hibits loops and a system that oscillates without finding a solution.We find an order for solving the
regions, so that region B is solved after regionA if B is downstream fromA in terms of the read-only
variables. Read-only variables are represented simply through required equality constraints which
are automatically generated as higher regions determine the values of variables. The result is a very
loose coupling among the cooperating solvers. Furthermore, the programmer can explicitly control
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Figure 5.1.: A graph of constraints in our cooperating solvers architecture

the position of a solver in this graph, or the system can create the order without the programmer’s
support.

Figure 5.1 shows an example configuration. In this example, we are looking at a set of constraints
for determining the thermal expansion of a metal rod. Such a system is useful to run in multiple
directions, to find the expansion given certain temperature ranges, to find safe temperature ranges
given maximum and minimum lengths of the metal rod, or to select the most suitable metal
given some temperature and expansion. In addition, we also want to allow entering lengths and
temperatures in the metric or the imperial system.

Converting betweenCentimeters and Inches aswell as betweenFahrenheit andCelsius is done by
means of a linear equation, thus the constraints to do so could be handed to Cassowary. Converting
textual input fields to float values and back must be done via a local propagation solver such as
DeltaBlue. The calculation of the thermal expansion is a non-linear equation that multiples the
temperature, the base-length at zero degrees Celsius, and the coefficient of thermal expansion
specific to the selected metal. This equation is not linear, and thus cannot be solved by Cassowary,
but Sketchpad’s relaxation solver, for example, can find a solution. Finally, the coefficient of thermal
expansion is determined by the type of metal, a finite list of associations. To solve for such a value,
we need to choose a finite domain solver such as BackTalk.

User input always arrives via one or more of the input fields. Depending on which input vari-
able(s) are provided by the user, the corresponding DeltaBlue regions are sorted first. For example,
if we want to determine what length an Iron rod has at 60 degrees Fahrenheit, if its length is 100cm
at zero degrees Celsius, DeltaBlue2, DeltaBlue3, and the BackTalk region are sorted to be solved
first. They determine L0, F , and α from the user input, consequently these variables will become
read-only for all downstream regions. Since both C and cm are still undetermined now, the region
for Sketchpad’s relaxation has more unknowns than Cassowary1. Thus, the latter is sorted to be
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solved next. Now Relaxation and DeltaBlue1 both have one unknown left. We proceed sorting
these regions with the fewest degrees of freedom first, and end up with the following solving plan:

DeltaBlue2
DeltaBlue3
BackTalk

〉
Cassowary1

〉
DeltaBlue1
Relaxation

〉
DeltaBlue4
Cassowary2

〉
DeltaBlue5

Once the solver regions are sorted, solving proceeds from the furthest upstream region. Each
regionwill determine values for the variables it canwrite to, and the downstream regions will adjust
to accommodate the new values propagated to their read-only variables from higher level regions.
Soft constraints are solved for just within each region — in keeping with the theory of hard and
soft constraints in the presence of read-only variables [11], if a soft constraint in an upstream region
restricts a variable to a certain value, then a downstream region must use that value and can in fact
not distinguish if this value was determined by a required or a soft constraint. If constraints in a
downstream region cannot be satisfied due to an upstream soft constraint, we do not backtrack
and instead fail solving entirely.

This architecture imposes severe limitations on the kinds of constraints that can be solved. For
example, there is no support for solving soft constraints level by level (first solving all required
constraints, then proceeding to the soft constraints), because the architecture does not assume that
all solvers support solving soft constraints in this manner. However, the architecture is flexible in
that a region can itself be partitioned further and use a different strategy for combining solvers,
which possibly has stronger requirements on the participating solvers. In fact, it is possible to have
a region that uses an smt solver (which itself uses different solvers internally), and another region
that combines DeltaBlue and Cassowary solvers and supports fast incremental re-solving within
that region. For example, if we determine that a variable that changes frequently is referenced from
constraints in regions that are solved byDeltaBlue aswell as Cassowary, we combine this region and,
when the complete constraint graph is re-solved due to an update to this variable, we automatically
create edit constraints forDeltaBlue andCassowary and run them.Thisway, incremental re-solving
within those regions is fast, but we do not prohibit also using solvers for which no fast incremental
re-solving strategy is available.

5.2. User-defined Constraint Solvers

In the Babelsberg design, all solvers use the same interface to communicate with the vm so develop-
ers can add new solvers and replace existing ones. Besides allowing users to add new solvers, it also
provides encapsulation. Prior ocp languages such as Kaleidoscope treated the solving processes
specially and allowed the solvers to ignore encapsulation andmanipulate the contents of objects di-
rectly. Solvers in Babelsberg, on the other hand, receive the current objects as values and can return
new objects, but also send messages to those objects to mutate them in place. This is particularly
useful, for example, when complex objects such as files or methods that need vm support are used
in constraints.

A solver can be written in the host language itself, but has to provide an interface to the runtime.
A solver should declare its capabilities (to announce to the system which types of constraints it
supports), but can also omit it (and must then be used explicitly, without any automatic selection).
Solvers further need to provide at minimum two functions:

Solve A function should be available to trigger solving. This method should return all variable
names known to the solver and their new values.
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Add/Remove Constraint Functions must be available to add and remove constraint expres-
sion to and from a solver. These function should not to solve immediately (so that the perfor-
mance heuristics can measure solving and ccm independently). Furthermore, removing con-
straints must be possible, even if the design does not include user-level support for disabling an
always constraint once it has been enabled. Removing constraints is required to retract once
constraints after solving, and to update variable values in the solver. The latter is used both for
assignments and for propagating the values of read-only variables in the cooperating solvers
architecture.

User-defined constraint solvers in combinationwith our cooperating solvers architecture are key
to the kind of flexibility in constraint solving that we hope to achieve with this system, by giving
the user the power to write simple, highly specialized solvers that can be combined with powerful,
general solving strategies.

5.3. Automatic Solver Selection

Given that multiple solvers can be used cooperatively with this design, we need to figure out which
solver to use for which constraint. In this section, we present different heuristics for selecting a
solver automatically and present their trade-offs.

The solvers in ThingLab or Kaleidoscope were automatically selected based on the type of
constraint that was handed to it. In these languages, however, the set of available constraint solvers
was fixed. More importantly, each solver had capabilities that the others lacked, and thus many
constraints could clearly only be handled by one particular solver. The algorithmwhich determined
how the constraints were added to the solvers only had to check for these specific capabilities of the
solvers, and could be optimized easily. Such an algorithm is not possible with this design, however,
since we do not know in advance which capabilities the solvers have. Even worse, we may want to
use different solvers with exactly the same capabilities, but that have different characteristics with
regards to performance or solution quality.

The simplest approach at assigning a constraint to a particular solver would be to let the user
do it. Each constraint must then be annotated with the correct solver to use in the source — if
the selection is incorrect (i.e., assigning the constraint to a solver which cannot solve it) or not
ideal (i.e., using a general purpose problem solver when a specialized algorithm exists), the system
does not attempt to correct the problem. However, this simple approach is undesirable. ocp is
supposed to provide convenient access to constraint solving for imperative programmers, thus it
is inconvenient to expect each user to have to learn about the capabilities and trade-offs between
the different solvers before using them. Instead, manual annotation should be the fallback if the
system is unable to select the ideal solver in a situation.

5.3.1. Eager Selection by Type

For this algorithm, the solvers in the system must extend appropriate classes to respond to a solver
selection message with an instance of themselves. When executing a constraint expression in ccm,
the system determines the most specific dynamic types of each variable that it encounters. As long
as no solver is selected for the current constraint, the system sends a solver selection message to the
object to ask which constraint solver should be used for it. If the object does not understand the
message, this indicates that no solver declared that it can handle this type of object. If the object
responds with a solver, the constraint is immediately assigned to that solver. Any further variables
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that are encountered are now interpreted with this solver. If they happen to be of a type that the
solver can handle, they are normally represented as variables. If they are not, their current value
will be used as if it had been annotated as read-only in the constraint expression. The solver will be
able to use the value of the variable but not write to it, but when the variable changes, the updated
value is passed to the solver.

If during the execution of the constraint expression no solver is selected, the constraint is taken
as-is: if it is alreadytrue, no further actionmust be taken.When anyof the variables that participate
in the constraint change, the expression is re-executed using this same algorithm. If the expression
returns false and no solver is selected, it is treated as unsatisfiable. In either case, a practical
language should provide an appropriate warning to users, informing them that no solver could be
found for a constraint involving the dynamic types that were encountered.

This selection algorithm is simple and fast. Constraints that deal with few types can quickly
be assigned to the correct solver. However, the algorithm is brittle for constraints that include
multiple types that each should be handled by a different solver. Consider the following example:

s := ”Hello”;
n := 5;
always n = s.length() * 2;
always s.length() * 2 = n;
n := 10

Suppose we have a local propagation solver that can deal with equalities over strings and numbers,
but not arithmetic, and one that can solver linear equations over reals, but does not support strings.
The two constraints in line 3 and 4 should be idempotent and it should be irrelevant in which
order they are defined or solved.

The first constraintwill be handed to the linear arithmetic solver, sincewe encounter the number
n first during ccm. The solver will treat the string as a constant, and is thus forced to use the return
value of the method s.length() to update n to 10. The second constraint will be handed to the
local propagation solver, since we encounter the string s first. The constraint is already satisfied,
so nothing needs to be done.

Whenwe execute the assignment on line 5, the order in which the solvers are called to solve these
constraints matters. We must first call the local propagation solver to update the string length. If
we call the linear arithmetic solver first, it will give up and treat the constraint as unsatisfiable, since
it cannotmanipulate the string tomake it longer. This can lead to confusing cases where the system
will say a set of constraints is unsolvable, but a simple re-ordering of operations in the constraint
expressions will make it work.

5.3.2. Selection by Preference

If more than two solvers can solve the current set of constraints, it may be desirable to always
give preference to one solver over another, to avoid issues where the solver surprisingly changes
when a constraint expression is refactored. To assign preferences, the system maintains a list of
solvers implicitly ordered by preference. This list may be generated or supplied by the user. In
either case, the list of solvers should be created early in the execution of the program and, once
the first constraint has been created, it should only be possible to append, not remove or re-order
solvers.

Instead of executing the constraint expression just once, it is executed in ccm once for each
of the available solvers. The first solver that is able to work with at least some of the variables
that participate in the constraint is selected and the constraint is assigned to it. Executing the
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constraint expression multiple times is safe due to our requirement on it being free of side-effects
(cf. Section 3.1.4).

For the above example, suppose that the arithmetic solver is preferred over the local propagation
solver. In this case, both constraints will be assigned to it. Thismeans, however, that the assignment
on line 5 now becomes unsatisfiable! While this may seem like a strong restriction on the kinds of
programs that can be written in this manner, we consider it preferable over the potential surprise
that the two constraints above, even though they trivially express the same equality, are assigned
to different solvers. In this scenario, the constraint system will always be unsatisfiable, regardless
of how we refactor the two constraint expressions. To make the program work, the user should
manually select the local propagation solver in this case, or else re-order the solvers to give preference
to the local propagation solver at the beginning of the execution.

5.3.3. Heuristic Selection

The preferential solver selection is heuristic: it selects the first solver that canworkwith at least some
of the variables that participate in the constraint. This heuristic can be easily extended. An obvious
extension is to select the first solver that can deal with the most variables, and go by preference
only in case of a tie. There are more such extensions that make sense in this decision procedure. As
described above, there may be solvers that have exactly the same capabilities, and that only differ
in their performance or in the quality of their results.

Some of the solvers’ properties, such as performance and the quality of the result, can be deter-
mined automatically. For others, this solver selection procedure requires solvers to come annotated
with capabilities, such as the types and operations it supports, for which theories it is complete or
incomplete, or whether it supports finite as well as infinite domains.

A simple example, which the preferential selection can already decide, is a constraint on two
strings and the choice between a finite domain solver and an local propagation solver:

x := ”Good Morning”
y := ”G’day”
always x = y

We can tell from the types that the simplex solverwill not be able to find a solution to this constraint
and that we should pick the local propagation solver.

However, even a slightly more complex example may make our decision much more difficult.
Suppose we hand the following constraint over the reals to both a simplex solver like Cassowary
and a relaxation solver:

a := 2.0
b := 2.0
always a * a = b

Again reject the simplex solver, this timebecause it is not equipped todealwithnon-linear equalities.
The relaxation solver, on the other hand, approximates a solution to this constraint by linearizing
it, but it would be an approximation only. More worrisome is that the solving algorithm can
diverge, so even if this constraint can be solved once, it may not be possible if we change either a
or b too much in one step. Suppose a relaxation solver approximates the solution a 7→ 2.0 and
b 7→ 3.9999999999998 for the above constraint; because the relaxation method using numerical
approximation, it is prone to round-off errors. If we have a solver like Z3 available, we might
want to select it instead, both for higher precision, and because the solving theory is more robust
(albeit not complete) for non-linear arithmetic over the reals. However, Z3may pick another (valid)
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solution a 7→ 1.4 and b 7→ 1.96. This solution means that the sum of the changes to the variables
is smaller than with the relaxation method, but for some applications, we may prefer a solution
which modifies the least number of variables instead.

Ourheuristic selection attempts toweigh these different criteria.As in the selectionbypreference,
we execute the constraint expression once for solver, and in addition we let each solver solve the
constraint once, but without updating the environment and heap with the solution. Using the
preference and the below heuristics in conjunction, we can then select the best solver and add
the constraint to it. As constraints are added, we regularly re-evaluate the metrics for existing
constraints to check if they should be moved for better performance or better results. Similarly,
when a constraint becomes unsatisfiable, but the current solver is annotated as being incomplete,
we also re-evaluate the metrics to search for another solver.

Precision As an example, Cassowary is complete for linear equalities over reals, but its imple-
mentation uses float values to represent reals, so a concrete solution may suffer from round-off
errors. Similarly, although the Z3 real theory works on reals of arbitrary precision, these reals will
be represented in many languages as finite-precision floating point numbers, so again round-off
errors may occur. The precision of the results these solvers produce may thus differ in practice, and
could be considered as part of the solver selection.

Variable Changes Another property that may impact the quality of the solution is how the solver
implementation affects the selection of solutions when multiple solutions are available. Although
stay constraints ensure that any solution is close to the previous state of the system, there are often
multiple possible solutions that satisfy this property.Which solution is selected is usually an artifact
of the solver implementation. However, problems such as the split-stay problem may make some
solutions still more desirable than others, and solvers which avoid it may be preferable over those
that do not. Similarly, solvers that change multiple variables, but achieve a small squared distance
from the previous state of the systemmay be more or less suited to a particular problem than those
that change few variables, but those by a larger amount.

Dimensionality Besides the types of variables, the operations on them and how they are con-
nected also play a role. Cassowary can only solve linear equations, while a relaxation solver can find
solutions for higher dimensional arithmetic. Thus, the operations and associated operands within
a constraint expression must be considered to select the solver.

Completeness Another issue arises with incomplete theories. smt solvers, for example, require the
different partial solvers within to be convex for the decision procedure to be complete. For example,
the theory (Z,+,=) (addition and equality over the whole numbers) is convex, but (Z,+, ≤) is not
— a constraint involving inequalities over the integers may be satisfiable for a specific set of values,
but another set of values may make it simply too hard for the solver. In that event, another solver
(e.g., using a form of relaxation) may be able to approximate a solution and the constraint should
be moved to that solver.

Performance Depending on the implementation, solvers may differ significantly in both base
performance and complexity in required memory as well as time. As constraints are added during
the execution of a program, a solver that is fast for few constraints may, due to higher complexity,
become slower than a constraint with worse base performance but better complexity. A selection
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algorithm can take into account how fast a solver was able to satisfy a constraint, and continues to
monitor solvers to notice drops in performance when constraints are added.

In practice we have found a mixture of manual and eager selection to produce good results once
the user has a basic understanding of the available solvers and is aware of the eager selection process
(in particular, how seemingly idempotent refactoringsmay lead to different results).We have found
that while preferential selection avoids some surprising behavior, this behavior occurs rarely in
practice. The heuristic solver selection procedure, although very powerful, has strong drawbacks: its
complexity impacts the performance of creating new constraints, and requires constant re-checking.
As with any heuristic, the results also depend on the weight that is given to each of the metrics
and may need to be adjusted depending on the application domain. An educational advantage,
however, is that practical implementations can use the metrics to communicate to the user the
selection process and increase the user’s understanding of the capabilities and limits of available
constraint solvers. As a guideline to implementers, we suggest using the heuristic procedure as an
educational tool and guiding instrument at development-time, but revert to manual and eager
selection when many constraints are added dynamically throughout the run-time of the program,
to avoid the performance overhead. We present implementations of all selection procedures in
Part III.

Summary

Cooperating solvers make constraint programming useful for a wider range of problems. Our
design is simpler than other schemes for cooperating solvers and supports black box solvers with
very few requirements on the solvers themselves. Any solver that supports soft-constraint and
making variables read-only can be used with this design. This comes at the cost of flexibility in
the solving process, because solvers communicate only via absolute variable values and cannot, for
example, propagate ranges of valid variable values across regions. For performance reasons we also
do not backtrack over solver regions and instead fail solving entirely.We plan to revisit this decision
in future work to see if backtracking may be viable for some problem domains.

An advantage of our architecture is that it makes it easy to add solvers for special domains
and have them work in conjunction with more general ones. This makes it possible to have a
large number of solvers in a system, some of which may be able to address similar problems. We
presented mechanisms for automatically deciding which solver to use for a particular constraint.
How these mechanisms can be integrated with development tools is also an area of future work.
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6. Declaring Constraints in an Object-oriented
Language

In this part, we present four issues that arise when implementing the Babelsberg flavor of Object-
Constraint Programming (ocp). This chapter discusses the issue of how to implement the con-
straint construction mode that translates expressions in the host language into constraints that can
be passed to the solver. In Chapter 7 we elaborate on the issue of how to solve these constraints and
translate the solution back into the program, how to implement our design for cooperating solvers,
and how assignments trigger constraint solving. Finally, in Chapter 8 we address implementation
issues related to the performance of practical ocp languages and present benchmark results.

To evaluate our design using different implementation strategies, we have created three concrete
instances of it. The first, called Babelsberg/R [33] is based on the Topaz Ruby vm [31, 112, 41].
It provides full integration with all types of variables in Ruby and integrates with a modern jit.
In the next chapters, we will use this implementation to illustrate those issues common to all
implementations.

Where appropriate, we compare the vm-based implementation approach to our two library-
based implementation in pure user-code. One drawback of a vm-based approach is that, although
based on a particular host-language, the ocp extensions will only work on the customized vm.
However, in many languages that are of interest to the industry and research communities, appli-
cations typically have to work on a variety of client vms. Thus, using a library-based approach, we
created Babelsberg/JS [34], implemented on top of JavaScript in the Lively Kernel [66] environ-
ment, and and Babelsberg/S [52], based on Squeak/Smalltalk [65]. These implementations run
on all modern vms for their respective host languages.

In this section, we first provide an overview of the key concepts of the implementations before
plunging into the details.

Babelsberg/R A full implementation of object-constraint programming requires deep integra-
tion with the underlying language to support all features of the host language, including different
kinds of variables and full access to closure scopes to correctly construct constraints from con-
straint expressions. One way of ensuring this kind of access is a vm-based implementation such as
Babelsberg/R.

The basis of Babelsberg/R is Topaz Ruby, an experimental vm built using the PyPy/RPython
toolchain [104], a restricted, object-oriented subset ofPython.Topaz is aRubybytecode interpreter.
It is written in an object-oriented fashion, with each bytecode implemented as a method of the
vm-level class Interpreter. Topaz also represents Ruby language constructs such as references
and scopes as instances of RPython classes. As an example, local variables are represented by Cell
objects, which providemethods to access and update the variable’s value. The RPython translation
annotates the interpreter to combine it with a fast, generic jit compiler and garbage collector. In
Babelsberg/R, we leverage the object-oriented design of Topaz to implement ocp and inherit the
jit and garbage collector from RPython. The semantic model is thus a pure extension of Ruby’s,
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and supports all of the existing Ruby constructs such as classes, instances, methods, message sends,
and blocks (closures).

Babelsberg/R requires two semantic changes to support constraint creation and solving. First,
we extend the Ruby standard library with the always primitive that receives a closure, and creates
a constraint from it. The constraint is, that the last expression in the closure should return true.
The closure can reference objects, invoke methods on them, express assertions about their identity,
type, or protocol, and use assignments and control structures. The syntax to invoke this primitive
is the same as for an ordinary global method that receives a block closure argument. The restric-
tions on what kinds of expressions can be used in the closure are the same as in the formal design
(cf. Section 3.2.6), and are dynamically checked during ccm.

As the second extension we add subclasses of the Topaz Interpreter that implement the
different interpreter modes for constraint construction, imperative evaluation, and constraint
solving. In constraint constructionmode, the expression that defines the constraint is evaluated, not
for its value, but rather to build up a network of primitive constraints that represent the constraint
being added by using the vm internal representations of objects and scopes to access variables
directly while ignoring encapsulation in the vm. The interpreter keeps track of dependencies in the
process, so that, as needed, the solver can be activated or the code to construct the constraint can
be re-evaluated. In imperative evaluation mode the interpreter operates in the standard fashion,
except that Load and Store operations on variables check for constraints, and if present, obtain
the variable’s value from the constraint solver or send the new value to the solver (which may
trigger a cascade of other changes to satisfy the constraints). Finally, in constraint solving mode,
the interpreter operates in the fashion of an unmodified Ruby vm, that is, it does not intercept
variable accesses to trigger constraint solving. Since our design for cooperating solvers enables a
wider range of applications by combining specialized solvers, a goal of a practical implementation
is to make it easy to add multiple constraint solvers as libraries to the host language. When these
are used for solving constraints, however, the inner workings of the solvers should not recursively
trigger constraint solving. We describe an architecture that makes it straightforward to add new
solvers and which does not privilege the solvers provided with the basic implementation (they are
simply the solvers that are in the initial library).

Babelsberg/JS and Babelsberg/S The Babelsberg/JS library is developed in the Lively Kernel, but
is itself written in pure JavaScript and can be used independently of the Lively Kernel environment,
on any modern JavaScript vm. Babelsberg/S is based on Squeak/Smalltalk. The two implementa-
tions are sufficiently similar that we explain only the first. Babelsberg/JS has a number of issues
that Babelsberg/S does not have, due to the fact that, compared to JavaScript, the Squeak language
is a more flexible basis to implement language extensions.

TheBabelsberg/JS library provides threemain parts: Like thevm-based approach, Babelsberg/JS
approach uses different modes of execution to interpret and solve constraints, so the first part is a
JavaScript interpreterwritten in JavaScript is used to evaluate constraint expressions and implement
the constraint constructionmode. This is required because popular JavaScript vms1 (Apple Safari’s
SquirrelFish2, Google Chrome’s V83, Mozilla Firefox’s SpiderMonkey [51], orMicrosoft’s Chakra4)
do not provide direct access to the native interpreter or execution context of the caller, so we cannot
re-use or adapt parts of the underlying interpreter as in Babelsberg/R. The only thing close to what

1http://www.w3schools.com/browsers/browsers_stats.asp
2http://trac.webkit.org/wiki/SquirrelFish
3https://code.google.com/p/v8/
4http://en.wikipedia.org/wiki/Chakra (JScript engine)
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we need in JavaScript is eval, but we cannot use that if we want to support calling user defined
functions in constraints.

Second, Babelsberg/JS includes pure JavaScript implementations of all types of constraint solvers
presented in Section 2.3. While in the vm-based approach we offer an interface for solvers not
written in Ruby to be used with Babelsberg/R, we cannot do so in a JavaScript library.

Third, we provide tools to make developing Babelsberg applications in the Lively Kernel envi-
ronment easier.While thevm-based approach customizes the syntax and adds a primitive to declare
constraints, we cannot do so in JavaScript. However, we do provide a source-to-source transforma-
tion so constraints can be written in a more convenient syntax (that is also valid JavaScript), but
whenwe interpret the code as Babelsberg code,we transform it.Note thatwhile this transformation
makes writing constraints and adding them to parts [77] in Lively Kernel more convenient, it can
still be used outside the Lively environment, and can be used, for example during a pre-compilation
step.

6.1. Implementing Constraint Construction Mode

All our implementation approaches implement ccmwith a custom ConstraintInterpreter,
either as part of the customized vm or as a interpreter written in the host language.

Babelsberg/R extends the vm with new primitive methods always and once. These take an
ordinary Ruby block closure argument, which is used as the constraint. Besides those new meth-
ods, we only include a minor syntactic extension to conveniently mark variables as read-only in
constraints. This is expressed by sending the question-mark method (?) to a value in a constraint
expression5. As in the design, a read-only variable can only be assigned to, but cannot be changed
by the solver to satisfy a constraint it appears in. This is useful, for example, for parameterized
constraints so the solver knows not to change the parameter:

class Rectangle
def fix_size(area)
always { self.area == area.? }

end
end

Without the annotation, a solver may choose to change the local variable area rather than the
possibly the the x and y values of one of the corners of the receiver, if, for example, the solver tries
to minimize the number of variables that are adjusted to satisfy a constraint (as is often desired).

Babelsberg/JS provides two ordinary methods, always and once, which receive a JavaScript
closure and an object that captures the local scope as an argument. Since we cannot extend the
syntax of the host language, read-only annotations are instead implemented as a global function
ro. Below is the same example of a parameterized constraint in Babelsberg/JS:

function(rectangle, options) {
always(function() {

return rectangle.area == ro(options.area)
},
{scope: {rectangle: rectangle, options: options}});

}

An important difference to the vm implementation is that we need a second argument that
explicitly captures the local scope. Since JavaScript does not provide reflective access to a functions

5Outside of a constraint expression, this method raises an exception, since it does not have sensible semantics.
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defining scope, our custom interpreter cannot look up names used in the constraint expression in
the caller’s environment. Instead, the names and values in the scope have to be passed explicitly.
6 For convenience Babelsberg/JS provides a source-to-source transformation based on UglifyJS7,
which collects names from the context and modifies the source code to pass those names into the
constraint expression. This source transformation is enabled automatically when programmers
use Babelsberg/JS in the Lively Kernel’s Object Editor, and could also be integrated it into the
deployment tools used in other JavaScript Integrated Development Environments (ides). With
the source transformation,we can potentially introduce anydslwewant, however, we have chosen
to use a syntax that is still valid JavaScript. Using the transformation, the above example becomes:

function(rectangle, options) {
always: { rectangle.area == ro(options.area) }

}

Requiring either a source transformationor explicit enumerationofnames andvalues in the scope is
not an inherent drawback of a library-based Babelsberg implementation, however. In Babelsberg/S,
we can use the Squeak/Smalltalk reflection protocol to get programmatic access to the scope and
need neither the extra argument nor a source transformation.

In both cases, the constraint expression is passed to the ConstraintInterpreter. The inter-
preter works almost like an ordinary host language interpretation, with a few changes.

6.2. Solver Selection

Before we can translate an expression in the host language into a representation suitable for a solver,
we need to know which solver to translate for. In Section 5.3, we discussed multiple strategies
(besides manually specifying which solver to use).

Babelsberg/R implements explicit solver selection as well as eager selection by type. If no solver
was explicitly selected, the vm sends the for_constraintmessage to each variable value encoun-
tered during constraint construction. User code can add solvers to the system by dynamically
adding a for_constraintmethod to those classes for which the solver is applicable, making use
of Ruby’s open classes. This method takes the name under which the variable is accessed as an
argument, and should return an object that implements a subset of the interfaces that the solver
can reason about, as well as the methods value and suggestValue. For example, the Cassowary
solver extends the Float class:

def for_constraint(name)
Cassowary::Variable.new(name: name, value: self).tap { |v|
Cassowary::SimplexSolver.instance.add_stay(v) }

end

This method creates a new variable, adds implicit, low-priority stay constraint (cf. Section 3.1.3),
and returns the solver-specific variable object. The vm’s solver object then sends messages to this
object instead of the Float object in the context of the constraint execution.

6Note that we cannot use eval to access the outer scope. If we only supported constraints that access fields of objects
in the scope and do not call user defined functions, we could have rewritten the code and evaluated the constraint
expression using JavaScript’s eval function, which has access to the enclosing scope. Using a custom interpreter,
however, allows us to easily instrument the execution of most user-defined functions, so we can use normal object-
oriented methods in constraint expressions.

7http://lisperator.net/uglifyjs/, accessed November 11, 2015

76



6.3. Accessing Variables in Constraints

Babelsberg/JS implements some of the heuristics for solver selectionwe described in Section 5.3.3.
If no explicit solver was selected, the constraint is handed to multiple solvers in parallel. In Babels-
berg/JS, each solver can declare capabilities, such as which types and operations it supports. Based
on an initial analysis of the types and operations encountered in the dynamic extent of the con-
straint expression, solvers a filtered, and the remaining solvers all run to solve the constraint. The
solvers to finish without error are compared first for accuracy of the result and then performance
to select the final solver. Currently, no further heuristics are implemented, but the order of the
trade-off (performance versus accuracy) can be swapped by the user.

6.3. Accessing Variables in Constraints

Whenever a variable is accessed in a constraint for the first time, it is automatically converted
into a so-called constrained variable, i.e., variables that can be solved for in constraints. Ruby
provides five types of variables: locals, instance variables, class variables, globals, and constants.
(While constants should be assigned only once, this is simply a convention in Ruby, and is not
checked by the interpreter.) Of these variable types, we allow three as constrained variables: locals,
instance variables, and class variables. In JavaScript, we have locals, globals, and fields; of these we
only allow constraints on fields. Host language variables which we do not consider as constrained
variables are used as constants in the constraint, and cannot be solved for.

Converting an ordinary variable into a constrained variable is done by attaching a solver object.
In the Ruby vm, this means that the same name can refer to two objects in the vm, one an ordinary
Ruby value and the other a solver object. (Note that this use of the same name to refer to multiple
objects is a feature of the implementation only— it is not visible to the programmer.) These solver
objects are vm objects that keep track of solver-specific representations of the current variable value.

Internally in Babelsberg/R, the solver object is attached to the vm structure for the type of
variable. Locals are stored as Cells in the vm—a group of Cells being the representation of a scope.
In Babelsberg/R, these cells have a field to store a solver object for the variable. Instance and class
variables in Topaz are stored in maps [16]. For Babelsberg/R, we have extended these maps to the
store solver objects as well as ordinary objects. Both storage extensions are implemented in a way
that once the jit has warmed up, read access to solver objects is no slower than access to ordinary
objects (cf. Chapter 8).

In the library-based implementations, only fields have are converted. For each field accessed dur-
ing the execution of a constraint expression, property accessors are created that wrap the fields. For
languages like Squeak that do not have property accessors, we wrap the accessor methods instead.
Thewrappers delegate any access to aConstrainedVariable object thatmanages the communication
with the various solvers and create solver specific representations of the field value.

Converting ordinary variables into constrained variables has an impact on garbage collection.
Solver objects usually have more references pointing to them than ordinary objects— besides their
scope and owner (in the case of instance or class variables), solver objects are also referenced from
one or more constraints. Because solver objects can also be implemented in the host language, this
means that they may only be garbage collected if no more active constraints refer to them.

6.4. Operations on Variables

When a variable is read, rather than returning its value, its associated solver object is returned. These
objects respond to the same messages as the ordinary variable value, but instead of just executing
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Figure 6.1.: Objects are connected through instance variables. When a constraint is constructed, their parts
become connected to solver objects. A variable that is connected to a solver object delegates all accesses
to that object.

the original code, they construct the relations between variables that make up the constraints as
per the inlining rules in Table A.4.

To that end, during construction, the solver selected to handle the current constraint is asked
to provide a representation of the variable by sending the message constraintVariableFor
with the value as argument. As operations are performed, the solver object delegates to the active
solver to create solver-specific representations of the relation. For example, using Cassowary, the
expression a <= bwould not simply return a boolean. Instead we create a CassowaryVariable
each for a and b. These respond to the ==method and return a CassowaryLinearEquation.

When the currently active solver cannot provide a specific representation of a variable, rather
than adding a specific solver object and delegating operations to it to build relations, we add a generic
solver object. This is only a proxy wrapper and actually executes the operations on the underlying
value, effectively making that variable constant for the solver. The generic solver object is used as a
marker to update that constant when the variable later changes. Generic solver objects are known
to the runtime and are kept at their current value by the runtime. This allows us to use constraint
solvers that do not understand uninterpreted symbols and records, since the runtime itself will
ensure proper assignment and updating semantics for records and record fields, as required our
design (cf. Section 3.2.5).

Primitive Objects and Operations

InRuby the booleans, integers, or reals are proper objects, in thismode, they are treated as primitive
values, since identity is not important for them. That also means that operations on them that in
Ruby are implemented as methods are here simply translated to the solver language, rather than
executed. In contrast, JavaScript does have primitive types and operations for arithmetic, equality,
inequalities, and conjunction. During ccm, if an operand is a constrained variable or an expression
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involving constrained variables, these operations are transformed into message sends so they build
the relations as in Ruby.

Operations on Solvers in the Host Language

To support solvers written in the host language, the ConstraintInterpreter needs a way to
distinguish code that should be executed in constraint construction mode from code that should
not. To support this, solvers written in the host language should be subclasses of a marker class
ConstraintObject.

During constraint construction, code in the dynamic extent of a method on those objects is
evaluated in the ordinary host language interpreter. This prevents sends of suggestValue from
causing recursive calls to the solver, and is necessary to support solvers written in the host language
itself.However, this also implies that solvers themselves cannot use constraints in their implementa-
tion. Thismechanism allows solvers provided by Babelsberg implementations to simply be libraries
that extend core classes.

Simulating Value Classes

Another issue is that the languages we have chosen as host languages do not include value classes.
Thus, we include some support for using and creating ordinary objects in constraints, as described
in Section 3.2.3. Assigning to variables in ordinary class constructors used in constraints is allowed
and creates additional equality constraints that are added to the constraint system. This allows us
to support constructing new objects in the predicates that connect values. (For example, a 2D point
with x and y values that were constructed in the constraint.) However, this also means that all code
in constructors encountered during constraint construction must be in single assignment form,
because otherwise we will very likely create multiple contradicting equality constraints.

6.5. Constraint Construction Example

To illustrate how our implementation supports constraints on objects, recall theWindow example
from Section 2.2 and consider the following constraint:

always { window.area >= 100 }

This constraint asserts that the area of a Window should always be greater than or equal to 100.
The assertion is expressed by sending the areamethod, and then sending the >=method to the
result. The only variable named explicitly in the constraint is rect, but there are other variables
that play a role in it.

In constraint construction mode, the window variable is replaced with a generic solver object,
since it is unlikely thatwe have a solver that supports such objects natively. This generic solver object
asserts that the window variable cannot change and delegates the message area to the window
object, as per our semantic rules for calling methods. The area simply returns the expression
extent.x * extent.y, sowe use it to create amulti-way constraint. The extent is also replaced
with a generic solver object, and the x and y values (floats) are replaced with solver objects that have
a solver-specific representation associated with them (for example Z3 variables, cf. Figure 6.1). The
message * to the float values return symbolic expressions rather than calculating the current area
of the rectangle. The expression representing the area of the rectangle is then sent the message >=
with 100 as its argument and returns an inequality expression.
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The constraint construction is complete when the block passed to always returns. The values
and relations among them produced by this symbolic execution are gathered into a Constraint
object containing specific solver objects and generic solver objects, as well as the constructed expres-
sions. The specific solver objects and expressions are interpreted by the solver, the generic solver
objects are passed as constants. The solver then updates specific solver objects directly to satisfy the
constraints. If it cannot, it raises an exception, otherwise the new value becomes the value of the
variable.

Summary

Our prototype implementations each use a customized interpreter for the host language to partially
execute and translate constraint expressions into a form suitable for the solver. This design works
well for us, but comes with significant overhead and thus the initial creation of constraints can
be slow. In future work, we will investigate mechanisms such as context- or aspect-oriented pro-
gramming to replace the custom interpretation of constraint expressions. One issue to address here
is the question of control structures that in most languages do not correspond to message sends
that can be easily layered. Even in Smalltalk, the ifTrue:ifFalse: and whileTrue:messages
are compiled to a jump bytecodes and thus cannot be easily layered.

A second potential issue of our implementation is that it relies on the existence of a parallel
hierarchy of constraint object types that corresponds to the host languages primitive types. The
classes in the parallel hierarchy respond to a subset of the corresponding host language type’s inter-
face. This ensures that, during constraint construction, these objects can be used interchangeably
for valid constraints. While this makes it easy to add user defined constraint types, this correspon-
dence makes it cumbersome to express additional properties that are not supported on the host
language types. For example, while most object-oriented languages hide the precision of numeric
types, many solvers explicitly allow the user to configure the desired precision of solutions.
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Once we have the ability to declare constraints and translate them to the representation of a solver,
we need to solve them. Solving happens both after a constraint is declared using either once or
always, as well as after assignment. Since the process of solving is the same in both cases, we only
describe what happens during assignment.

During normal execution, we intercept reads and writes for constrained variables, otherwise
the host language semantics is unchanged. Whenever a variable is read, the Load instruction in
Babelsberg/R or the wrapper in the library-based implementations must check if we are dealing
with a constrained variable, and if so, read its solver object and return the value assigned by the
solver. For specific solver objects, the value method extracts the value the variable should have
from the solver’s internal representation and, on the first read, copies it to the ordinary storage
for that variable for faster access. For generic solver objects, the value method just returns the
underlying variable value. As long as all constraints are satisfied, this difference is not visible to the
programmer.

7.1. Assignment

Whenever a constrained variable is assigned to,weneed to re-satisfy the constraints. In thevm-based
implementation, we can intercept any assignment and check if the left-hand-side is a constrained
variable, but an important limitation when implementing Babelsberg as a library seems to be
that local variables cannot be solved for in constraints. In both JavaScript and Squeak, we cannot
intercept variable access to local variables without rewriting the calling method, and we are not
aware of commonly used languages in which such interception of local variable writes would be
possible. Thus, only fields can be constrained in library-based implementations of Babelsberg.

For assignments to variables that occurred in constraints, instead of changing the value of the
variable, the solver object for the variable receives themessagessuggestValue. In contrast to direct,
destructive assignment in a normal imperative programs that always succeeds, suggestValue
may raise an exception. This exception is propagated by the vm, and should be handled by the
programmer. If an assignment fails in this way, the variable retains its original value.

To support the architecture for cooperating constraint solvers, each variable must be read-only
in all but one of the regions that it occurs in. Furthermore, the regions and associated solvers must
form an acyclic graph. When a variable is assigned, we thus gather the solvers for the variable and
all variables it is connected to and sort them into regions. Note that we cannot optimize the solving
process to only call those solvers that know the variable, but we have to look at the transitive closure
of all variables connected to the assignee. Consider the following (contrived) example:

a = 10
b = 10
always { a + b == 20 }
always { b * b == 100 }
a = 5
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(a) Assigning an object that has a specific solver object forwards the assignment 1©, asks the solver to re-satisfy
the constraints 2©, and then propagates any new values 3©.

x y x y

origin extent

VM Level

:Window

:Point

:Float:Float:Float:Float

:Generic

:Generic :Generic

:Real:Real:Real:Real

:Constraint

Z3

<<forwarding>>

<<forwarding>>

<<forwarding>>

<<retranslation>>

:Point

:Float:Float :Real:Real

1

2

5

3

4

(b) Assigning a generic object 1© requires retranslating the constraint 2©, creating new solver objects and
collecting old ones along the way 3©. Afterwards, solving 4© and propagating new values 5© proceeds as
before.

Figure 7.1.: Two cases for assigning to constrained variables.
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7.2. Changing the Type of Variables

Suppose that the first constraint is solved using Cassowary, and the second using Z3. When a
changes, Cassowary is called to re-satisfy the first constraint, which succeeds. However, we also
need trigger Z3 to (attempt to) solve the second constraint. If we do not, executionwould continue
in an inconsistent state with the second constraint unsatisfied, or Z3 might just change the values
of a and b back to what they were on the next statement.

Assignment proceeds by first calling the defining solver. We distinguish two cases:

a) Assignment to specific solver objects, i.e., variables with values for which a solver is available,
triggers the defining solver to re-satisfy the constraints. If it fails to satisfy its constraints using
the new value, an exception is raised. This case is shown in Figure 7.1a, where a write to a float
simply causes Z3 to check the update against the corresponding real representation in the solver.

b) Assignment to generic solver objects, i.e., variables with values for which no solver is available,
invalidates all constraints these objects participate in. Since their values were treated as constants
when creating constraints involving them, these constraints need to be re-evaluated. The invali-
dation retracts all constraints and re-executes their expression closures to create new constraints.
This means that the constraint expression may be re-executed multiple times during the run-
time of the program. (This is one reason why any side-effects in constraints are disallowed in
the design, and should at least be benign in this practical implementation.) This case is shown
in Figure 7.1b, where replacing a Point requires re-translating the constraint to construct new
specific solver objects the float fields of the new Point object.

For variables with only one or no solvers that handle its type, we end here. However, if more
than one solver relates to the assigned variable, we proceed by walking the acyclic, directed graph
of solvers starting. For each solver, we mark any upstream variables as read-only by requiring their
values to stay the same. If any of the downstream solvers fail to satisfy their constraints with the
new value, an exception is generated and the assignment fails.

7.2. Changing the Type of Variables

Most solvers only provide support for a small number of type domains (such as reals or booleans).
When variables are used in constraints, their current values determine how they are handled by
the solvers. Changing the type of a variable, although possible in a dynamic language, is a relatively
uncommon operation, so slow performance is acceptable. When it does occur, the variable is re-
moved from all solvers, all its constraints are disabled, and its constraint expressions are re-executed
in constraint construction mode, thus creating new solver-specific representations.

This makes changing the type of a constrained variable potentially slow. In our prototype im-
plementations the ConstraintInterpreter is not optimized for performance (because it is run
only at constraint construction)— recalculatingmany constraints ismuch slower than running the
same code natively. If any of the constraints fail, we have to re-assign the old value and recalculate
all constraints on the variable once more.

We believe this performance penalty to be acceptable for two reasons: first, it is likely to be infre-
quent, as even in dynamic languages most variables are only assigned once [16]. Second, optimizing
just-in-time compilers in current vms usually assume the same, and deoptimize if this assumption
is violated. For good performance in a dynamically typed program, it is thus not desirable to have
variables change types often, regardless of whether they are constrained or not.
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7.3. Assigning Multiple Variables

The default behavior is to invoke constraint satisfaction immediately whenever there is a change to
a variable, as per the semantics.However, an important issue identified in previousocp languages is
that in practical applications, we sometimes want to update to variables at the same time, and only
then invoke solving. One way to do this is to use a once constraint, that constrains both variables
to their new value. Kaleidoscope allowed the programmer to write blocks of code during which
constraints could be temporarily violated, to update multiple variables and only afterwards invoke
the solver. This can be problematic, if the constraints cannot afterwards be satisfied — depending
on the complexity of the code in the block, it is not always clear if the system can be returned to a
consistent state.

To allow a sequence of assignments to be made with solving invoked only after all assignments
are made, but still guarantee that the system can be returned to a consistent state if the constraints
cannot be satisfied, we allow multi-assignments of simple values.

Babelsberg/R uses Ruby’s multi-assignments to store values into multiple variables in a single
statement. If multiple variables that have constraints on them are assigned in this fashion, all
new values are used at once when the solver is triggered. If any constraints cannot be satisfied,
all assignments fail. This way, if the exception is caught, the program is not in violation of any
constraints.

In Babelsberg/JS and Babelsberg/S, we have to revert to a more expensive implementation,
because these languages do not provide multi-assignment as Ruby does. To assign to multiple
variables, we created a special method which takes as arguments the objects, names of their fields,
and new values for these fields, and then explicitly creates a set of equality constraints that are
handed to the solver at once.

7.4. Encapsulation and Solving for Objects

In the case of objects for which identity is not important (such as floats and integers), we have
seen that the vm can directly return the value as determined by the solver. However, for mutable
objects, identity is important and as per the semantics, the solver should only be able to update
the primitive leaves of objects when solving value constraints. Furthermore, we do not want to
allow the solver to disregard object-encapsulation when changing parts of objects. In some cases,
such as vm objects that only expose anoo api (dom objects, file handles, …), it is not even possible
for a solver written in the host language to disregard encapsulation — instead, it must call the
appropriate apimethods to mutate the object.

Default Propagation Methods Solver libraries can provide a hook on their solver objects, called
assign_constraint_value, that will be used to update the original object with new content,
this way keeping object identity intact. This provides a default local propagation method to let
solutions flow into objects. For example, Babelsberg/Rprovides a solver over numeric arrays, which
usesassign_constraint_value to update the array contents. In thefor_constraintmethod
for arrays, it returns a solver object of the type NumericArrayConstraintVariable exactly if
all elements in the array are instances of a subclass of Numeric.

class Array
def for_constraint(name)
if self.all? { |e| e.is_a? Numeric }
return NumericArrayConstraintVariable.new(self)
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end
end

def assign_constraint_value(val)
self.replace(val)

end
end

The NumericArrayConstraintVariable allows element access, provides the Ruby collection
api (each, map, inject, …), the summethod (which calculates the sum of elements) and the mes-
sage length, to solve constraints over the length of arrays. These are implemented to generate
constraints as defined in our semantics for constraints on collections of objects (cf. Section 4.3).

Below is an example that uses this to assert constraints onTWP-encoded1 short strings (repre-
sented as an array of bytes). TWP short strings are at most 110 bytes, with the first byte giving the
length of the string plus a tag. Line 3 constrains this particular string to contain only capital letters
(the ?ARuby syntax gives the byte value of a character).

twp_str = []
always { twp_str.length == twp_str[0] + 17 }
always { twp_str.length <= 109 }
always { twp_str.each {|byte| byte >= ?A && byte <= ?Z} }

Heuristic Propagation When no default propagation method is given, we use a heuristic that
attempts to discover and use the appropriate setter methods. For example, consider the following
constraint that the 2D point positions of objects a and b should be equal (where the equalsmethod
on points returns a conjunction of the equality checks for the x and y parts):

always: { a.getPosition().equals(b.getPosition()) }

Our heuristic is based on the idiom for getters and setters to start with get and set, respectively. In
this case, we check if amethodsetPosition exists. Suppose it does, and the solverwants to change
the x and y parts of a’s position. Rather than updating the object directly, it will create a new object
of the same type (a point) with the correct values, and set that using a.setPosition(newPoint).

Summary

We solve all constraints whenever a new constraint is added or a constrained variable is re-assigned.
To intercept the latter, our current prototypes rely either on access to the vm or property wrappers
in the language. An alternative implementation strategy using proxy objects was not explored due
to the perceived overhead of full proxies versus wrapping just the necessary fields.

Simply intercepting assignments to trigger solving is enough to satisfy our design, but the prac-
tical implementations highlight other issues. The design translates all constraints for the solver
every time. In the practical implementation, we can avoid the performance overhead of this process
when the structures and types of variables used in constraints have not changed. Thus, we only
have to do the full translation in the comparatively rare case where the type of a variable or the
definition of a method used in a constraint changes.

Another issue we address only in the implementations is the question of encapsulation. Our
design and semantics assumes that the solving process can ignore encapsulation and update object

1http://www.dcl.hpi.uni-potsdam.de/teaching/mds/twp3.txt, accessed November 11, 2015
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fields directly. In practice, external data or primitive behavior often necessitate the use of accessor
methods. The implementations allow solvers to define default propagation methods in such cases,
which will be called with the new values. We also use a simple, language-specific heuristic to find
accessors and we will investigate how to improve it in future work.

86



8. Performance of Practical Object-Constraint
Programming Languages

A goal of object-constraint programming with Babelsberg was that it should be a language exten-
sions, but with full backwards compatibility to plain object-oriented code. As a consequence, it
is desirable that users of Babelsberg/R, for example, do not pay a performance penalty for the
constraint extension in code that uses only unconstrained Ruby objects. To achieve this in Babels-
berg/R, we interface with the RPython meta-tracing jit compiler framework to remove the run-
time overhead of the language extension for code that does not use constraints. For the library-based
implementations, we rely onmore traditional optimization strategies such as caching. Furthermore,
the performance when constraints are used may be lower than a purely imperative solution, but it
should not be so slow as to outweigh any benefits in expressiveness and maintainability. To that
end, incremental resolving, a solver feature that improves constraint solving, is available in our
practical implementations.

In this chapter, we will discuss these issues and present benchmark results. The full code for
the benchmarks is given in Appendix B. The benchmarks were run on an otherwise idle Ubuntu
14.10 system using an Intel i5-2520M CPU forced to a constant clock speed of 2.5 GHz with 16 GB
of RAM. Benchmarks were run a varying amount of iterations (given in the charts) depending
on the benchmark, and each benchmark run was repeated ten times, with the mean and standard
deviation shown in the results.

8.1. The Execution Overhead of Constraints

Our different implementation strategies for Babelsberg and their overhead are largely independent
from the choice of solvers. The performance of constraint solvers varies wildly, and the choice of
solvers has a significant impact on the performance of a given Babelsberg, but the goal remains to
minimize the overhead of the framework itself.

The first step tominimize overhead is the distinction between constrained variables and ordinary
variables as described in Section 6.3. This way, the interpreter first checks if a variable is dynamically
related to a constraint and if it is not, it can directly return the value stored in memory rather than
having to ask the solver for the current value. However, this check is performed at every variable
access, which still represents a performance issue.

Second, although semantically all Babelsberg constraints are handed to the solver on each assign-
ment, prior work on Kaleidoscope and Turtle has shown that this is detrimental to performance.
One way our practical implementations of Babelsberg are able to achieve performance close to the
unmodified language runtime if no constraints are relevant in a given piece of code is by omitting
the solving step if no constraints dynamically relate variables in a particular piece of code and that
code is optimized by the jit. In that case, the code can be executed without calling out to the solver,
eliminating any overhead. In addition, as described in Section 7.1, we only need to trigger solving
for those constraints that relate variables in the transitive closure of all variables connected to the
assigned variable. This further reduces the required overhead.
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Integrating with the JIT

Babelsberg/R is written in RPython, which includes debugging support to print the generated
jit code for loops in the interpreter. RPython jit-code is a list of function calls without loops and
in single-static assignment form. Each jit function generates some assembler code, and the most
common ones check conditions that must be true for the following assembler code to be valid,
access and manipulate memory, or to do basic operations of primitive values like integers, floats,
strings, and booleans. In basic Topaz, reading a variable is translated into the following jit code:

guard_nonnull_class(p1, 12345, descr=<Guard0xabcdef123456>)
p2 = getfield_gc(p1, descr=<FieldP Cell.inst_w_value>)

The first line represents a check that pointer p1 is not null and of type Cell. If that check fails, the
jit code following it cannot be used and the vm reverts to pure interpretation. The second line
represents the generated assembler to access the w_value field from the object that p1 points to.

In Babelsberg/R, converting an ordinary local variable to a constrained variable was initially
implemented by adding a field to store solver objects to the vm-level Cell class. Consequently,
each reference to a variable had to check if the variable has been used in a constraint by testing if
the new field is not null. The jit compiler generated the following intermediate code:

guard_nonnull_class(p1, 12345, descr=<Guard0xabcdef123456>)
p2 = getfield_gc(p1, descr=<FieldP Cell.inst_w_constraint>)
guard_value(p2, ConstPtr(null), descr=<Guard0xabcdef234567>)
p3 = getfield_gc(p1, descr=<FieldP Cell.inst_w_value>)

Line 1 again checks that the pointer variable p1 is not null and of the right vm-level class. Line 2
reads the w_constraint field of the object pointed to by p1. This variable holds a reference to a
constrained variable object if the variable has been used in a constraint, otherwise it is null. For
the case where the variable has not been used in a constraint, line 3 checks that this field is null,
and only then is the variable value read.

As an optimization, instead of setting a field on a Cell, we introduced a new subclass of Cell
for variables that have been used in a constraint. This unifies the class check with the constraint
check, and the resulting jit code requires one fewer guard, generating no more code than the basic
Topaz vm, checking first for the correct type, and then simply accessing the w_value field.

guard_nonnull_class(p1, 12345, descr=<Guard0xabcdef123456>)
p2 = getfield_gc(p1, descr=<FieldP Cell.inst_w_value>)

For a constrained variable, the jit will generate code to access the solver object (stored in the
inst_w_constraint field), then retrieve the solver from that object, and finally call into the
solver to get the actual value of the variable:

guard_nonnull_class(p1, 12345, descr=<Guard0xabcdef123456>)
p2 = getfield_gc(p1, descr=<FieldP ConstraintCell.inst_w_constraint>)
p3 = getfield_gc(p2, descr=<FieldP Constraint.inst_w_solver>)
guard_nonnull_class(p3, 56789, descr=<Guard0xabcdef456789>)
[... code to call into solver ...]

Thus, access to variables that do not use constraints is, after it is jit-compiled, just as fast as in the
base language without constraints.
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Library-based Access

The library-based implementations trivially avoids any performance impact when constraints are
not used. However, compared to a vm-based solution, we cannot rely on access to the jit to
optimize the case where variables do appear in constraints.

Our design still aims to provide good performance for a variety of applications that use con-
straints or access constrained variables. The Google Chrome’s V8 engine allows inspecting the
generated jit code. The V8 jit code is similar to RPython’s. The main difference is that it also
allows branches, rather than just checks for conditions.

In Babelsberg/JS, unconstrained variables are accessed directly, with just a check that the object
layout has not changed:

CheckMaps t0 [0xabcdef123456]
t1 = LoadNamedField t0.field[in-object]@32

Just like in Babelsberg/R, the first line checks the type of the object pointed to by t0, and the
second line reads a field from that object.

On the first access to a constrained variable, many more checks have to occur before we can call
into the solver structure:

CheckMaps t0 [0xabcdef456789](stability-check)
t2 = LoadNamedField t0.current[backing-store]@40
Branch t2 goto (B10, B1) (Null,SpecObject) Tagged
B1:
CheckMaps t1 [0xabcdef123456,0xabcdef234567,0xabcdef345678]
t3 = LoadNamedField t0._isSolveable[in-object]@80
Branch t3 goto (B2, B11) (None) Tagged
B2:
t4 = LoadNamedField t2._definingSolver[in-object]@88
Branch t4 goto (B3, B12) (Null,SpecObject) Tagged
B3:
[... code to find variable value ...]

The first check tests that the globalBabelsbergobject has not changed.The second line is a branch
that tests whether or not the current field on this global object is set. If it is, we are currently
in constraint construction mode and must go to branch B10. In the case of an ordinary read, we
instead check that the object we are reading from, t1, did not change its type, and then read the
field _isSolveable. Again, we branch depending on the value of this field. If it were false, we
can read the value directly using only one more access (branch B11). In this case the variable is
solvable, and we must ask the relevant constraint solver for its value. To access the solver, we read
the _definingSolver field and then enter solver-specific code to find the actual value.

Compared to Babelsberg/R, we have the additional check for ccm. This cannot be easily re-
moved. Compared to RPython, V8 does not offer an interface for user code to give the hint to the
jit that ccmwill only rarely be entered, and that we can deoptimize aggressively in that case. As in
Babelsberg/R, reading a variable from the solver calls eventually calls value on the Constrained-
Variable in the property wrapper, instead of returning the original variable. We cache the value
returned from the solver, and rely on the underlying vm to optimize read accesses when the cache
is not invalidated.
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Figure 8.1.: Micro-benchmarks for read and write access to variables. All numbers show how many field
accesses per second can be executed in the different scenarios (more is better).

Benchmark Results

To test how the purely object-oriented parts of a system are affected if we pass objects with con-
straints to them, we measured the overhead of field access for constrained versus unconstrained
fields by repeatedly reading the same five properties from an object first without and then with
equality constraints on each variable. In the benchmarks, the constraints are never violated, so we
purely measure the overhead of accessing fields that have solver objects attached to them. For our
benchmarks, we used the Cassowary solver, which for each of these systems is written in the host
language and for which all three implementations are derived from the same Smalltalk code.

Figure 8.1 shows that the overheads for reading and writing to variables if constraints are present.
To measure the read access, we averaged the runs over 500 repetitions of reading five different
fields from an object. When we add a constraint, we require each of these variables to be equal
to a fixed value. To measure the overhead of assigning without triggering the solver, we compare
the time for unconstrained assignment to assignments to five fields that have a constraint x >= 0
on them. In the benchmark, we simply increase the value if the variable 500 times in a loop. For
both benchmarks we use the Cassowary constraint solver, which for all of our implementations is
written in the host language itself. We have verified that in both cases, no solving takes place in the
benchmarked loop, so the solver has little bearing on the results.
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The overhead of intercepting variable lookup is very large in each of these cases. For reading vari-
ables our vm-based implementation in Babelsberg/R is within two orders of magnitude, whereas
the library-based implementations remain within one order of magnitude. The reason is likely
due to the optimizations of the tracing jit in Babelsberg/R. It can optimize field access, but the
additional steps required to read from constrained variables cannot be optimized well. In contrast,
themethod-based jit compilers in Squeak andChrome’s V8 JavaScript engine experience compara-
tively less slowdown for accessing constrained variables. For writing variables, even if the constraint
solver does not actually have to do anything to keep the constraints satisfied, many more methods
are executed before the solver returns. Thus, the impact on writing variables is a slowdown of
six orders of magnitude for Babelsberg/R and Babelsberg/S, and three orders of magnitude for
Babelsberg/JS.

8.2. Performance Across Constraint-Languages

In this section, we evaluate the performance of the Babelsberg implementations and compare it
with other languages that support constraint-programming. Turtle [53] andKaplan [71] are used as
examples ofcip languages; as well as on SWI-Prolog’sclp library [22], to compare the performance
of constraint-imperative with constraint-logic programming.

Note that the benchmarks presented in Figure 8.1 can give an indication of the relative perfor-
mance of Ruby, JavaScript, and Squeak on the run times used in these benchmarks: The Babels-
berg/R vm executes field access about an order magnitude faster than Babelsberg/JS running on
V8, and Babelsberg/S running on the Squeak Cog vm is about three orders of magnitude slower
again than JavaScript. However, these micro-benchmarks cannot give a general indication of the
performance of the host language implementations, but are important to keep in mind when
comparing performance across Babelsberg implementations for constraint-programming tasks.

Comparing the run time of programs written to solve specific programming tasks across lan-
guages is difficult and often not meaningful. One option to compare the overhead of constraint
solving between Babelsberg, Turtle, Kaplan, and Prolog clp would be to use a set of classic oo
benchmarks as a baseline for each language, and show the performance of solving constraint pro-
gramming problems in relation to that baseline. However, we think such an approach would not
produce meaningful numbers, because some of these languages call into external solvers whose
performance has nothing to do with how well the language performs on oo benchmarks. The
language runtimes and solvers used are also very different and their performance highly depends
on the combinations of compilers, operating system, CPU architecture, and dependent libraries.

In our case, we compare the performance of solving programming tasks using constraints on
very different languageswithmany different, performance-critical components.Rather than recom-
mendingone language over the other, this section attempts to give a general overviewofwhat perfor-
mance can be expected for each language in solving specific tasks. Unfortunately, good benchmarks
to measure the intended use of languages that integrate constraints with imperative programming
are difficult to find. Papers for such languages that evaluate performance use classical constraint
solving problems. For our comparison, we selected three such problems: the Send-More-Money
cryptarithmetic puzzle [25]1, a layout example from the Turtle distribution to proportionally posi-
tion window panes (without preferential constraints, since these are not supported on Kaplan and
Prolog), and the Animals puzzle found in some high-school textbooks2. We ran these benchmarks

1A student sends a telegram to her parents to ask for more money. The content of the telegram is SEND + MORE =
MONEY. How much money does she ask for, if each letter encodes exactly one digit from zero to nine?

2Spend $100 to buy 100 pets. You must buy at least 1 of each pet. Dogs cost $25, cats $1, and mice $0.25.
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Figure 8.2.: “Send-More-Money” puzzle

on in loops of different length to allow the jits to warm up, but also tomeasure how each language
performs when dynamically adding constraints.

In these benchmarks, we use Turtle version 1.0.0. It was compiled using 64-bit gcc version 4.8.4.
SWI Prolog was used in 64-bit version 6.6.4. Kaplan is implemented in Scala version 2.9.0.1. It
was run on the 32-bit OpenJDK vm version 1.6.0.36. The 64-bit Java vm cannot be used due to
the dependency on a custom built wrapper around the 32-bit version 4.4.0 of Z3. Each set of
measurements was repeated ten times. We only include measurements that finished within 30
minutes. Error bars are not included, because all errors were below 5%. Execution time in seconds
is given on the y-axis, the number of repetitions is on the x-axis. Lower y-axis values are better.

In the Send-More-Money puzzle (Figure 8.2), the Babelsberg/JS implementation never finished
in the allotted time, and the Turtle implementation also seems to hang forever if we attempt to
solve the puzzle more than once in the same process. For this clearly declarative puzzle Prolog is
fastest, followed by Babelsberg/R, Babelsberg/S, and Kaplan at about two orders of magnitude
slower. Kaplan, however, seems to have problems with dynamically adding constraints over many
iterations and scales much worse.

In the Animals puzzle (Figure 8.3), we had to omit Turtle, because it never finished. Babels-
berg/JS is clearly the slowest here, mostly because it uses a version of Z3 compiled into JavaScript
and run in the browser for this benchmark, which the V8 jit is bad at optimizing.

In the layouting example that came with the Turtle distribution, Turtle is also the fastest (Fig-
ure 8.4). While the performance of the other object-oriented languages is roughly the same relative
to each other as in the previous benchmarks, Prolog is much slower here, only becoming faster
than Kaplan for 100 iterations. Again, Kaplan seems to scale badly when dynamically adding many
constraints.

Overall these benchmarks show that the cip languages vary in their performance, and also that
Prologwith a constraint satisfaction library is a better choice for these problemswhenno imperative
features are used. In general, all implementations scale linearly. We observe that a primarily declara-
tive language such as Prolog seems to still be the best choicewhen dealingwith these predominantly
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Figure 8.3.: “Animals” puzzle

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 t
im

e 
in

 s
ec

o
n

d
s

Number of Iterations

Layout Constraints

Babelsberg/R Babelsberg/JS SWI Prolog Kaplan Turtle Babelsberg/S

Figure 8.4.: Layout constraints
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declarative problems. However, both Babelsberg/R and Babelsberg/S are feasible alternatives at
only about one to two orders of magnitude slower than Prolog. We argue that this shows that the
Babelsberg design can be implemented efficiently enough for selected use cases, both in-vm and as
a library.

8.3. Fast Incremental Constraint Solving

Performance of the solving algorithm itself is important for Babelsberg languages. This is particu-
larly apparent even when only a few variables change with high frequency and constraints have to
re-satisfied in response, for example, when a graphical object should follow the mouse cursor. As
described in Section 2.5, edit constraints are used to support incremental constraint satisfaction,
and are important for achieving good performance in interactive applications that use constraints.
The editmethod provided as part of Babelsberg/R adds edit constraints and repeatedly updates
them with values from a stream running in a separate thread. In Babelsberg/JS, to support edit
constraints within a single thread, the edit method returns a callback to input new values into the
solvers, rather than taking a stream of values. Babelsberg/S does not support edit constraints.

Since the language design supports cooperating solvers, the solvers have to provide a specific edit
constraint api. If a variable is added to an edit constraint, but we dynamically discover that it is
used in a solver which does not support the edit constraint api, a run-time exception is generated.
Upon calling the edit method, the following methods are called on the solvers and the supplied
variables, in order:

prepareEdit is called on each solver variable. In this method, variables can prepare themselves
for editing. In Cassowary, for example, this would call the addEditVarmethod on the solver
with the variable as argument. For DeltaBlue, this creates an EditConstraint on the variable
and adds it to the list of constraints.

beginEdit is called once for each solver participating in the edit before the callback is returned.
In Cassowary, this initializes the edit constants array and prepares the solver for fast re-solving
when these constants change. In DeltaBlue, the solver generates an execution plan to solve the
constraints starting with the EditConstraints as input.

resolveArray is used to supply each solver with the new values and update the object’s storage
(so other observers and hooks around the values still work). Because the solver’s execution plan
is fixed for the duration of an edit, we disallow creating new edit callbacks before the current
edit has finished.When new constraints are created, the execution planmay also become invalid,
but we do not enforce invalidating the edit callback in this case.

finishEdit is sent to each solver variable when the edit stream ends or the callback is called
without arguments. Cassowary variables do nothing here, DeltaBlue variables remove their
EditConstraints from the solver.

endEdit is called once for each solver to reset the solver state.

To use, for example, Cassowary as the solver, all edit variables must be of type float (e.g., the
x and y values of a point), but we also want to do this in an object-oriented way that respects
encapsulation. To support this, the client passes an array of method names for the return values
that should be updated in the edit constraint (e.g., x() and y() for a point — those methods may
calculate values or just access fields). The system creates fresh edit variables, and adds an equality
constraint to the return values of the methods. Thus, the internal storage layout of the class is
not visible to the programmer from outside the object, because the equality constraint is simply
asserted on the results of message sends using the always primitive.
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Figure 8.5.: A comparison of constraint solving performance for hand-coded imperative solving, Babelsberg-
style solving through assignment, and Babelsberg with edit constraints. Numbers show how many re-
solving operations can be executed per second (more is better).

In the following example in Babelsberg/R, the mouse locations or the mouse point might store
their x and y values directly, or might be points represented using polar coordinates. In either case,
the edit constraints apply to the return values of their respective x and ymethods:

edit(stream: mouse.locations.each, accessors: [:x, :y]) { mouse_point }

In aDeltaBlue-specific editmethod, the edit constraints returned couldbe simpler, sinceDeltaBlue
local propagation methods can apply to user-defined objects such as points, not just to floats. The
point would be simply updated rather than dealing with its x and y coordinates separately, and the
data flow plan would update the objects constrained to be equal to the point that represents the
mouse location.

Benchmark Results

To quantify the impact of edit constraints, we used an example from Kaleidoscope’93 [80] and
adapted it to our Babelsberg implementations. In this example, the user drags the upper end of
the liquid mercury in a thermometer using the mouse. However, the mercury cannot go outside
the bounds of the thermometer, even if the user tries to drag it out. Additionally, a gray and white
rectangle on the screen should be updated to reflect the new position of the thermometer liquid,
and a displayed number should reflect the integer value of that position.Refactoring the imperative
version for Babelsberg makes it more general, so the comparison is biased towards the imperative
code. However, this example demonstrates the performance impact if an imperative program is
refactored primarily with the goal to make it more readable, but not necessarily more general.

Note that the object-constraint versionmay be written in two ways: one that is more like the im-
perative version and assigns newmouse locations in a loop; and a more constraint-oriented version
that declares mouse.location_y as an edit variable that triggers incrementally re-satisfying the
constraints. The latter is expected to be much faster, as Cassowary can just re-optimize a previously
optimal solution.

In this set of benchmarks we only include Babelsberg/R and Babelsberg/JS, since we did not
implement edit constraints in Babelsberg/S.

For both implementations, the hand-coded imperative version is clearly the fastest. However, it
is also the longest, hardest to understand, and most difficult to prove correct. It is also clear that
the purely declarative versions are generally too slow to be used in an interactive application: in
both cases, the system could re-satisfy constraints less than once per second, which is not enough
to smoothly follow mouse movement and update the screen. Although using edit constraints is
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still an two to three orders of magnitude slower than pure imperative code, it is fast enough to
re-satisfy constraints in an interactive application and still provide smooth display updates.

8.4. Automatic Edit Constraints

We have shown in Section 8.3 that edit constraints can significantly improve the performance of
constraint solving and in some cases make the use of constraint solving feasible in the first place.
However, using edit constraints directly requires developers to know about them, understand
where they are useful, and to adapt the source code to create edit constraints.

Automatic edit constraints (like our integration of state and object-oriented behavior with con-
straint declaration, or the architecture for cooperating solvers and solver selection heuristics) sup-
port the goal of Babelsberg to make constraints a useful tool for developers not familiar with
constraint solvers. Rather than requiring oo developers to learn about incremental solvers, in Ba-
belsberg we have added heuristics for two solvers, DeltaBlue and Cassowary, to recognize variables
that change frequently and use automatically apply incremental re-satisfaction to speed up solving.

The solving process of DeltaBlue when a variable is assigned involves creating a new equality
constraint, creating an execution plan, executing that plan to solve the constraints, and finally to
remove the equality constraint and the associated plan. As a simple optimization heuristic, we can
keep the last n equality constraints and plans in a cache; if one of the n variables changes again, we
can just update the equality constraint and re-use the execution plan, rather than re-creating it.

ForCassowary, the simplex tableauhas to be prepared for incremental re-solving, and all variables
that will be assigned have to be known beforehand. This preparation is potentially slow, and it is
not possible with the implementation of the algorithm to keep multiple optimized versions of the
tableau around. Thus, the heuristic we use for Cassowary is more akin to a jit: for each variable
known toCassowary,we keep a counter that tracks howoften the variable has been assigned recently.
In regular intervals, we check which n variables were assigned to most frequently, and optimize the
tableau for changes coming from those variables. At the same time, we decay the counters either
by a fixed percentage or value. This ensures that variables that have been assigned to often in the
past, but not much in the recent history of the program, are no longer considered for incremental
re-satisfaction.

Benchmark Results

We present two sets of benchmarks, one each for DeltaBlue and Cassowary. In our benchmarks,
we measure a chain of variables that should be equal to a fixed sum, a horizontal drag of a slider
where only one variable changes, a mouse drag where two variables changes alternate, a mouse drag
where one dimension changes more frequently than the other, and finally a mouse drag where each
dimension changes five times, and then the other changes five times.

For DeltaBlue, the best heuristic is to keep the last edit constraint in a strategy we call last JIT.
At any time, if there is no current edit constraint, we create one. If the current edit constraint is
for another variable, we throw the old one away and create the new one. This implementation
could easily be extended to cache the last n edit constraints, rather than just the last one. However,
even as it is, we can see in our benchmark that this heuristic is almost always as fast as writing edit
constraints directly, and is never slower than not using edit constraints at all.

For Cassowary, we include three heuristics with Babelsberg: the classic JIT strategy decays coun-
ters and changes or creates edit constraints in fixed intervals. A second strategy, additive adaptive,
increments the interval any time themost frequently used variable did not change, and decrements
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the interval any time it did. Thus, when an edit constraint is well chosen and can stay in effect
for a long time, we reduce the overhead of checking and decaying counters linearly with time. A
third strategy, multiplicative adaptive, modifies this behavior and, rather than incrementing or
decrementing the interval, it multiplies or divides the interval by two. This has the advantage that
we can avoid re-checks for longer periods of time if the edit constraint stays in effect.

Our benchmarks show that all our heuristics are faster than using no edit constraints at all. The
adaptive strategies generally work better than the classic JIT strategy, and by default we use the
additive adaptive strategy, but the developer can select a different strategy manually.

Summary

Our benchmarks illustrate that the performance penalty of using constraints intermingled with
ordinary object-oriented code is very large. This issue is particularly relevant if we spent a lot of
time in pure object-oriented code that only reads from many constrained variables. It is less of a
problem for code that reads a few variables, but spends the majority of time on calculations or
IO. The overhead is also less relevant for applications that have constraint solving at its core, since
our benchmarks also show that the Babelsberg prototypes compare favorably to other constraint-
imperative programming systems. Nonetheless, there is potential for improvement. Making use of
edit constraints can significantly improve performance, but only for solvers which support them.
Adding additional optimization strategies for other types of constraint solvers is part of our future
work.
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Programming
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9. Using Constraints in Object-oriented
Applications

Using our prototype implementations of the Babelsberg design, we have written or extended a
number of applications, including some from the domains of load balancing, electrical and me-
chanical simulation, puzzle solving, unit conversion, games, and layouting. We have also evaluated
applications written by 24 graduate students using Babelsberg that did not have any prior expe-
rience with Babelsberg or Object-Constraint Programming (ocp) in general. These applications
were written with object-oriented principles in mind (using the idioms and patterns common for
the underlying host languages) and employ constraints where it simplifies the code.

In this chapter, we discuss three usage patterns and issues that emerged in some of these applica-
tions. Due to the limited number of applications, we cannot generalize these to give recommenda-
tions on how to use Babelsberg and further research into that area is required.

9.1. Constraints at Initialization

A number of our applications use constraints to declare some properties that objects must adhere
to. This is useful, for example, in simulations of physical circuits, where each physical part (wires,
resistors, ammeters, etc.) should follow the relevant physical laws (Ohm’s law, Kirchhoff’s current
law, and so forth).

Figure 9.1 shows a constraint-based simulation of Wheatstone Bridge being constructed in the
Lively Kernel environment using Babelsberg/JS. (A Wheatstone Bridge is used to measure an un-
knownelectrical resistance bybalancing twopairs of resistors so that the electrical potential between

Figure 9.1.: Constructing a constraint-based Wheatstone bridge simulation
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them is zero.) Graphical objects (“Lively Parts”) representing batteries, resistors, and meters are
copied from the Lively Kernel Parts Bin [77] on the right, dropped into the circuit on the left, and
wired together. The circuit parts are represented by classes that create constraints on initialization.
For example, any object that is connected via two endpoints inherits from TwoLeadedObject:

class TwoLeadedObject {
constructor() {
this.wire1 = {voltage: 0.0, current: 0.0};
this.wire2 = {voltage: 0.0, current: 0.0};
always: { this.wire1.current + this.wire2.current == 0.0 }

}
}

This constraint represents Kirchhoff’s current Law that the sum of currents for the inputs
and outputs must be zero. Other components such as resistors inherit from TwoLeadedObject.
Calling the inherited implementation works as expected, that is, it creates the constraints on the
subclass’ instance. Any additional, subclass-specific constraints are added after that:

class Resistor extends TwoLeadedObject {
constructor(resistance) {
super();
this.resistance = resistance;
always {
this.wire2.voltage - this.wire1.voltage ==

this.wire2.current * ro(resistance)
}

}
}

Whenever a new object is created, it automatically follows the physical laws as far as they are rep-
resented in the constraints (setting all voltages and currents to zero). To connect two components,
we simply constrain the connected wires to have the same voltage, and the sum of the currents
to be equal to zero. Thus, if we connect a battery component (with a non-zero voltage potential
between the two wires), the system automatically solves the constraints when the parts are first
connected, and re-solves them if, for example, the battery’s supply voltage or a resistance is edited,
updating the voltage displayed by a meter.

9.2. Dynamic Argument Checking versus Constraints

One issue we encountered is that many JavaScript methods have, besides a return statement, some
statements that check the number, types, or structure of arguments and just throw an error if the
arguments are incorrect. As per our semantics, such methods do not work multi-directionally. In
fact, allowing them to be truly multi-directional would allow the solver to change the number,
types, or structure of arguments, which is the kind of surprising behavior we want to avoid. As an
example, consider the frequently used method to add two points in Lively Kernel:

function addPt(p) {
if (arguments.length != 1) throw (’addPt() only takes 1 parameter.’);
return new lively.Point(this.x + p.x, this.y + p.y);

}

102



9.2. Dynamic Argument Checking versus Constraints

We almost certainly do not want to satisfy a constraint that calls the addPt method with a bad
number of argument by dropping an argument:

always: { point1.addPt(point2, bogus).eqPt(point3) }

Instead, the argument check should not be part of the constraint. During the development of
the Babelsberg design, we initially allowed such methods in constraints that simply do argument
checking in this manner. The argument checking code was simply executed once and then ignored
during constraint solving. (We have published multiple applications that use such methods as a
reviewed software artifact [34].) These methods worked as expected as long as we did not include
constraint solving procedures that can solve for the length of arrays, because the arguments array
would become a part of the constraints, but could never be solved for.

Allowing such methods is a slippery slope. We encountered a similar issue with methods that
return one of two expressions, depending on a test. Our semantics does not allow branching in
multi-way constraints. Such a method encountered frequently is getPosition:

function getPosition() {
if (!this.hasFixedPosition() || !this.world()) {
return this.morphicGetter(’Position’);

} else {
return this.world().getScrollOffset().

addPt(this.morphicGetter(’Position’));
}

}

The desired semantics is that we can use getPosition in a constraint, either to access the current
position or to modify the object’s position, but not to modify the object’s FixedPosition flag.
However, the built-in getPositionwas not written anticipating its possible use in constraints,
and so FixedPosition is not annotated as read-only. As an earlier workaround, the programmer
was able to select a particular solver to get the desired behavior. Cassowary, for example, cannot
reason about booleans and treated the flag as a constant, as intended. Z3, on the other hand, would
sometimes change FixedPosition, leading to surprising solutions and graphical glitches.

In our design and semantics, the specifics of the solver no longer influence the meaning of using
methods with branches or argument checking — it can only be used in the forward direction
(cf. Section 3.2.5). As a workaround for using it multi-directionally, the developer must move the
tests outside of the method and add the constraint only for the branch that is chosen.

In future work, we will investigate how to add a mechanism to recognize this pattern and au-
tomatically mark the branch condition as read-only to the solver. We considered allowing the
developer to manually mark such statements to be ignored during constraint construction mode.
However, that makes it impossible to ensure that the semantics of the method during imperative
execution matches the semantics of the translated constraints in the solver. In the extreme this
could lead to situations where the solver correctly satisfies its constraints, but the return value of
the constraint expression in imperative mode is still false. This actually happened in an experiment
with such an annotation, where we introduced a bug in our branch condition, and would always
throw an exception, even though the solver would say it had satisfied the constraints. Such failures
are then very hard to debug, since the state looks correct, printing of debugging information does
not show the correct constraints, and only reading the code can reveal the bug.
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9.3. Local Variables for Read-Only Computation

Our implementations of Babelsberg include methods to mark variables as read-only for the solver.
However, read-only annotations do not have a clear semantics, and thus cannot be used in impera-
tive code. This is a problem when writing methods that should be usable both in ordinary code as
well as in constraints, but parts of which should be read only for the solver.

However, we have found that many of our students moved computation that should be read-
only into separate methods, used local variables to split up the computation, and thus ensured that
such methods could only be used in the forward-direction. One such method we found calculates
the pressure of an object representing a balloon filled with some gas:

class Balloon {
entropyPerVolPromille() {
var gasConstant = this.gasConstant, // J/(kg*K)

density = this.density; // kg/m^3
return gasConstant * density / 1000; // J/(K*m^3*1000)

}

pressure() {
return this.entropyPerVolPromille() * this.K; // kPa

}

constructor(temperature, density, gas) {
this.K = temperature;
this.density = density;
this.gasConstant = this.lookupGasConstant(gas);
always: { this.pressure() <= 115/*kPa*/ }

}

...
}

The desired function of the constraint is to restrict the temperature (in Kelvin) of the object to
remain such that the pressure remain below 115 kPa. The code first assigns the gas-specific con-
stants required to calculate pressure to locals, so that the constraint solver will not be allowed to
modify these constants on the object to satisfy the constraint. Here, it would be inconvenient
to use a read-only annotation. If used inside the pressure method, the semantics of that method
when used in ordinary imperative code are not clear. The other option would have been to manu-
ally inline the pressure method and add a read-only annotations only on the return value of the
entropyPerVolPromillemethod, but we would like to avoid this code duplication.

Summary

We have presented three usage patterns and the most common issue that can be found throughout
our and our students’ example applications. This work is young, and we expect to find more
common patterns and issues as we explore it further. However, we have found that becoming
aware of the above cases already helped us structure our applications. Both declaring constraints at
initialization time, as well as explicitly creatingmethods that work only in the forward direction are
so common that we are investigating if there should be support for these patterns in the language.
Regarding the issue of argument checking and branching, we are experimenting with an extension
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to our design that is similar to our extension for allowing collection predicates in constraints. To
that end, we need to identify themost common patterns of such branches and their expected effect.
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In this chapter, we present a larger applications, a clone of the game Wii Play/Tanks! 1 that runs
in the browser. The applications in the previous chapter were comparatively small, allowing us to
focus on details of the usage patterns. Using this larger example application, we discuss how to
modularize and group constraints and show interesting examples of how constraints can integrate
with other language extensions.

Figure 10.1 shows the running game. It is top-down, with the players controlling toy-tanks that
shoot rubber bullets at each other. The tanks can move about the field and turn their turrets
independently. The field contains obstacles such as walls and holes in the ground which the tanks
cannot cross, but bullets can ricochet off walls and fly over holes. As an extension to the original,
we added power-ups which give the tanks’ bullets additional behavior such as flying faster or
ricocheting more often.

Context-oriented Programming (cop) [18, 55] is a mechanism to dynamically adapt behavior
based on layers. From our experience with bothocp and copwe realized there are multiple oppor-
tunities to use constraints and layer-based behavioral adaptation. Power-ups change the behavior
of bullets, and, during development, alternative drawingmodes are desirable for introspection and
editing. These can be conveniently encapsulated using layers. Additionally, there are UI elements
that have constraints on them, such as the target following the mouse, or that a tank cannot drive
into a wall or over a hole. We encapsulated these using constraints. During the implementation of
this game, we have used constraints as an activation mechanism for cop layers, calling this mecha-
nism Layer Activator Constraints. Conversely, we have included a mechanism for layers to add and
retract constraints, called Constraint Layers.

1©2007 by Nintendo®, http://www.nintendo.com/sites/software_wiiplay.jsp, accessed March 30, 2015

Figure 10.1.: “WePlayTanks” with Babelsberg and ContextJS
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10.1. Layer Activator Constraints

There are various activation mechanisms in cop languages, including dynamically scoped [55]
or scoped to object structure [76] and event-based [1, 70] or implicit activation [81]. While the
first two mechanisms offer explicit control over the activation time of layers, the latter two are
particularly interesting for our discussion because of their declarative nature.

Event-based activation uses system-generated events to activate or deactivate a layer during the
event loop. Reactive activation is based on similar principles as Aspect-oriented Programming
(aop): whenever a message is sent that matches a pointcut, an associated condition is evaluated. If
that condition evaluates to true, a layer is activated for the duration of the method activation.

A limiting factor of both mechanisms is their granularity. Event-based activation relies on the
system to generate events that indicate a change in the system state. It is generally not possible to
tell the system to generate an event whenever an arbitrary condition changes. Similarly, reactive
activation focuses on message sends. The conditions for layer activation are only checked at join-
points, and thus the burden is on the programmer to ensure that their pointcuts match all message
sends that may be relevant.With Babelsberg, however, we can formulate a constraint that connects
the activation state of a layer to an expression:

always: {
game.time < powerUp.creationTime + powerUp.timeout ==

powerUpLayer.isActive()
}

This constraint is used in the game to change the behavior of the game as long as the powerUp is
active, that is, as long as its creationTime and timeout are larger than the current game time.
This uses the standard Babelsberg/JSmechanism for constraint solving: the predicate is interpreted
to determine its dependencies, and the objects that affect the outcome of the predicate are wrapped
to monitor changes to them.

As part of the game we included a custom constraint solver that can deal with cop layers, imple-
mented using our cooperating solvers architecture. When this solver is called to satisfy the above
constraint it adjusts the activation state of aLayer to match the result of my.condition().

Since Layer Activator Constraints are built around a shared constraint solving mechanism, the
semantics for competing or contradictory activators arise out of the theory of constraint solving
for contradictory or competing constraints. If two activators contradict each other, solving will
fail with an exception at the time the second activator is defined — with the effect that the second
activator is not enabled.

10.2. Constraint Layers

Constraint programming typically revolves around describing a global system state, which is why
the global activation mechanism provided by always and once are sufficient. oop, on the other
hand, focuses on defining independent modules and often deals with changing states.

In our game, consider that the turret of the tank should follow the mouse cursor controlled by
the player:

always: {
player.turretDirection.equals(input.mouse.sub(player.position))

}
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This describes a global assumption, which will be true when we are playing. However, the game
consists of various additional states, such as an edit mode. Analogous to partial classes and their
behavior in behavioral layers, for this game, we introduced scoped constraints in Constraint Layers.

cop layers as implemented in ContextJS [76], a JavaScript implementation of cop, are first class
objects that refine classes. A refinement that is active when playing our game is defined as follows:

GameLayer.refineClass(
Game, {
timeout: function () {
cop.proceed();
this.resetTimer();
this.restartLevel();

}
})

Here, the GameLayer adds the timeout function to the Game class. When the layer is active,
instances of Game respond to the timeout function by first calling the base implementation (line 3),
and then resetting a timer and restarting the level (lines 4–5). This definition is, in cop parlance,
called partial behavior.

Constraint Layers can add constraints to layers in the same way as partial behavior. Like partial
behavior definitions, scoped constraints are enabled when the associated layer becomes active and
are retracted when the layer is deactivated:

GameLayer.addConstraint(
always: {
player.turretDirection.equals(input.mouse.sub(player.position))

}
);

This extension inparticular seemsuseful in broader contexts tomodularize the use of constraints.
As part of future work, we are planning to formalize this idea and integrate it with our semantics.

10.3. Constraint Triggers for Reactive Behavior

Reactive programming is used to trigger certain behavior in response to events. Functional reactive
programming languages allow a lot of freedom in what kinds of expressions can be used as event
sources. We have found that using Babelsberg, we can offer a similar mechanism.

In the game, bullets shot from the tank should ricochet off walls. In functional reactive pro-
gramming, we would say that a bullet moves along a vector, and when it intersects a wall, its vector
is reflected. We could implement a solver for reflecting bullets off walls, and hand it the following
constraint:

always: {
!bullet.intersects(wall)

}

In this case, the solver should satisfy the constraint by reflecting the bullet and moving it out of
the wall.

We have found a more general solution in form of a custom, configurable solver that used user-
defined functions and local propagation. This solver is initialized with a callback, and then used
explicitly in constraints:
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var solver = new ReactiveSolver(function () {
bullet.reflectOff(wall);
bullet.moveForward();

});
always: {
solver: solver;
!bullet.intersects(wall)

}

Here, we use the Babelsberg/JS syntax to pass a solver explicitly. When this instance of the reactive
solver is called to re-satisfy the constraint, it executes our callback. (The developer has to ensure that
the callback actually does satisfy the constraint, just like in other configurable local propagation
solvers.)

Finally, bullets should only ricochet of walls a fixed number of times, and then vanish. The
ReactiveSolver can take two more optional arguments. The first is a counter to decrement
anytime the solving callback is executed. When the counter reaches zero the third argument, a
cleanup function, is called, and all constraints in the solver are deactivated:

var solver = new ReactiveSolver(function() {
bullet.reflectOff(wall);
bullet.moveForward();

}, 2, function() { bullet.remove() });

This extension demonstrates how functional reactive programming is contained in ocp, and
also shows a method of scoping constraints in time.

Summary

In this larger application, we found that our design lacks fine-grained control over the scope of
constraints, as well as a mechanism to group constraints into modules and re-use them in different
contexts of the program. We have no principled answer to these issue, yet, but our experience
suggests that the combination with Context-oriented Programming has useful properties that
a principled solution should also bring to our design, such as a clean way to enable and disable
multiple constraints at once.

Another interesting observation is how our architecture for adding multiple solvers can be
used to add special purpose solvers for activating layers or implementing reactive behavior. This
suggests that our architecture may in fact be more general than just a design for cooperating con-
straint solvers. Instead, it could be used to combine general problem solving approaches. As part
of future work, we are investigating ways to combine, for example, Prolog-style backtracking with
Babelsberg.
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A secondary goal of the Babelsberg design is to improve programmer productivity by allowing
developers to use constraints instead of object-oriented code where the former are more concise,
expressive, or maintainable. In general, however, more time is spent understanding and debugging
programs thanwriting them.To improve programmer productivity, providing adequate debugging
tools is a thus key ingredient, as without them, debugging is a manual, time-consuming task [24].
In this chapter we present tools that we developed to help us to understand, debug, and experiment
with constraints in Babelsberg.

The tools we present are built for the library-based implementations of Babelsberg. They take
advantage of the fact that all meta-object structures are implemented in the host language, and can
thus be easily accessed from user code.

11.1. Inspection

Especially in live programming environments such as Squeak and the Lively Kernel, the life-time
of constraints and which objects they affect can be hard to follow. Both Squeak and Lively use
a graphical environment based on Morphic [85], with direct manipulation of objects in a scene-
graph. In such a live environment, we want to easily get answers to a number of questions: Are
there already constraints on graphical objects in the world, and if yes, which objects are involved?
What constraints are on one particular object? What strength is attached to a constraint, what
solver is it in, and is it currently enabled or disabled?

Lively Kernel, Squeak, and similar environments come with object inspectors. These tools enable
direct observation of program state, allowing the developer to systematically check for unexpected
states, by drilling down into an object and observing how fields change when interacting with it.
These inspectors also allow developers to run code in the context of an object and to change the
values stored in fields.

Since the observation of facts is useful during debugging and often used as a first approach,
we have created a constraint inspector. Constraints are global, usually connect multiple objects,
and can interact or possibly contradict one another. Consequently, this inspector does not only
show one constraint, but instead tracks all constraints and how they relate to graphical objects.
Figure 11.1 shows our inspector and a graphical data entry formwith constraints on it. The inspector
shows a list of Morphs that have constraints on them and highlights these. We can also use the
inspector to observe if and how an application dynamically adds constraints as we interact with
it. We can explore the constrained morphs to find which parts of them contribute to constraints.
In the example, the input fields to enter a date of birth have constraints on them to ensure they
cannot have invalid content.We can see the constraint expression of a constraint on the month field.
Double clicking this expressions allows us to see and change the constraint’s strength or enable and
disable it for testing purposes.
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(a) A constrained Web form (b) Constraint inspector

Figure 11.1.: The inspector highlights the graphical parts of theWeb form that have constraints on them, and
allows drilling down into the fields and constraint expressions on them.

11.2. Intercession

Besides logging or inspecting state, the most common tools for finding bugs in programs are
debuggers. The Squeak/Smalltalk debugger in particular is very flexible and allows step-wise access
to program states, inspecting the stack, as well as changing variables or program code at almost any
point during the execution. Changed variables and code can be used immediately to test how the
program behaves if it continues running with the changes.

Figure 11.2 shows how we extended the Squeak debugger when stepping through a 2D point
equality constraint with an additional pane on the top right 1© that shows the currently active con-
straints, and a special inspector on the right hand side 2© showing the constraint that is currently
being created. The debugger works as it normally would when running imperative code. However,
when we enter constraint construction mode, the debugger additionally tracks the constraints as
they are created. In the below example, we assert that pt1 and pt2 should be equal ( 3©). From
just looking at the expression we cannot tell how many constraints would be created from this
expression. We could infer from the implementation if the =method for 2D points that we will
create two constraints, one for each pair of dimensions on those two points. Our debugger also
allows us to observe this fact and displays the equations that have been translated for the Cassowary
solver in the top right pane. On the right hand side, we can see the details of the first constraint
and for example change its strength or the generated expression to see how that changes the pro-
gram behavior. Additionally, we can step into the procedure that assigns updated values from the
constraint solver to the program variables and thus see the global effects of a constraint. This is
particularly useful to understand which solution a solver chooses for a particular constraints and
how many variables are changed in which way.

11.3. Experimentation

We have combined the tracking of variables, constraints, and graphical objects into an interactive
playground to explore constraints and their effects. This playground offers developers an environ-
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Figure 11.2.: The Babelsberg/S debugger

ment where graphical objects that have constraints on them can be safely manipulated, using the
Lively Kernel’s tools. One issue with a self-supporting development environment such as Lively,
which this addresses, is that it can be hard to keep the environment and the application sufficiently
separated to avoid that experiments with the application accidentally break the tools [75].

Figure 11.3 shows a small electrical circuit simulation with a battery and a voltmeter. The play-
ground with graphical objects 1© explicitly separates the tools from the application. All graphical
objects are continuously monitored by the value tracker 2©. This tracker shows all variables in
the application that are determined by a constraint solver and their value. As we interact with the
application, we can observe which variables are updated to re-satisfy constraints. In the code pane
on the lower right 3© we can edit the code, both imperative and declarative, that makes up the
application. The editor offers more than simple code editing:

• On hover, the variables that a constraint refers to are highlighted in the value tracker.
• Each constraint shows a checkbox to activate or deactivate it, which also updates the application
and the value tracker.

• For each constraint, the currently selected solver is shown, and on hover a drop down list of
available solver allows us to experiment and review the results that different solvers would pro-
duce.

• On right click, a list of priorities allows the developer to directly change the strength of the
constraint.

• All numeric values are “scrubbable”, that is, they can bemanipulated by hovering over them and
scrollingwith themouse, and the effects of the changed constraints can be observed immediately.
This is useful, for example, in layouts where values like margins must be chosen to fit aesthetic
preferences.

This playground has proven very useful to understand which variables are related by a particular
constraint and to understand which solvers produce better solutions for a particular domain (e.g.,
that the lack of precision in relaxation solvers is no problem in layouting applications, but is not
acceptable for circuit simulations). This helps understand the trade-offs involved in the heuristics
for automatic solver selection as presented in Section 5.3.
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Figure 11.3.: A Babelsberg/JS playground

Summary

Our tools have already proven useful when developing Babelsberg applications, although without
any alternative tools to compare them to, this says very little about their quality. It is clear thatmore
work is required to understand which additional problems these tools need to address, where they
could be made better, and how they should be integrated into the development process.
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12. Related Work

In this chapter, we present the relatedwork on using constraint programming systems. The chapter
groups the presented systems by how derive from each other or some common previous systems,
starting with purely constraint-based systems, overmulti-paradigm languages for Constraint-Logic
Programming and Constraint-Imperative Programming, to more recent data-flow constraints (of-
ten used in functional-reactive programming systems), and purely library- or dsl-based constraint
programming. We think this grouping is useful in talking about some of the design decisions and
trade-offs that set these systems apart from Babelsberg-style Object-Constraint Programming lan-
guages. At the end of this chapter we will also describe some design dimensions which we think are
useful to consider with these systems and thus provide a different classification of them in relation
to the work presented here.

12.1. Constraint Programming Systems

One of the earliest examples of a programming system that makes use of constraints was Sketch-
pad [115]. Besides pioneering computer-aided design, object-oriented programming, graphical user
interfaces, and demonstrating the use of pens as a novel human-computer interaction technique, it
is also an example of a system that integrates different constraint solving algorithms into the system
to solve problems that may be too difficult for either one or the other solver. Starting with basic
lines and arcs, Sketchpad could apply a set of predefined constraints to them, such as making lines
parallel or perpendicular. Shapes could also be duplicated and composed, with the original shapes
becoming master copies. Any further modifications to the masters were propagated to the copies.

Sketchpad includes two solvers, a one-pass solver and an incremental method. The first is a local
propagation solver that propagates degrees of freedom. This is described as the preferred method
by Sutherland for much the same reasons we have given in Section 2.3: if it can be applied, it is
both simple and efficient. This method could very often be used in Sketchpad when constraints
were defined with read-only variables (called “reference-only” ), because that limited the degrees
of freedom and provided ordering for a particular constraint. However, Sketchpadrecognized the
need for simultaneous solving in multiple directions at once, and thus included also an iterative
numerical solver that linearizes the constraints and then tries to minimize the errors. (We have
integrated this method into the work presented here as “Sketchpad’s Relaxation Solver”.) The
system also used a third solver not explicitly described in the thesis, a simple local propagation
solver that propagates known values directly, before attempting to use propagation of degrees of
freedom [7]. In contrast to the work presented here, Sketchpad integrated a fixed set of solvers,
and users thus had to be careful to add constraints in a way that would allow the system to use one
of these [115, p.112ff].

Another early example of a constraint-based system used finite domain constraints to interpret
two-dimensional drawings of three-dimensional scenes with shadows [120]. This system includes a
vocabulary of possible line intersections that can be present in such drawings. These are assigned to
the drawings as labels, and each label adds constraints on howwhat labels can be at connected lines.
The system then searches for matches of intersection types that describe a valid three-dimensional
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structure. Compared to this work, this early use of constraint solving is very specific to the problem
domain. The generated interpretations are concise because they can omitmany implicit constraints
that are specific to the domain, a feature that in some way we have attempted to emulate with
implicitly generated stay constraints and our principled limitations on constraints over object
structures and identity.

ThingLab was a constraint-oriented simulation laboratory implemented as an extension to
Smalltalk-76 [64]. Although not meant as a general-purpose programming tool, it did allow the
definition of constraints on objects’ parts, and those constraint definitions could be inherited and
composed in an object-oriented manner. ThingLab had many similarities to Sketchpad including
the use of the same three solving mechanisms [7], and the graphical construction of objects and
object-compositions. Its integration with the Smalltalk programming language, however, made it
easier to create custom constraint-satisfaction methods that could be used for local propagation.
ThingLab also pioneered some uses of constraints for simulations, animation, unit conversions,
and spreadsheet programming, and we have re-created some of these applications as an evaluation
of the work presented here. ThingLab also optimized solving performance by compiling Smalltalk
methods that implement the re-satisfaction plan for constraints given a change to a particular field.
A similar mechanism could be applied to our work to improve the performance for some solvers
that do not support edit constraints.

12.2. Constraint Programming in General Purpose Languages

Attempts to integrate constraints with general purpose programming have a long research history.
One of the first systems to support constraints within a general-purpose programming paradigm
is the Constraint-Logic Programming scheme [68], which evolved from logic programming. clp
can be seen as a generalization of logic programming, where the constraint domain of pure logic
languages is the set of terms available in that language. Jaffar and Lassez introduced a family of
CLP(X ) languages, where X stands for the domain on which the constraints in the language
work. One instance, CLP(R ) [69], provides constraints over real numbers in Prolog. Another
language of this kind is Concurrent Constraint Programming [110]. These languages are in the
logic programming family, and in their standard form have no notion of state or state change, in
contrast to the work presented here. clp languages have significant advantages, such as a clean
semantics, but they sacrifice the familiar capabilities andprogramming style of themoremainstream
imperative paradigm. In contrast, our goal in this work was to support an imperative, object-
oriented programming style that integrates constraints syntactically and semantically.

The Kaleidoscope language is a first example of a Constraint-Imperative Programming lan-
guage [46] that aims to integrate constraint solving with the imperative paradigm. Kaleidoscope
supports Smalltalk-like classes and instances, and in addition, integrated constraints with the lan-
guage itself. This integration included built-in constraints over primitive objects (such as floats) and
constraints over user-defined objects, which were provided by constraint constructors. For example,
the + constraint for Points could be defined using a constraint constructor a+b=c that expanded
into constraints on the x and y instance variables of the three points a, b, and c. Separately, the
language also provided oomethods. Both constraint constructors and oomethods were selected
using multi-method semantics. This accommodated, for example, the case of a constraint con-
structor call a+b=c in which b and c were known and a was unknown. In contrast to the work
presented here, were only “ordinary” imperativemethods exist and are used both in constraints and
imperative code, Kaleidoscope keeps the abstractions for constraint solving and object-oriented
behavior separate.
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Another early cip systems is Siri [58]. This work, inspired by ThingLab, Beta, and Smalltalk, is
motivated by the observation that ensuring internal consistency of objects is difficultwhenmultiple
state-changing methods are offered in the interface. Siri allowed objects to be defined through
parameterized constraint patterns, and could establish maintain consistency between an object’s
fields given a declarative specification. This is similar to how we proposed to declare constraints
during object initialization in Babelsberg (cf. Section 9.1).

Turtle [53] is a more recent cip language written from scratch, while Kaplan [71] provides con-
straints in Scala. Both separate the declaration of constrainable variables from ordinary variables
to make it clearer what may happen when a variable is used. Neither includes support for identity
constraints, however. Like Babelsberg, the Turtle system provides constraint priorities; Kaplan
does not. Because ordinary variables in Turtle are not determined by the solver, only constrainable
variables have low-priority stay constraints on them.Kaplan does not currently support constraints
over mutable types, so stay constraints are not relevant for it. Analogous to Kaleidoscope and in
contrast to ocp, both languages separate constraint functions from ordinary functions. In Kaplan,
only such specifically annotated functions can be used in constraints. Turtle does allow ordinary
methods and variables in constraints; however, their values are treated as constants, making all ordi-
nary methods work only in the forward direction. Kaplan does implement enumerating different
solutions, a feature that we consider future work for the design presented in this work.

Rosette [117] is a solver-aided language that extends Racket with symbolic data types and solver
operations on those types. Rosette integrates a solver for program synthesis as well as so-called
“angelic execution.” The latter is very similar to the work presented here, in that it attempts to
find bindings for variables that are in an assertion to make that assertion true. As with Babelsberg,
constraint expressions can contain arbitrary (imperative) functions that are partially evaluated in
the host language to construct constraints. For the solving itself, both Rosette and Babelsberg
handle object identity and mutable structures in a similar way. A more significant difference is
that Rosette constraints are always asserted only at the time they are evaluated, unlike always in
Babelsberg, and they cannot solve for and do not track re-assignment to ordinary variables, but
only for separately declared “symbolic” variables.

Soul [23] is a similar approach to the above, but more generally integrates logic programming
and rule-based reasoning with a Smalltalk-like language. Logic predicates are written and can be
used in message sends like Smalltalk methods, but rather than interpreting code imperatively,
backtracking is used to change the binding of variables used in the rules. A major contribution of
Soul is its evaluation of a syntactic and semantic symbiosis between the two different language
paradigms down to the level of method dispatch and variable declaration. Their observation that
such a symbiosis is required to enable developers to utilize both paradigms freely when it makes
sense motivated us to attempt a similar symbiosis in the work presented here.

Mozart/Oz [105] is a multi-paradigm language that supports functional, imperative, and logic
programming. It also has a special focus on supporting concurrency, non-determinism, and search.
In Oz, constraint programming is much more explicit than in an object-constraint language, with
explicit variable types for unbound and finite-domain variables. Oz uses a constraint store that
is monotonic, meaning that bindings and constraints can be added but not removed or changed,
which is something we explicitly support in the work presented here. Another difference is that Oz
explicitly allows non-determinism in constraint solving. Two features of Oz that we are missing in
this work are explicit integration of threads of concurrent execution and constraint solving, and
support for backtracking.
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12.3. Constraint Programming with Libraries and DSLs

There is also a body of work that uses constraints in other ways in general-purpose programming
languages, not as a linguistically integrated paradigm, but to provide new features through a dsl
or library that integrates with an existing general purpose language.

Plan B [108] uses specifications as “reliable alternatives” to implementations, so that if an asser-
tion fails, the system can use the specification as input to a constraint solver and continue execution.
Similarly, acceptability-oriented computing (AOC) approaches use constraint solvers in their ap-
proach to correct a faulty program state automatically and continue running. (Thus, by replacing
assertions with constraints, undesirable program states can be corrected by the runtime.) In both
systems, constraint specifications were sometimes enough to ensure proper execution, and the
actual imperative code in somemethods could be partially or completely removed, leaving only the
declarative specification of the correct result. A third system that uses constraints in this manner is
Squander [89], where specifications of pre- and post-conditions around a method are handed to a
solver, and if they are not met, the system state is updated with the help of the solver to meet them.
In the Squander system, too, the authors propose that for some specification, the method body
can actually be left empty and the specification of the intended effect of the method suffices. The
use of constraints in these systems is mostly akin to the once constraint in our work, as a means
to create a desired system state once, rather than continuously maintain it. An advantage of this
approach is that the interactions of constraints with the imperative state are clearly localized.

BackTalk [106] and Ilog Solver (now IBM CPLEX) [63, 102] are other systems that aim to
integrate a rich set of constraint solvers with imperative languages, but without aiming for full
semantic integration. These systems provide a library for unified access to a wide range of solvers,
and methods to combine these solvers with boolean operators or through propagation. Although
constraints and imperative code are still written in the same syntax by making use of operator
overloading and dynamic dispatch, they are clearly separated. The advantage of these systems is
that the interface between the declarative and imperative world is explicit and all properties and
features of the solvers are readily available.

For more specialized application domains, such as user interface definitions, systems like the
Auckland Layout Editor (ALE) [82], Mac OS X Auto Layout [107] (which uses Cassowary
to solve the constraints), or the Python gui framework Enaml [27] provide separate dsls that
allow developers to express constraints on graphical objects and have the system maintain them.
These dsls hide the interaction between imperative changes to the gui and the constraint solver.
However, due to their specialized nature, this is not often a problem, and their clear focus on a
limited domain has lead to the widespread use of such systems.

Finally,αRby [88] is a language that uses Ruby as adsl for the Alloy specification language [67].
Its goal is reversed fromtheworkpresentedhere, in that it attempts toprovide imperative constructs
to Alloy users, that is, programmers familiar with constraints. It allows Alloy users to easily pre- or
post-process their declarative models using imperative libraries, for example to experiment with
visualizations. αRby translates Ruby programs into Alloy, but the programs are written in a style
that closely mimics the Alloy language rather than with ordinary Ruby classes and methods. The
mechanisms for abstraction and translation from Ruby are thus not relevant for Alloy users, and
are not integrated with the Alloy language.
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12.4. Dataflow Constraints and FRP

Anumber of contemporary application domains, includingWeb applications and graphical user in-
terfaces, deal predominantly with interactive interfaces that have to react to and change in response
to user input. Such behavior can bemodeled with one-way data-flow constraints, and systems such
as ThingLab and Siri already recognized this fact. Recent Reactive Programming [15, 13] systems
try to address this need by focusing on data-dependencies between user events, interfaces, and
the domain model, updating them when either changes. To that end, rather than integrating full
constraint solvers in the way Babelsberg does, these languages allow programmers to subscribe to
event streams (either continuous or discrete) and declare functional or data dependencies that are
automatically maintained by the system.

Scratch [103], a tile-based scripting language, allows programmers to use “when” tiles to declare
code that should run given a particular event stream currently has a value. For example, dragging
can be implementations by moving a graphical object to the mouse position as long as the mouse
button is down. Lively Kernel/Webwerkstatt [77], a Web-based, self-supporting development
environment in the spirit of Self and Smalltalk, provides connections as a mechanism in JavaScript
to manage data dependencies. Connections are used extensively in Lively to route user interaction
events such as button presses or drags to trigger interface updates. Both these systems use one-way
data-flow in a localized manner, triggering each event and reaction separately, and do not analyze,
for example, the topology of connections (whereas a local propagation solver would do so to detect
cyclic dependencies). This means that, in contrast to Babelsberg, these systems are more restrictive,
but may also be easier to debug and understand internally.

Elm [19], Fran [26], and Flapjax [87] are recent examples of frp systems. Flapjax is an extension
to JavaScript that adds event streams as a kind of data source that can be connected to a function
to update dependent values. Elm is a language created from scratch to facilitate user interfaces, and
like Flapjax, is motivated heavily from JavaScript Web applications. Both these languages simplify
the frp theory by providing discrete event streams and allow events to be handled asynchronously.
Fran, on the other hand, motivated in part by animations of physical processes, provides both
continuous and discrete streams of values, and the systems takes care to sample continuous streams
at the rate required to avoid missing important events (such as a bouncing ball hitting the floor).
In these languages, the focus is on data dependencies, not desired system states as in Babelsberg.
However, programmers can use constraint solvers to calculate downstream values in the functions
triggered by a new value, so some support for constraint solving is available.

KScript [96] is a recent language syntactically modeled after JavaScript, that integrates frp fea-
tures with late-binding of variables and the Z3 constraint solver. In KScript, streams are connected
to their dependencies by name, and name lookup happens any time a new value arrives from the
stream, and the Z3 solver provides flexibility in calculating downstream values. KScript also deals
with event cycles globally to allow cyclic dependencies, and thus provides capabilities to build
graphical applications that are close to what we can achieve with Babelsberg, although using a
different paradigm, rather than integrated with imperative code. The power to resolve variable
names any time a new value arrives is not available in Babelsberg, and it would be interesting to see
if such a feature could be used to make constraint expressions more re-usable.
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12.5. Design Dimensions for Systems with Constraints and Related
Mechanisms

While the paradigmatic perspective presented above is helpful in understanding themotivations be-
hind systems that use constraints, it is useful to consider more basic design dimensions to compare
languages directly rather than by their motivations and goals. We find that there are six dimensions
that are useful to consider in this case. Table 12.1 presents an overview of the related work as well as
the work presented here in terms of these design dimensions.

Constraint Building Blocks We first consider the basic building blocks for expressing constraints.
All systems have some primitive relations (such as linear equations) that they support. A first
question is whether these are expressed on special symbolic variables or directly on the basic variables
of the underlying system. Second, is it possible to abstract over these primitive relations and provide
user-defined relations. Finally, can constraint expressions include functions, methods, or procedures
that are not designated constraint relations, and that are automatically transformed into a form
suitable for the solver by the system.

Lowering When variables have constraints on them, there is a question if and how these can
be used with functions in the system that do not use constraints. In reactive programming we
talk about lifting with respect to the functions that work on ordinary and reactive variables. In
this classification, we say that we lower constrained variables to concrete values. Lowering can be
implicit, meaning that variables with constraints on them can be passed to ordinary functions and
then exhibit one particular value that satisfies the current constraints. Alternatively, lowering can
be explicit, meaning that the programmer has to get a concrete value from the constrained variable
using some function before using it in non-declarative parts of the program.

Multi-directionality Most of the presented languages can solve at least some kinds of constraints
multi-directionally. For some, this is true only for primitive relations, while others can also solve
user-defined relations or even ordinary functions, methods, or procedures in multiple directions.

Solving Strategies Each constraint language needs at least one solving strategy, but many come
with multiple solvers to allow solving more complex problems or to improve performance for
specific types of constraints. The number of solvers is either fixed or extensible by the user. A
related issue is whether, if there are multiple solvers, these can be used cooperatively (e.g., to solve
constraints which are connected through shared variables) or if constraints in different solvers need
to be satisfied separately.

Constraint Model Constraints may be viewed as problems to be solved or as relations to be main-
tained. Systems which do the latter react to some changes in the system by integrating the updated
state with the active set of constraints. In that category there are systems that allow only those up-
dates to the state that refine what is already known, leading to ever tighter bounds on the possible
values of variables, whereas other systems react to perturbations of values by possibly changing
some other state to keep the constraints satisfied or by rejecting the changed values.

An aspect to consider for the last group is how they deal with the frame problem, i.e., if and
how parts of the system that do not need to change in response to constraint solving are kept at
their current values. One option is to q ignore the problem and allow any perturbation of the
system to cause all state to change in order to re-satisfy the constraints. A second option is to rely
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on the memory model in that memory is unchanged if variables referring to it are not used during
constraint solving and thus their memory is not written to. An explicit formalization is to use soft
constraints on the entire system state to ask that all variables keep their current values unless a
higher priority constraint contradicts this.

Answers or Solutions Under-constrained systems occur often in practice and a design decision is
whether the system should produce solutions with concrete assignments for variables or if it should
provide answers, i.e., results such as 10 ≤ x ≤ 20 rather than a single value for x. And if there are
multiple solutions, is the system capable of enumerating them or will it choose just one by some
explicit or implicit mechanism.

***

We believe comparing the related approaches along these design dimensions highlights some
of our initial goals in creating Babelsberg. Like the constraint-logic programming languages, Ba-
belsberg integrates constraints with the underlying host language in such a way that we can use
ordinary variables and methods both in our constraint expressions and in ordinary code. Com-
pared to systems that use backtracking, however, we can only solve multi-directionally for methods
that are well formed according to our design. The choice of not using backtracking to enable
multi-directional solving in all cases is motivated by our desire to avoid surprising solutions as well
as performance considerations. Third, while most languages only offer a fixed set of solvers, we
think our cooperating solver has proven useful in practical applications to address a wider range of
problems using constraints. Finally, akin to other constraint languages that deal with imperative
state, Babelsberg has a perturbationmodel of constraints to connect changes to the system state au-
tomatically and deterministically with constraint solving and where the frame axioms are explicitly
encoded using soft constraints.
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13.1. Future Work

Weconsider thework presented here to be a useful tool in a general purpose programming language.
Many avenues for future research present themselves, both small and large. Among the smaller
issues left for future work are questions around debugging, comprehension, and the choice of
solvers.

Wementioned debugging as a long-standing problem in constraint programming, and although
we have presented prototypes of inspectors and debuggers, our system, too, suffers from poor
debugging support. Our tools treat the solver as a black box but showwhich objects are affected by
a given set of constraints, which constraints are relevant in a given scope, and what value changes
trigger constraint satisfaction.While this can help in understandingwhen and how the solver affects
the system, it does not explain why it selected a particular solution. exploring options to visualize
the solving process itself, to step through the decisions of the solver, and to allow the programmer
to explore alternative solutions is left for future work.

Our semantics provides clear rules as to what does and does not work in a constraint expression,
however, additional guidance may be desirable during development to show where these rules
are violated. This includes checking of constraint expressions and, if they are invalid, information
about how it may need to change to work as part of a constraint, maybe as a Lint-style tool for
Babelsberg languages. We already provide special error messages for a few operations that cannot
be translated to the solver and try to offer alternatives — for example, Cassowary does not support
true inequality relations like <, but it may be possible to express the problem using ≤, so our
system mentions this in the error message. Future work could extend how these error messages
are generated to offer additional alternatives and guidance, possibly using ontologies of available
constraint solvers and thus teaching the programmer about their capabilities and limits.

Our current implementations mostly leave the choice of solver up to the developer, and the
semantics ignore the choice of solver completely. In cases where the developer does not know or
care about which solver to choose, we have presented a number of schemes to select from the
available solvers. More research is required to find better ways to automatically choose the right
combination of solvers based on a variety of metrics besides those centered around performance
and quality that we have presented. Which metrics actually make sense to use are not clear as of
this point and might vary based on the needs of the developer or the application, suggesting that
an interactive dialog between the development environment and the developer might be required
to choose the right solver.

A larger question that this work leaves unanswered is how to integrate Prolog-style backtracking
into the constraint solving process. Right now, constraint satisfaction leads to exactly one solution
which is then visible to the imperative parts of the program. An option to support findingmultiple
solutions would be to design an explicit new mechanism for querying and choosing between
multiple solutions, possibly akin to the Mozart/Oz system, where multiple threads of execution
can be spawned from multiple solutions. An alternative is to instead use Prolog as the basis, and
interact with the Prolog runtime for dynamically adding and removing constraints to findmultiple
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solutions. The main program will still be an object constraint program, while the Prolog part is a
separate sub-component, with some clearly definedmeans to communicatewith themain program.
Unipycation [5], which is a composition of Python and Prolog, seems like a good starting point for
such future work, since that work already looked at many issues about how a dynamically-typed
imperative language and Prolog can interact.

We feel that a number of questions remain that are less clearly defined. In this work we position
constraints as a tool in the utility belt of general purpose programming, and provide several control
structures and patterns to scope constraints, their integration with existing module systems is
not clear. Other questions concern constraints over time. It would be interesting to be able to
express constraints over the relation of different subsequent system states. These are useful, for
example, to express simulations in terms of differential equations, and have the solver ensure that
the system changes at the right rate. Another idea is to express constraints over distributed systems,
where synchronous solving is not feasible. Finally, constraints provide the potential to encode
properties of the system that the developer implicitly assumes. It may be interesting to explore how
an interactive environment can, throughobservationof directmanipulationor a formof interactive
dialog with the developer, derive new or refine existing constraints, and thus help generalizing a
concrete example into a general program, to aid, for example, the programming of self-healing
systems.

13.2. Conclusions

We have presented Babelsberg, a design for a family of Object-Constraint Programming languages
that extends existing object-oriented languages to support constraints. Our design unifies the
language constructs for constraint definition and object-oriented code, it provides automatic main-
tenance of constraints, integrates with the existing syntax and semantics of the object-oriented host
language, an uses a communication interface with the solver that makes it easy to add new solvers
and constraint solver constructs such as read-only variables and incremental re-solving.

As part of our design, we have presented design principles to control the power of the solver in
object-constraint programming languages to avoid surprising or non-deterministic behavior. Such
behavior had often been a problem in prior work that attempted to integrate constraint solving
with imperative languages. Our design principles ensure that object structure and identity are
preserved when adding constraints, and that any changes to them are deterministic. Our principles
also include a small set of informal rules that guide developers in expressing constraints, in particular
those involving message sends and object identity comparisons.

Finally, our design also includes support for cooperating constraint solvers to address a wider
variety of application domains than any one solver can. The architecture for cooperating solvers
that we use has only minimal requirements on the solvers and thus supports flexible combinations
of existing solvers, as well as user-defined, highly specialized, and domain-specific solvers in its
framework. Keeping with our goal of making programming with constraints accessible to impera-
tive programmers, our cooperating solvers architecture includes designs for automatically selecting
solvers for given problems based on different heuristics, and combining these solvers

We have formalized core principles of our design in a natural semantics that defines a useful
subset of a full object-constraint language and is meant to highlight key properties to inform
practical implementations. Its description includes formal rules for defining constraints on the
results of message sends, constraints involving structure and identity, integration with control flow,
as well as constraints over collections. The restrictions are easy to understand, but may, in practice,
be too conservative, as experience with writing Babelsberg applications has shown that it might
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be useful to relax some rules for concrete implementations or application domains. Thus, our
recommendation is to use the formalism as a guide for language implementers but allow deviations
from it if the guarantees of determinism can also be relaxed. We also presented an executable
semantics that can run a suite ofocp example programs and that provides amechanism to generate
a language test suite to check practical implementations for conformance.

As a practical evaluation for our design, we have presented two implementation approaches for
Babelsberg and discussed key implementation details that serve to provide practical performance
without requiring intimate developer knowledge of constraint solver performance or implemen-
tation details. The differentiating property of our language implementations is whether they are
based on a custom vm or are done as a library. The main advantage of the library-based approach
seems to be its applicability to existing runtimes, and that it thus integrates well with existing
applications. A further important advantage may be that the meta-constraint api is entirely im-
plemented in the language, and it is thus straightforward to create and develop tools for it from
within the language itself.

However, our experience with library-based implementations is limited by the fact that we have
based our Babelsberg libraries on JavaScript and Squeak/Smalltalk, both dynamic, object-oriented
languages languages. These languages are dynamic enough to allow three specific features, which
we rely on in our implementations. First, both languages support (through property accessors or
method wrappers) a means to intercept (field) variable lookup, so access to constrained variables
can be redirected to solver objects. Compared to the vm-based approach, the Babelsberg libraries
are more limited, since we cannot put constraints on local variables, only on fields. Furthermore,
with access to the vm we can optimize the storage for solver objects to work well with a specific
jit. When running on different vms, however, we need to rely on more general optimizations.
Second, a vm-based implementation of Babelsberg could opt for a simpler implementation and
ignore encapsulation to modify data structures directly. However, a Babelsberg library must use
a more complicated implementation. For Smalltalk and JavaScript, access to fields of ordinary
mutable objects is possible, but for opaque vm objects (such as files or sockets), our library-based
implementations have to call the appropriate api functions to manipulate the data structures.
Third, the host language must provide a means to modify interpretation of a block of code to
implement the constraint construction mode. This is most easily done in languages that provide
closures, or where the language provides reflective access to the bytecode of a method. In pre-
compiled languages, however, it is not clear if this is possible.

Finally, we presented applications and development experience with building Babelsberg appli-
cations, including tentative ideas for programming patterns and prototypes of development tools.
Our experience indicates that Babelsberg is indeed useful and can make code clearer and shorter
in a number of application domains. Yet, from our limited experience with building Babelsberg
applications, we cannot give a clear recommendation as to which implementation strategy is more
suitable forocp languages. Both presented approaches have advantages, and their limitations seem
not to be strong disadvantages. (The latter actuallymakes the implementation of inlining collection
predicates easier, because the loop counter is just used as a constant in each iteration.)

In summary, we argue that this works’ approach at providing constraints integrated with an
object-oriented language has proven useful for a number of applications and can be a useful incre-
mental addition to current programming practice.
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Appendix A.

Full Formal Development

This chapter presents the complete semantics of our Babelsberg design that can be used to guide
practical implementations [38]. It is self-contained and repeats relevant passages from Chapter 4
so there is no need to skip back to the main thesis.

This semantics is meant to be as simple as possible, while still encompassing the major aspects
of ocp and the important design decisions in its Babelsberg form. Because Babelsberg integrates
constraints in an existing object-constraint host language, the semantics omits constructs such
as exception handling for constraint solver failures, class and method definitions, and syntactic
sugar, that are intended to be inherited from the host language. Our semantics instead focuses
on the expression of standard object-oriented constructs that need to be modified to support
the Babelsberg design. We present the semantics in the same increments as we did the design in
Chapter 3. First, Section A.1 presents the semantics of a simple imperative language that has only
primitive reals, integers, and booleans. Second, Section A.2 adds the rules for method lookup and
dispatch, identity constraints, and the interaction with the heap, and presents theorems for key
properties, proofs for which have been previously published [39]. Third, Section A.3 presents the
rules for constraints over collections.

Finally, Section 4.4 presents an executable form of the complete semantics that passes a language
test suite. We use this executable form to demonstrate the validity of our rules, and provide a
mechanism to generate test suites that can be run against Babelsberg implementations to assert
their compliance to the semantics.

A.1. Primitive Types

We start with the basic language Babelsberg/PrimitiveTypes that has only primitive values. The
boolean type is required to make meaningful Babelsberg programs, since by definition constraint
expressionsmust return either true or false (with the solvers task tomake them true). For this initial
language, we also add reals, integers, and strings.

A.1.1. Syntax

Statement s ::= skip | x := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C
Expression e ::= c | x | e ⊕ e
Constant c ::= true | false | base type constants
Variable x ::= variable names

Value v ::= c
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Table A.1.: Judgments and intuitions of semantic rules

Expression Evaluation
E ` e ⇓ v Expression e evaluates to value v in the context of environment E.

Constraint Solving
E |== C Environment E represents a solution to constraint C

stay(x=v, ρ) = C Constraint C is a weak stay constraint for x to equal v
stay(E, ρ) = C Constraint C is a conjunction of stay constraints on variables in envi-

ronment E
Statement Evaluation
<E|C|s> −→ <E′|C′> Execution starting from configuration <E|C|s> ends in state

<E′|C′>.

The language includes a set of boolean and base type constants (e.g., reals), ranged over by
metavariablec. A finite set of operators on expressions is ranged over by⊕. This includes operations
on the reals such as + and *, a set of predicate operators (= and,, ≤,<,=, and so on. It also includes
a set of logical operators for combining boolean expressions (e.g., ∧, ∨). The predicate operations
are assumed to include at least an equality operator = for each primitive type in the language, and
the logical operations are assumed to include at least conjunction ∧. The syntax of this language
does have some limitations as compared with that of a practical language — for example, there
are only binary operators (not unary or ternary), and the result must have the same type as the
arguments. We make these simplifications since the purpose of Babelsberg/PrimitiveTypes is to
elucidate the semantics of such languages as a step toward Babelsberg/Objects, rather than to
specify a real language.

For constraints, the symbol ρ ranges over a finite and totally ordered set of constraint priorities
and is assumed to include a bottom element weak and a top element required. While syntax
requires the priority to be explicit, for simplicity we sometimes omit it in this semantics. A con-
straint with no explicit priority implicitly has the priority required. Finally, for simplicity we
do not model read-only annotations in the formal semantics.

The syntax is thus that of a simple, standard imperative language except for the always and
once statements, which declare constraints. An always constraint must hold for the rest of the
programs execution, whereas a once constraint is satisfied by the solver and then retracted. Note
that for simplicity this semantics implicitly gets stuckwhenever the solver cannot satisfy a constraint,
either due to an unsatisfiable constraint or due to the solver being unable to determine whether
the constraint is satisfiable. In a practical implementation, we would likely want to differentiate
between these cases, since it’s useful if we can inform the programmer that the constraints are
truly not satisfiable. We could also add standard exception handling to remove the unsatisfiable or
unknown constraint and continue, but omit this here for simplicity.

A.1.2. Semantics

The semantics is defined by several judgments, given in Table A.1. These judgments depend on the
notion of an environment, which is a partial function from program variables to program values.
Metavariable E ranges over environments. When convenient we also view an environment as a set
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of (program variable, program value) pairs. For each operator ⊕ in the language we assume the
existence of a corresponding semantic function denoted J⊕K.

E ` c ⇓ c (E-Const)

E(x) = v

E ` x ⇓ v
(E-Var)

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 J⊕K v2 = v

E ` e1 ⊕ e2 ⇓ v
(E-Op)

Solving is represented by a call to the constraint solver, which we treat as a black box. The
proposition E |== C denotes that environment E is a solution to the constraint C (and further one
that is optimal according to the solver’s semantics, as discussed earlier).

Ourhelper judgments stay(x=v, ρ) = C and stay(E, ρ) = Cdefinehow to translate an environment
into a source-level “stay” constraint. They take a priority as an argument, which is not used at this
stage of the semantics, but will be used in all the later stages.

E = {(x1, v1), . . ., (xn, vn)}
stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(E, ρ) = C1 ∧ · · · ∧ Cn
(StayEnv)

stay(x=c, ρ) = weak x=c (StayConst)

The rules for evaluating statements are given below. A “configuration” defining the state of
an execution includes a concrete context, represented by the environment, a symbolic context,
represented by the constraint, and a statement to be executed. The environment and statement
are standard, while the constraint is not part of the state of a computation in most languages. Intu-
itively, the environment comes from constraint solving during the evaluation of the immediately
preceding statement, and the constraint records the always constraints that have been declared so
far during execution. Note that our execution implicitly gets stuck if the solver cannot produce a
model.

E ` e ⇓ v stay(E, ρ) = Cs E′ |== (C ∧ Cs ∧ x = v)

<E|C|x := e> −→ <E′|C>
(S-Asgn)

stay(E, ρ) = Cs E′ |== (C ∧ Cs ∧ C0)

<E|C|once C0> −→ <E′|C>
(S-Once)

<E|C|once C0> −→ <E′|C> C′ = C ∧ C0

<E|C|always C0> −→ <E′|C′>
(S-Always)

<E|C|skip> −→ <E|C> (S-Skip)

<E|C|s1> −→ <E′|C′> <E′|C′|s2> −→ <E′′|C′′>

<E|C|s1;s2> −→ <E′′|C′′>
(S-Seq)
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E ` e ⇓ true <E|C|s1> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfThen)

E ` e ⇓ false <E|C|s2> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfElse)

E ` e ⇓ true <E|C|s> −→ <E′|C′> <E′|C′|while e do s> −→ <E′′|C′′>

<E|C|while e do s> −→ <E′′|C′′>
(S-WhileDo)

E ` e ⇓ false

<E|C|while e do s> −→ <E|C>
(S-WhileSkip)

A.2. Objects and Messages

The solvermust now also handle objectswhich aremodeled as simple records. To tame the power of
the solver so that it adheres to the principles presented in 3, we add the two-phase solving, structural
type checks, and inlining rules on constraints described in 3.2.4. These structural compatibility
checks are assertions that are checked dynamically before sending the constraints involving objects
to the solver, for example, checkingwhether a variable is bound to an object, andwhether the object
has the necessary fields. While these assertions are checked, unlike constraints the system will never
change anything to enforce them — if one is violated it’s just an error. Instead, the programmer
must ensure that an object with the expected fields is first assigned to a variable used in object
constraints, just as a programmer would need to ensure that an object with the expected fields was
assigned to a object-valued variable in a standard language.

The semantic rules are still mostly standard imperative rules, with the addition of rules to assert
and maintain constraints. The semantics for this language, although omitting collections and
cooperating constraint solvers, illustrates the key principles we want for an ocp language. The
semantics still treats the solver as a black box, butwe assume it supports our primitive types, records,
uninterpreted functions, as well as hard and soft constraints [11]. Many practical examples use read-
only variables, but this is not relevant for this semantics.

A.2.1. Syntax

The syntax is augmented to support creating instances of objects (both for value classes andordinary
classes) as well as method invocation. We introduce syntax for the method body.
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Statement s ::= skip | L := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C
Expression e ::= v | L | e ⊕ e | I

| e.l(e1,. . .,en) | o | new o | D
Identity I ::= e == e
Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | e.l
Constant c ::= true | false | nil | base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Dereference D ::= H(e)

Method Body b ::= s; return e | return e
Value v ::= c | r | {l1:v1,. . .,ln:vn}

The syntax elements c, ρ, and ⊕ are mostly unchanged. We add the operator ==, which tests for
identity — for primitive values this behaves the same as =. We add labels for naming fields, and
syntax for referencing them. Sincewenowhave aheap, in the syntax,we treatH as a keywordused for
dereferencing. Source programs will not use expressions of the form H(e), but they are introduced
as part of constraints given to the solver, which we assumewill treat H as an uninterpreted function.
We also assume that the solver supports records and record equality, which we also denote with
the = operator. We furthermore assume that the set of variable names ranged over by metavariable
x includes the name self.

A.2.2. Semantics

The semantics now include a global E and a heap H, in addition to method local scopes S. The
first is a function that maps global variable names to values, the second is a function that maps
mutable references to “objects” of the form {l1:v1,. . .,ln:vn}, and the third now maps local
variable names to global variable names. When convenient, we also treat both E andH as a set of
pairs ({(x,v),...} and {(r,o),...}, respectively). The currently active value constraints are
kept as a compound constraint C; identity constraints are kept as a single conjunction referred to
as I.

This semantics requires updated and additional judgments given in Table A.4. The rules for
expression evaluation still work on the local scope, but since a local scope is now only a mapping
from local names to globally unique names, the rules are augmented to then look up the value
in the global environment. Method lookup creates new local environments, and constraints are
translated to translate local variable names to global variable names for the solver. The solver still
returns a global environment, and does not know about the local environments and their mapping
into the global environment. In addition, the constraint stores I and C are replaced with I andC,
respectively. These now store constraints in pairs with the local environment they were created in.
For readability, we now writeH instead of H, so all the global stores are written in the same font.

The judgment for method lookup is opaque: our semantics does not depend on how method
lookup is performed. After lookup we create a fresh scope with the evaluated arguments bound to
the parameters of the method, the rule for which is given below:
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<E|S|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|S|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
<En|Sm|Hn|Cn|In|self := v> −→ <E0|S0|Hn|Cn|In>
<E0|S0|Hn|Cn|In|x1 := v1> −→ <En+1|S1|Hn|Cn|In>

· · ·

<E2n−1|Sn−1|Hn|Cn|In|xn := vn> −→ <E2n|Sn|Hn|Cn|In>

enter(E,S,H,C, I,v,x1 · · · xn,e1 · · · en) = (E2n,Sn,Hn,Cn,In)
(Enter)

Expression evaluation can now have effects on the global environment, heap, and the constraint
stores (but not on the local scope), because calling methods is possible in expressions.

<E|S|H|C|I|c> ⇓ <E|H|C|I|c> (E-Const)

S(x) = xg E(xg) = v

<E|S|H|C|I|x> ⇓ <E|H|C|I|v>
(E-Var)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|r> H′(r) = {l1:v1,. . .,ln:vn}
1 ≤ i ≤ n

<E|S|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-Field)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|{l1:v1,. . .,ln:vn}> 1 ≤ i ≤ n

<E|S|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-ValueField)

<E|S|H|C|I|r> ⇓ <E|H|C|I|r> (E-Ref)

<E|S|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1>
<E0|S|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2>

v1 J⊕K v2 = v

<E|S|H|C|I|e1 ⊕ e2> ⇓ <E′|H′|C′|I′|v>
(E-Op)

<E|S|H|C|I|e1> ⇓ <E0|H0|C0|I0|v>
<E|S|H0|C0|I0|e2> ⇓ <S′|H′|C′|I′|v>

<E|S|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|true>
(E-IdentityTrue)

<E|S|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1>
<E|S|H0|C0|I0|e2> ⇓ <S′|H′|C′|I′|v2>

v1 , v2

<E|S|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|false>
(E-IdentityFalse)

<E|S|H|C|I|e> ⇓ <E0|H0|C0|I0|v>
lookup(v,l) = (x1 · · · xn,s; return e)

enter(E0,S,H0,C0, I0,v,x1 · · · xn,e1 · · · en) = (E1,Sm,H1,C1,I1)
<E1|Sm|H1|C1|I1|s> −→ <E′|S′|H′|C′|I′>
<E′|S′|H′|C′|I′|e> ⇓ <E′′|H′′|C′′|I′′|vr>

<E|S|H|C|I|e.l(e1,. . .,en)> ⇓ <E′′|H′′|C′′|I′′|vr>
(E-Call)
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<E|S|H|C|I|e> ⇓ <E0|H0|C0|I0|v>
lookup(v,l) = (x1 · · · xn,return e)

enter(E0,S,H0,C0, I0,v,x1 · · · xn,e1 · · · en) = (E1,Sm,H1,C1,I1)
<E1|Sm|H1|C1|I1|e> ⇓ <E′|H′|C′|I′|vr>

<E|S|H|C|I|e.l(e1,. . .,en)> ⇓ <E′|H′|C′|I′|vr>
(E-CallSimple)

<E|S|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|S|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
Hn(r)↑ H′ = (Hn

⋃
{(r, {l1:v1,. . .,ln:vn})})

<E|S|H|C|I|new {l1:e1,. . .,ln:en}> ⇓ <En|H′|Cn|In|r>
(E-New)

<E|S|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|S|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>

<E|S|H|C|I|{l1:e1,. . .,ln:en}> ⇓ <En|Hn|Cn|In|{l1:v1,. . .,ln:vn}>
(E-Value)

We now typecheck expressions and constraints with respect to the global environments E .
Method calls do not typecheck: even though we allow method calls in expressions and thus in
constraints syntactically, our rules for creating constraints given below inline method invocations.
Identity constraints also do not typecheck: they are solved separately and should not appear in
ordinary constraints (see the rules for statement evaluation below). Finally, new (non-value) object
construction does not typecheck, since constraints must be side-effect-free.

Types distinguish between primitive values and objects, and for objects the type keeps track of
their fields:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

E;H ` c : PrimitiveType (T-Const)

H(r)=o E;H ` o : T

E;H ` r : T
(T-Ref)

E(x) = v E;H ` v : T

E;H ` x : T
(T-Var)

We now transform all local variables to their global names using the inlining rules given below
before passing them to the solver. Thus, only global variable names type.

E;H ` e : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n

E;H ` e.li : Ti
(T-Field)

We add a typing rule for dereferences.We assumedereferenceswill not appear in source programs,
but only in expressions that have been generated by our inlining judgment. This ensures that the
inlined expressions still typecheck, and simplifies the rules for constraint solving.

E;H ` e : T

E;H ` H(e) : T
(T-Deref)
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E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e1 : T1 · · · E;H ` en : Tn
E;H ` {l1:e1,. . .,ln:en} : {l1:T1,. . .,ln:Tn}

(T-ValueObject)

E;H ` e : T

E;H ` ρ e
(T-Priority)

E;H ` C1 : T E;H ` C2 : T

E;H ` C1 ∧ C2
(T-Conjunction)

The rules for creating stay constraints are simply extended to include rules for stay constraints
on instances of objects, and adapted to this formalism’s environment and heap.

stay(x=c, ρ) = weak x=c (StayConst)

stay(x=r, ρ) = ρ x=r (StayRef)

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn
C=(ρ x = {l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn

stay(x = {l1:v1,. . .,ln:vn}, ρ) = C
(StayRecord)

In StayRecord we do not allow records to change their when solving for value constraints,
record structure can only change through assignments.

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn
C=(required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn

stay(r = {l1:v1,. . .,ln:vn}, ρ) = C
(StayObject)

E = {(x1, v1),. . .,(xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn
stay(E, ρ) = C1 ∧ · · · ∧ Cn

(StayEnv)

H = {(r1, o1),. . .,(rn, on)} stay(r1=o1, ρ) = C1 · · · stay(rn=on, ρ) = Cn
stay(H, ρ) = C1 ∧ · · · ∧ Cn

(StayHeap)

As before, the call to the solver is opaque. In this semantics, we assume that the solver natively
supports records and uninterpreted functions (which we use to represent the heap). We do not
assume, however, that the solver understands methods, which can now be part of constraint ex-
pressions. This requires us to essentially inline methods before passing constraints to the solver.

In our inlining rules, we translate local variables into their names in the global environment and
provide a semantics for method calls inside constraints. Arguments to method calls are constrained
to be equal to the expression that generated them. Inlining does not allow updates to the heap,
so no new heap is returned. We do allow assignments to locals in inlined methods, however, so
the global environment can change as a result of inlining. Since expressions are actually evaluated
during inlining, if they do modify the heap, evaluation stops and the rules fail.
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<E,S,H,C,I,c> <E,true,c> (I-Const)

S(x) = xg

<E,S,H,C,I,x> <E,true,xg>
(I-Var)

<E,S,H,C,I,e1> <E1,eC1,e
′
1> · · · <E,S,Hn−1,C,I,en> <En,eCn,e

′
n>

<E,S,H,C,I,{l1:e1,. . .,ln:en}> <En,eC1∧ · · · ∧eCn,{l1:e
′
1,. . .,ln:e

′
n}>

(I-Value)

<E,S,H,C,I,e> <E′,eC,e′> <E′|S|H|C|I|e> ⇓ <E′′|H|C|I|r>

<E,S,H,C,I,e.l> <E′,eC∧e′=r,H(e′).l>
(I-Field)

The I-Field rule translates each expressionof the forme.l, wheree evaluates to a heap reference
r, into H(e′).l (recursively translating e into e′ through further inlining). These judgments
further ensure that the “prefix” e of an l-value e.l is unchanged through the addition of the
constraint e′=r; this is necessary to ensure that updates to the value of e.l are deterministic. Note
that, because we are recursively inlining the expression before the label, we also recursively add
required stays on any prior field accesses. Thus, for example, a.b.c = 1would be translated by
recursively inlining and returning a = ra ∧ H(a).b = rb ∧ H(H(a).b).c = 1.

<E,S,H,C,I,e> <E′,eC,e′>
<E′|S|H|C|I|e> ⇓ <E′′|H|C|I|{l1:v1,. . .,ln:vn}>

<E,S,H,C,I,e.l> <E′,eC,e′.l>
(I-ValueField)

<E,S,H,C,I,r> <E,true,r> (I-Ref)

<E,S,H,C,I,e1> <E′,eCa,ea> <E′,S,H,C,I,e2> <E′′,eCb,eb>

<E,S,H,C,I,e1 ⊕ e2> <E′′,eCa∧eCb,ea ⊕ eb>
(I-Op)

<E,S,H,C,I,e1> <E′,eCa,ea> <E′,S,H,C,I,e2> <E′′,eCb,eb>

<E,S,H,C,I,e1 == e2> <E′′,eCa∧eCb,ea == eb>
(I-Identity)

The I-Identity rule ensures that identities cannot change in value constraint expressions. Be-
causewe inline the expressions on either side, these, through I-Field and I-ValueField, are forced
to stay as they are up to the last part. Note that that inlined identity constraints do not type (in
S-Once), even if both operands have the same type — this prevents adding identity constraints
mixed with value constraints.

<E|S|H|C|I|e> ⇓ <E0|H|C|I|v>
<E0|S|H|C|I|e1> ⇓ <E1|H|C|I|v1>

· · ·

<En−1|S|H|C|I|en> ⇓ <En|H|C|I|vn>
eC = (e=v ∧ e1=v1 ∧ · · · ∧ en=vn)
lookup(v,l) = (x1 · · · xn,s; return e)

enter(En,S,H,C, I,v,x1 · · · xn,e1 · · · en) = (E′,Sm,H,C,I)
<E′|Sm|H|C|I|s> −→ <E′′|S′|H|C|I >
<E′′|S′|H|C|I|e> ⇓ <E′′′|H|C|I|vr>

<E,S,H,C,I,e.l(e1,. . .,en)> <E′′′,eC,vr>
(I-Call)
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Methods that have any statements at all can only be used in a one-way manner. This is ensured
by evaluating the return expression and using only the value in the constraint. Because we are
retranslating all constraints on each semantic step, this return value will get updated when its
dependencies change, it just won’t work in the other direction.

When inlining a method with more than one statement, the statements are simply executed. In
particular, this means that we eagerly choose which branch of if-statements to inline and eagerly
unroll loops. Further, the I-Call rule above and the I-MultiWayCall rule below ensure that
methods being used in constraints have no side effects. This is accomplished by requiring the initial
heap to remain unchanged.

Similarly, methods used in constraints cannot declare nested constraints; this is accomplished
by requiring the initial sets of ordinary and identity constraints to remain unchanged.

<E,S,H,C,I,e0> <E′,eC0,e
′
0>

<E′|S|H|C|I|e0> ⇓ <E′′|H|C|I|v>
lookup(v,l) = (x1 · · · xn,return e)

enter(E′′,S,H,C, I,v,x1 · · · xn,e1 · · · en) = (E′′′,Sm,H,C,I)
<E′′′,S,H,C,I,e1> <E1,eC1,e

′
1> · · · <En−1,S,H,C,I,en> <En,eCn,e

′
n>

Sm(self) = xgself Sm(x1) = xg1 · · · Sm(xn) = xgn
eC = (xgself=e′0 ∧ xg1=e

′
1 ∧ · · · ∧ xgn=e

′
n)

<En,Sm,H,C,I,e> <E′n,eCm,e
′>

<E,S,H,C,I,e0.l(e1,. . .,en)> <E′n,eC∧eCm∧eC0∧eC1∧ · · · ∧eCn,e
′>

(I-MultiWayCall)

For methods that only return an expression, we inline the expression and pass it to the solver.
Note that we execute the argument expressions and receiver for their value (potentially executing
through other methods), and also inline them, potentially executing the samemethods twice (once
through I-Call and once through E-Call). Although not ideal in terms of providing the cleanest
possible semantics, in practical terms this should not be a problem, because we prohibit side-effects
in these methods.

We use the below rules to re-translate all constraints in the store using our inlining rules before
solving.

<E,S,H,I,∅> <E,true> (I-ReinlineEmptyC)

<E,S,H,C,∅> <E,true> (I-ReinlineEmptyI)

C0 =C \ {(S, ρ e)} <E,S,H,I,C0> <E0,C0>
<E0,S,H,C0,I,e> <E′,eCe,e

′>

<E,S,H,I,C > <E′,C0 ∧ ρ (e′ ∧ eCe)>
(I-ReinlineC)

I0 = I \ {(S, required e)} <E,S,H,C,I0> <E0,C0>
<E0,S,H,C,I0,e> <E′,eCe,e

′>

<E,S,H,C,I > <E′,C0 ∧ required (e′ ∧ eCe)>
(I-ReinlineI)

The rules below are helpers for use in solving constraints. They generate the inlined constraint
expression from e, re-inline the constraints from the identity respectively constraint stores, and to
generate the stay constraints and solve for these. In the first phase, we use the first judgment above
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to inline the identity constraint store and generate the stays on the heap and environment such
that the solve can propagate the new equality constraint through all existing identity constraints
in order to update other variables and fields as needed. In the second phase we use the second
judgment above generate constraints for the non-identity constraint store, andwe typecheck under
the new environment before solving.

stay(E, weak) = CEs stay(H, weak) = CHs

<E,S,H,C,I > <Ei,Ci>
<E,S,H,C,I,e> <Ee,ec,e′> E′;H′ |== Ci ∧ ρ eC

solve(E,S,H,C,I,ρ,e) = E′,H′

(SolveIdentityConstraints)

stay(E, required) = CEs stay(H, required) = CHs

<E,S,H,I,C > <Ec,Cc>
<E,S,H,C,I,e> <Ee,ec,e′> Ee;H ` e′ : T E′;H′ |== Cc ∧ ρ eC

solve(E,S,H,I,C,ρ,e) = E′,H′

(SolveValueConstraints)

The statement rules are refactored to work with the local environments and the new constraint
and identity-constraint stores.

S(x)↑ E(xg)↑
<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|v>
S′ = S

⋃
{(x, xg)} E′′ = E′

⋃
{(xg , v)}

<E|S|H|C|I|x := e> −→ <E′′|S′|H′′|C′|I′>
(S-AsgnNewLocal)

S(x) = xg
<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

solve(E′,S,H′,C′,I′,required,xg=v) = E′′,H′′′

solve(E′′,S,H′′,I′,C′,required,xg=v) = E′′′,H′′′

<E|S|H|C|I|x := e> −→ <E′′′|S|H′′′|C|I >
(S-AsgnLocal)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|v>
solve(E′,S,H′,C′,I′,required,el.l=v) = E′′,H′′

solve(E′′,S,H′′,I′,C′,required,el.l=v) = E′′′,H′′′

<E|S|H|C|I|el.l := e> −→ <E′′′|S|H′′′|C′|I′>
(S-AsgnLValue)

Note that the above rule can only be used in constraint-construction mode if H=H′. We also
do not allow the use of the following rules for once and always in constraint-construction mode,
because the inlining rules disallow updating the constraint store and heap. As discussed previ-
ously (Section 3.2.6), a practical implementation we might want to support benign side effects in
methods that are invoked by constraint expressions, including methods that themselves create new
constraints; but this is not modeled by this semantics.

<E|S|H|C|I|e0> ⇓ <E0|H|C|I|v> <E0|S|H|C|I|e1> ⇓ <E1|H|C|I|v>
<E1,S,H,C,I,e0> <E2,eC0,e

′
0> <E2,S,H,C,I,e1> <E3,eC1,e

′
1>

<E|S|H|C|I|once e0 == e1> −→ <E3|S|H|C|I >
(S-OnceIdentity)
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Note that the above rule uses the inlining judgment to ensure that the expressions adhere to
our restrictions on what kind of expressions can appear in constraints. Expressions that update the
heap, for example, will be rejected in the inlining rules.

<E|S|H|C|I|once e0 == e1> −→ <E′|S|H′|C|I >
I′ = I

⋃
{(S, e0 == e1)}

<E|S|H|C|I|always e0 == e1> −→ <E′|S|H′|C|I′>
(S-AlwaysIdentity)

C0 = ρ e solve(E,S,H,I,C,ρ,e) = E′,H′

<E|S|H|C|I|once C0> −→ <E′|S|H′|C|I >
(S-Once)

<E|S|H|C|I|once C0> −→ <E′|S|H′|C|I >
C′ =C

⋃
{(S, C0)}

<E|S|H|C|I|always C0> −→ <E′|S|H′|C′|I >
(S-Always)

<E|S|H|C|I|skip> −→ <E|S|H|C|I > (S-Skip)

<E|S|H|C|I|s1> −→ <E′|S′|H′|C′|I′>
<E′|S′|H′|C′|I′|s2> −→ <E′′|S′′|H′′|C′′|I′′>

<E|S|H|C|I|s1;s2> −→ <E′′|S′′|H′′|C′′|I′′>
(S-Seq)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|true>
<E′|S|H′|C′|I′|s1> −→ <E′′|S′|H′′|C′′|I′′>

<E|S|H|C|I|if e then s1 else s2> −→ <E′′|S′|H′′|C′′|I′′>
(S-IfThen)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|false>
<E′|S|H′|C′|I′|s2> −→ <E′′|S′|H′′|C′′|I′′>

<E|S|H|C|I|if e then s1 else s2> −→ <E′′|S′|H′′|C′′|I′′>
(S-IfElse)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|true>
<E′|S|H′|C′|I′|s> −→ <E′′|S′|H′′|C′′|I′′>

<E′′|S′|H′′|C′′|I′′|while e do s> −→ <E′′′|S′′|H′′′|C′′′|I′′′>

<E|S|H|C|I|while e do s> −→ <E′′′|S′′|H′′′|C′′′|I′′′>
(S-WhileDo)

<E|S|H|C|I|e> ⇓ <E′|H′|C′|I′|false>

<E|S|H|C|I|while e do s> −→ <E′|S|H′|C′|I′>
(S-WhileSkip)

A.2.3. Key Properties

In prior publications, we have presented and proven two key properties of our formalism for a
simpler language, called Babelsberg/UID [38, 40]. Here we state the same two key theorems about
our formalism, updated for the Babelsberg/Objects language presented here. The first theorem
formalizes the idea that any solution to a value constraint preserves the structures of the objects on
the environment and heap:

Theorem 1. (Structure Preservation) If <E|S|H|C|I|(once|always) C0> −→

<E′|S′|H′|C′|I′> and E;H ` C0 and E;H ` x : T, then E′;H′ ` x : T.
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The second theorem formalizes the idea that all solutions to an assignment will produce struc-
turally equivalent environments and heaps (providedwe start in awell-formed configurationwhere
all identity constraints are satisfied):

Theorem 2. (Structural Determinism) If <E|S|H|C|I|L := e> −→ <E1|S2|H1|C1|I1> and
<E|S|H|C|I|L := e> −→ <E2|S2|H2|C2|I2> and <E|S|H|C|I|I> ⇓ <true|a|n|d|>x
in dom(E), then E1;H1 ` x : T and E2;H2 ` x : T.

A.3. Collections of Objects

In this final extension to Babelsberg/Objects, we support a limited number of predicates on collec-
tions. These additional rules illustrate the facilities to support higher-order functions in this design.
The semantics are a straight extension from the full object-oriented language, and we present only
the additional rules and syntax.

A.3.1. Syntax

The syntax is augmented to include an element P© , which ranges over the core predicates on collec-
tions such as every, some, member. For languages which support re-definition of themethods that
come with the language, we assume that the element matches only the original implementations,
not user-defined re-definitions. Furthermore, we augment the syntax to also support accessing
records using expressions.

L-Value L ::= x | e.l | e[e]
Label l ::= record label names | P©

A.3.2. Semantics

We add two opaque helper judgments. The first converts constants to label names, and the second
checks if a constant value refers to an array class type. Both are defined in terms of the host language
api. Note that for languages the support re-definition of core classes, the second judgment will
return false if such re-definition has taken place.

Besides those additions, we only add the extended evaluation rules for dynamic field access and
the special ccm for collection apis. Note that we do not add a typing rule for dynamic field access
— during inlining, such access are turned into ordinary field accesses, and their expressions are
required to stay equal to the current value.

<E|S|H|C|I|el> ⇓ <E′|H′|C′|I′|c> asLabel(c) = l
<E′|S′|H′|C′|I′|e.l> ⇓ <E′′|H′′|C′′|I′′|v>

<E|S|H|C|I|e[el]> ⇓ <E′′|H′′|C′′|I′′|v>
(E-ExpField)

<E,S,H,C,I,el> <E′,eCl,e
′
l>

<E′|S|H|C|I|el> ⇓ <E′′|H|C|I|c> asLabel(c) = l
<E′′,S,H,C,I,e.l> <E′′′,eC,e′>

<E,S,H,C,I,e[el]> <E′′′,eCl∧eC∧e
′
l=c,e

′>
(I-ExpField)
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Table A.5.: Judgments and intuitions of additional and changed semantic rules

Opaque Judgments
asLabel(c) = l Constant c converted into a label yields l

isBasicCollection(T) = c When type T corresponds to a known basic collection type that is
supported in constraints with predicates, c is true.

Constraint Solving
<E,S,H,C,I,e> <E′,e0,e′>

Inlining expression e in S is equivalent to e′ in E if eC evaluates to
true.

<E,S,H,C,I,s>  <E′,S′,e0,ec,ed>
Inlining statement s is equivalent to solving conjunction of con-
straint expressions eC and the disjunction of constraint expressions
eD if e0 evaluates to true. This inlining step returns an updated en-
vironment E′ and scope S′.

Helper Rule
preparePredicate(E,S,H,C, I,e.l(e1,. . .,en)) = (E′,S′, s; return c, eC )

Preparing the method call e.l(e1,. . .,en) for inlining returns and
updated environment E′, the fresh method scope S′, the method
body s; return c, and is valid if eC evaluates to true.

We extend the inlining judgment to also work for statements. This is used in the inlining judg-
ment to translate calls to the well-known collection predicates. These predicates will not match the
previous I-MultiWayCall rule, because their implementations have more than a single return
expression, so that rule is unchanged. Because we allow a limited subset of statements, including
assignment to locals in inlining collection predicates, the inlining rule including statements also
returns an updated scope. In addition, the constraint expressions that are returned by the inlining
rule for statements are split into groups for conjunctions and disjunctions — this is required to
track, based on the early returns that are encountered, whether a set of inlined expressions all need
to be satisfied or if just one needs to be satisfied.

We define a helper judgments to inline collection predicates:

<E′|S|H|C|I|e0> ⇓ <E′′|H|C|I|v>
E;H ` v : T isBasicCollection(T) = true

<E0|S|H|C|I|e1> ⇓ <E1|H|C|I|v1>
· · ·

<En−1|S|H|C|I|en> ⇓ <En|H|C|I|vn>
eC = (e=v ∧ e1=v1 ∧ · · · ∧ en=vn)
lookup(v,l) = (x1 · · · xn,s; return c)

enter(En,S,H,C, I,v,x1 · · · xn,e1 · · · en) = (E′,Sm,H,C,I)

preparePredicate(E,S,H,C, I,e.l(e1,. . .,en)) = (E′,Sm, s; return c, eC )
(PreparePredicate)

This helper rule sets up the required equalities for all the arguments and the receiver, and is
essentially the same as I-Call. As an addition, it limits any inlining to collection predicates that

159



Appendix A. Full Formal Development

return a constant as a final statement. In the two rules that follow, this constant is further limited
to be either true or false.

preparePredicate(E,S,H,C, I,e. P© (e1,. . .,en)) = (E′,S′, s; return c, e0)
c = true <E′,S′,H,C,I,s>   <E′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P© (e1,. . .,en)> <E′′,e0∧e1,eC>
(I-PositivePredicate)

preparePredicate(E,S,H,C, I,e. P© (e1,. . .,en)) = (E′,S′, s; return c, e0)
c = false <E′,S′,H,C,I,s>  <E′′,S′,e1,eC,eD>

<E,S,H,C,I,e. P© (e1,. . .,en)> <E′′,e0∧e1,eC ∧ eD>
(I-NegativePredicate)

We use two separate rules for inlining through collection predicates that return true or false
as their final statement. For methods that return true any disjunction, which would be created
by an early return true, does not have to be fulfilled, as even without the early return the method
would return true. Conversely, when the method returns false, fulfilling any conjunction will
not suffice, because that would simply prevent an early return false, but not the final return
statement.

Since we now allow inlining through a limited subset of statements, we add inlining rules for
those. Note that these rules can only come into play through an I-*Predicate. Furthermore, all
rules not supplied here still lead to a failure to evaluate an I-*Predicate rule, and fall back to the
previous I-Call rule to set up a one-way constraint on the result of the call.

S(x)↑ E(xg)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v> <E′,S,H,C,I,e> <E′′,e0,e′>

S′ = S
⋃
{(x, xg)} E′′′ = E′′

⋃
{(xg , v)}

<E,S,H,C,I,x := e>  <E′′′,S′,e0∧e′=v∧xg=v,true,false>
(I-AsgnNewLocal)

Assignments are only permitted to local variables. Since we can only start the statement inlining
rules from a collection predicate P© , we start with a fresh scope and any local variable must be
newly created first. In this case, assignment is turned into a required equality between the fresh
variable name and the initial value. Note that we are using the expression judgment to evaluate the
right-hand side, but we disallow any changes to the heap or the constraint stores.

S(x) = xg E(x′g)↑
<E|S|H|C|I|e> ⇓ <E′|H|C|I|v> <E′,S,H,C,I,e> <E′′,e0,e′>
S′ = S \ {x, xg} S′′ = S′

⋃
{(x, x′g)} E′′′ = E′′

⋃
{(x′g , v)}

<E,S,H,C,I,x := e>   <E′′′,S′′,e0∧e′=v∧x′g=v,true,false>
(I-AsgnLocal)

Sincewedonot allow creating additional constraints even in this extended inliningmode, there is
no need to solve constraintswhenwe re-assign to a local variable. Furthermore, since re-assignments
are needed for looping over collection indices, and these indices are also used to then access the
collection,we create a fresh global name for every re-assigned variable.Thisway, every re-assignment
turns into a new variable for the solver.
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<E,S,H,C,I,skip>   <E,S,true,true,true> (I-Skip)

<E,S,H,C,I,s1>  <E′,S′,e1,eC1,eD1>
<E′,S′,H,C,I,s2>  <E′′,S′′,e2,eC2,eD2>

<E,S,H,C,I,s1;s2>  <E′′,S′′,e1 ∧ e2,eC1 ∧ eC2,eD1 ∨ eD2>
(I-Seq)

The skip and sequence rules are straightforward. The conjunction and disjunction expressions
from the sequences are connected appropriately.

<E,S,H,C,I,e> <E′,eC,e′>

<E,S,H,C,I,if e then return true else s>   <E,S,eC,true,e′>
(I-IfThenReturnTrue)

<E,S,H,C,I,e> <E′,eC,e′>

<E,S,H,C,I,if e then return false else s>   <E,S,eC,e′=false,false>
(I-IfThenReturnFalse)

We only support if-clauses used as early returns in this extended inlining mode. As described in
Section 3.3.1, if the early return would return true, the inlined conditional is used in a disjunction,
otherwise it is used in a conjunction.

<E|S|H|C|I|e> ⇓ <E′|H|C|I|true>
<E′,S,H,C,I,e> <E′′,e0,e′>

<E′′,S,H,C,I,s>  <E′′′,S′,e1,eC1,eD1>
<E′′′,S′,H,C,I,while e do s>   <E′′′′,S′′,er,eCr,eDr>

<E,S,H,C,I,while e do s>   <E′′′′,S′′,e0∧e′∧e1∧er,eC0∧eCr,eD0∨eDr>
(I-WhileDo)

<E|S|H|C|I|e> ⇓ <E′|H|C|I|false>
<E′,S,H,C,I,e> <E′′,e0,e′>

<E,S,H,C,I,while e do s>   <E′′,S,e0∧e′=false,true,false>
(I-WhileSkip)

Finally, the while construct is now supported during inlining. Note that the loop condition is
inlined and required to stay at its value. This prevents the solver from being able to change the
loop condition to, for example, satisfy the collection predicate only on a subset of the collection.

***

There is a noteworthy problem with these rules: they may generate constraints that are too
strong. Consider the following method, which tests if either at least one element in the array is
larger than ten, or else all elements are negative:

def some_or_none()
i := 0;
while i < self.length do (
if self[i] > 10 then return true;
if self[i] < 0 then return false;
i := i + 1

);
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return true
end

always array.some_or_none()

Here, the constraint would be satisfied if:

∃x ∈ array.x > 10 ∨ ∀x ∈ array.x < 0

But the I-PositivePredicate rule would always require the conjunction to be satisfied, so the
solver would have to solve this stronger constraints instead:

∀x ∈ array.x < 0

We have decided to avoid additional complexity in the rules to support generating the proper
constraints in these cases. The code above could easily be rewritten to use two methods which
each test one property, and then use these in a disjunction. Since the set of supported collection
predicates P© is defined as part of the language, such methods may simply not be included in that
set.
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Benchmarks

This section gives the source code listings for the benchmarks that we used to evaluate the perfor-
mance of our ocp implementations. (These are also included in the software archive that comes
with this thesis, the filename for each listing is given in the title.)

Read Access to Constrained Variables

The following code listings show how we measured read access performance in Ruby, JavaScript,
and Squeak/Smalltalk.
require ”mybenchmark”
require ”libcassowary”

class MockObject
attr_accessor :a, :b, :c, :d, :e

def initialize
@a,@b,@c,@d,@e = 1,1,1,1,1

end
end

obj, constraint = nil, nil

Resetter = Proc.new do |label|
obj = MockObject.new
if label.start_with? ”Constrained”
constraint.disable if constraint
constraint = always do
obj.a == 1 &&
obj.b == 1 &&
obj.c == 1 &&
obj.d == 1 &&
obj.e == 1

end
constraint.disable if label.end_with? ”(disabled)”

end
end

class SetupSuite
def warming(label, *args)
Resetter[label]

end
def warmup_stats(*); end
alias_method :add_report, :warmup_stats
alias_method :running, :warming

end
suite = SetupSuite.new

benchmark = Proc.new { |t| t.times { obj.a + obj.b + obj.c + obj.d + obj.e } }

Benchmark.ips do |x|
x.config(:suite => suite)
x.report(’Unconstrained Read’, &benchmark)
x.report(’Constrained Read’, &benchmark)
x.report(’Constrained Read (disabled)’, &benchmark)
x.compare!

end

Language: Ruby, Filename: benchmark-read-access/benchmark.rb

var suite = new Benchmark.Suite;

benchf = function() {
obj.a + obj.b + obj.c + obj.d + obj.e

}
benchmarks = {

”Unconstrained Read”: [initf = function() {
obj = {a: 1, b: 1, c:1, d:1, e:1};

}, benchf],
”Properties Read”: [function() {

obj = {
get a() { return this.$$a }, $$a: 0,
get b() { return this.$$b }, $$b: 0,
get c() { return this.$$c }, $$c: 0,
get d() { return this.$$d }, $$d: 0,
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get e() { return this.$$e }, $$e: 0,
}

}, benchf],
”Constrained Read”: [constrainf = function() {

initf()
constraint = bbb.always({solver: new ClSimplexSolver(), ctx: {obj: obj}}, function () {

return obj.a == 1 &&
obj.b == 1 &&
obj.c == 1 &&
obj.d == 1 &&
obj.e == 1

});
}, benchf],
”Constrained Read (disabled)”: [disablef = function() {

constrainf()
constraint.disable();

}, benchf],
”Constrained Read (disabled, unconstrained)”: [function() {

disablef();
bbb.unconstrainAll(obj);

}, benchf]
}

for (var k in benchmarks) {
suite.add(k, benchmarks[k][1], {setup: benchmarks[k][0]})

}

Language: JavaScript, Filename: benchmark-read-access/benchmark.js

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 11:09:18 am’!
Object subclass: #ConstraintMockObject
instanceVariableNames: ’a b c d e’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

”... accessors and initializers for the mock object ...”

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 10:53:31 am’!
Benchmark subclass: #ConstraintsBenchmarks
instanceVariableNames: ’obj constrObj constraints’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:42’!
benchConstrainedReadAccess

1000 timesRepeat: [
constrObj a + constrObj b + constrObj c + constrObj d + constrObj e

]! !

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:47’!
benchConstrainedReadAccessDisabled

constraints do: #disable.
1000 timesRepeat: [
constrObj a + constrObj b + constrObj c + constrObj d + constrObj e

]! !

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:39’!
benchReadAccess

1000 timesRepeat: [
obj a + obj b + obj c + obj d + obj e

]! !

!ConstraintsBenchmarks methodsFor: ’running’ stamp: ’tfel 9/23/2015 15:46’!
setUp

obj := ConstraintMockObject new.
constrObj := ConstraintMockObject new.
constraints := OrderedCollection new.
constraints add: [constrObj a = 1] alwaysTrue.
constraints add: [constrObj b = 1] alwaysTrue.
constraints add: [constrObj c = 1] alwaysTrue.
constraints add: [constrObj d = 1] alwaysTrue.
constraints add: [constrObj e = 1] alwaysTrue.

! !

Language: Squeak Changesets, Filename: benchmark-read-access/benchmark.st

Write Access to Constrained Variables

The following code listings show how we measured write access performance in Ruby, JavaScript,
and Squeak/Smalltalk.
require ”mybenchmark”
require ”libcassowary”

class MockObject
attr_accessor :a, :b, :c, :d, :e

def initialize(a=1,b=1,c=1,d=1,e=1)
@a,@b,@c,@d,@e = a,b,c,d,e

end
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end

obj, constraint = nil, nil

Resetter = Proc.new do |label|
obj = MockObject.new
if label.start_with? ”Constrained”
constraint.disable if constraint
constraint = always do
obj.a >= 1 &&
obj.b >= 1 &&
obj.c >= 1 &&
obj.d >= 1 &&
obj.e >= 1

end
constraint.disable if label.end_with? ”(disabled)”

end
end

class SetupSuite
def warming(label, *args)
Resetter[label]

end
def warmup_stats(*); end
alias_method :add_report, :warmup_stats
alias_method :running, :warming

end
suite = SetupSuite.new

benchmark = Proc.new { |t| t.times { obj.a += 1; obj.b += 1; obj.c += 1; obj.d += 1; obj.e += 1 } }

Benchmark.ips do |x|
x.config(:suite => suite)
x.report(’Unconstrained Write’, &benchmark)
x.report(’Constrained Write’, &benchmark)
x.report(’Constrained Write (disabled)’, &benchmark)
x.report(’Constrained Write (edit)’) do |times|
class MyStream
def initialize(times)
@times = times

end
def next
raise StopIteration if @times == 0
o = MockObject.new(@times, @times, @times, @times, @times)
@times -= 1
o

end
end
edit(stream: MyStream.new(times), accessors: [”a”, ”b”, ”c”, ”d”, ”e”]) { obj }

end
x.compare!

end

Language: Ruby, Filename: benchmark-write-access/benchmark.rb

var suite = new Benchmark.Suite;

var suite = new Benchmark.Suite;

benchf = function() {
obj.a += 1;
obj.b += 1;
obj.c += 1;
obj.d += 1;
obj.e += 1;

}
benchmarks = {

”Unconstrained Write”: [initf = function() {
obj = {a: 1, b: 1, c:1, d:1, e:1};

}, benchf],
”Properties Write”: [function() {

obj = {
get a() { return this.$$a }, $$a: 0,
get b() { return this.$$b }, $$b: 0,
get c() { return this.$$c }, $$c: 0,
get d() { return this.$$d }, $$d: 0,
get e() { return this.$$e }, $$e: 0,

}
}, benchf],
”Constrained Write”: [constrainf = function() {

initf();
constraint = bbb.always({solver: new ClSimplexSolver(), ctx: {obj: obj}}, function () {

return obj.a >= 1 &&
obj.b >= 1 &&
obj.c >= 1 &&
obj.d >= 1 &&
obj.e >= 1

});
}, benchf],
”Constrained Write (disabled)”: [disablef = function() {

constrainf();
constraint.disable();

}, benchf],
”Constrained Write (disabled, unconstrained)”: [function() {

disablef();
bbb.unconstrainAll(obj);

}, benchf],
”Constrained Write (edit)”: [function() {

constrainf();
cb = bbb.edit(obj, [”a”, ”b”, ”c”, ”d”, ”e”]);

}, function() {
cb([obj.a + 1, obj.b + 1, obj.c + 1, obj.d + 1, obj.e + 1]);

}]
}

for (var k in benchmarks) {
suite.add(k, benchmarks[k][1], {setup: benchmarks[k][0]})
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}

Language: JavaScript, Filename: benchmark-write-access/benchmark.js

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 11:09:18 am’!
Object subclass: #ConstraintMockObject
instanceVariableNames: ’a b c d e’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

”... accessors and initializers for the mock object ...”

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 10:53:31 am’!
Benchmark subclass: #ConstraintsBenchmarks
instanceVariableNames: ’obj constrObj constraints’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:42’!
benchConstrainedWriteAccess

1000 timesRepeat: [
constrObj a: constrObj a + 1.
constrObj b: constrObj b + 1.
constrObj c: constrObj c + 1.
constrObj d: constrObj d + 1.
constrObj e: constrObj e + 1.

]! !

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:47’!
benchConstrainedWriteAccessDisabled

constraints do: #disable.
1000 timesRepeat: [
constrObj a: constrObj a + 1.
constrObj b: constrObj b + 1.
constrObj c: constrObj c + 1.
constrObj d: constrObj d + 1.
constrObj e: constrObj e + 1.

]! !

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:39’!
benchWriteAccess

1000 timesRepeat: [
obj a: obj a + 1.
obj b: obj b + 1.
obj c: obj c + 1.
obj d: obj d + 1.
obj e: obj e + 1.

]! !

!ConstraintsBenchmarks methodsFor: ’running’ stamp: ’tfel 9/23/2015 15:46’!
setUp

obj := ConstraintMockObject new.
constrObj := ConstraintMockObject new.
constraints := OrderedCollection new.
constraints add: [constrObj a >= 1] alwaysTrue.
constraints add: [constrObj b >= 1] alwaysTrue.
constraints add: [constrObj c >= 1] alwaysTrue.
constraints add: [constrObj d >= 1] alwaysTrue.
constraints add: [constrObj e >= 1] alwaysTrue.

! !

Language: Squeak Changesets, Filename: benchmark-write-access/benchmark.st

Edit Constraints

The following code listings show how we measured the performance impact of edit constraints
compared to purely imperative code and constraint code that does not use edit constraints in Ruby
and JavaScript. Squeak/Smalltalk is omitted, because that prototype did not implement support
for edit constraints.
require ”mybenchmark”
require ”libcassowary”

class Mercury
attr_accessor :top, :bottom
def initialize
@top = 10
@bottom = 0

end

def height
@top - @bottom

end
end

class Mouse
attr_accessor :location_y
def initialize
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@location_y = 10
end

end

class Rectangle
attr_accessor :top, :bottom
def initialize(name, top, bottom)
@name = name
@top = top
@bottom = bottom

end
end

class Thermometer < Rectangle
def initialize(top, bottom)
super(”thermometer”, top, bottom)

end
end

class Display
attr_accessor :number
def initialize
@number = 0

end
end

mouse = mercury = thermometer = grey = white = temperature = display = nil

Resetter = Proc.new do |label|
if label.start_with? ”Imperative”
mouse = Mouse.new
mercury = Mercury.new
thermometer = Thermometer.new(200, 0)
grey = Rectangle.new(”grey”, mercury.top, mercury.bottom)
white = Rectangle.new(”white”, thermometer.top, mercury.top)
temperature = mercury.height
display = Display.new

end
if label.start_with? ”Declarative” or label.start_with? ”Edit”
mouse = Mouse.new
mercury = Mercury.new
thermometer = Thermometer.new(200, 0)
grey = Rectangle.new(”grey”, mercury.top, mercury.bottom)
white = Rectangle.new(”white”, thermometer.top, mercury.top)
temperature = mercury.height
display = Display.new

always { temperature == mercury.height }
always { white.top == thermometer.top }
always { white.bottom == mercury.top }
always { grey.top == mercury.top }
always { grey.bottom == mercury.bottom }
always { display.number == temperature }
always { mercury.top == mouse.location_y }
always { mercury.top <= thermometer.top }
always { mercury.bottom == thermometer.bottom }

end
end

class SetupSuite
def warming(label, *args)
Resetter[label]

end
def warmup_stats(*); end
alias_method :add_report, :warmup_stats
alias_method :running, :warming

end
suite = SetupSuite.new

Benchmark.ips do |x|
x.config(:suite => suite)
x.report(’Imperative Drag Simulation’) do |t|
t.times do
100.times do |i|
mouse.location_y = i
old = mercury.top
mercury.top = mouse.location_y
if mercury.top > thermometer.top
mercury.top = thermometer.top

end
temperature = mercury.top
if (old < mercury.top)
# moves upwards (draws over the white)
grey.top = mercury.top

else
# moves downwards (draws over the grey)
white.bottom = mercury.top

end
display.number = temperature

end
end

end
x.report(’Declarative Drag Simulation’) do |t|
t.times { 100.times { |i| mouse.location_y = i } }

end
x.report(’Edit Drag Simulation’) do |t|
t.times do
edit(stream: 100.times.each, accessors: []) { mouse.location_y }

end
end
x.compare!

end

Language: Ruby, Filename: benchmark-edit/benchmark.rb

suite = new Benchmark.Suite;
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benchmarks = {
”Imperative Drag”: [function() {

mouse = {location_y: 0},
mercury = {top: 0, bottom: 0},
thermometer = {top: 0, bottom: 0},
temperature = 0,
gray = {top: 0, bottom: 0},
white = {top: 0, bottom: 0},
display = {number: 0};

}, function() {
for (var i = 0; i < 100; i++) {

mouse.location_y = i
var old = mercury.top
mercury.top = mouse.location_y
if (mercury.top > thermometer.top) {

mercury.top = thermometer.top
}
temperature = mercury.top
if (old < mercury.top) {

// moves upwards (draws over the white)
gray.top = mercury.top

} else {
// moves downwards (draws over the gray)
white.bottom = mercury.top

}
display.number = temperature

}
}],
”Declarative Drag”: [resetConstraints = function() {

ctx = {
mouse: {location_y: 0},
mercury: {top: 0, bottom: 0},
thermometer: {top: 0, bottom: 0},
temperature: {c: 0},
gray: {top: 0, bottom: 0},
white: {top: 0, bottom: 0},
display: {number: 0}};

solver = new ClSimplexSolver();
bbb.always({solver: solver, ctx: ctx}, function () { return temperature.c == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.top == thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.bottom == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return gray.top == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return gray.bottom == mercury.bottom });
bbb.always({solver: solver, ctx: ctx}, function () { return display.number == temperature.c });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top == mouse.location_y });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top <= thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.bottom == thermometer.bottom });

}, function() {
for (var i = 0; i < 100; i++) {

ctx.mouse.location_y = i
}

}],
”Edit Drag”: [function() {

resetConstraints();
cb = bbb.edit(ctx.mouse, [”location_y”]);

}, function() {
for (var i = 0; i < 100; i++) {

cb([i]);
}

}]
}

for (var k in benchmarks) {
suite.add(k, benchmarks[k][1], {setup: benchmarks[k][0]})

}

Language: JavaScript, Filename: benchmark-edit/benchmark.js

Edit Constraint JIT

The following code listing shows the impact of our prototype edit constraint jits in JavaScript. It
shows that the jitworks for the benchmarks shown in SectionB, aswell as somemicro-benchmarks
that test specific circumstances like changing two variables at different frequencies.
var suite = new Benchmark.Suite;

benchmarks = {
”Imperative Drag”: [function() {

mouse = {location_y: 0},
mercury = {top: 0, bottom: 0},
thermometer = {top: 0, bottom: 0},
temperature = 0,
gray = {top: 0, bottom: 0},
white = {top: 0, bottom: 0},
display = {number: 0};

}, function() {
for (var i = 0; i < 100; i++) {

mouse.location_y = i
var old = mercury.top
mercury.top = mouse.location_y
if (mercury.top > thermometer.top) {

mercury.top = thermometer.top
}
temperature = mercury.top
if (old < mercury.top) {

// moves upwards (draws over the white)
gray.top = mercury.top

} else {
// moves downwards (draws over the gray)
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white.bottom = mercury.top
}
display.number = temperature

}
}],
”Declarative Drag (Classic JIT)”: [constrainf = function(jit) {

ctx = {
mouse: {location_y: 0},
mercury: {top: 0, bottom: 0},
thermometer: {top: 0, bottom: 0},
temperature: {c: 0},
gray: {top: 0, bottom: 0},
white: {top: 0, bottom: 0},
display: {number: 0}};

solver = new ClSimplexSolver();
solver.ecjit = jit || new ClassicECJIT();
bbb.always({solver: solver, ctx: ctx}, function () { return temperature.c == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.top == thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.bottom == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return gray.top == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return gray.bottom == mercury.bottom });
bbb.always({solver: solver, ctx: ctx}, function () { return display.number == temperature.c });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top == mouse.location_y });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top <= thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.bottom == thermometer.bottom });

}, benchf = function() {
for (var i = 0; i < 100; i++) {

ctx.mouse.location_y = i
}

}],
”Declarative Drag (Additive JIT)”: [

function() { constrainf(new AdditiveAdaptiveECJIT()) },
benchf

],
”Declarative Drag (Multiplicative JIT)”: [

function() { constrainf(new MultiplicativeAdaptiveECJIT()) },
benchf

],
”Declarative Drag (Last JIT)”: [

function() { constrainf(new LastECJIT()) },
benchf

],
}

for (var k in benchmarks) {
// suite.add(k, benchmarks[k][1], {setup: benchmarks[k][0]})

}

ecbenchmarks1 = {
’dbAddSim’: [

function(ecjit) {
o = {x: 0, y: 0, z: 0};
solver = new DBPlanner();
solver.ecjit = ecjit;

bbb.always({solver: solver, ctx: {o: o}}, function () {
return o.x == o.z - o.y &&

o.y == o.z - o.x &&
o.z == o.x + o.y;

})
}, function(iterations) {

for (var i = 0; i < iterations; i++) {
o.x = i;
console.assert(o.x + o.y == o.z);

}
}, function(iterations) {

cb = bbb.edit(o, [”x”]);
for (var i = 0; i < iterations; i++) {

cb([i]);
console.assert(o.x + o.y == o.z);

}
cb();

}],
’clAddSim’: [

function(ecjit) {
o = {x: 0, y: 0, z: 0};
solver = new ClSimplexSolver();
solver.ecjit = ecjit;
solver.setAutosolve(false);
bbb.always({solver: solver, ctx: {o: o}}, function () { return o.x + o.y == o.z; });

}, function(iterations) {
for (var i = 0; i < iterations; i++) {

o.x = i;
console.assert(o.x + o.y == o.z);

}
}, function() {

cb = bbb.edit(o, [”x”]);
}, function (iterations) {

for (var i = 0; i < iterations; i++) {
cb([i]);
console.assert(o.x + o.y == o.z);

}
}],

’clDragSim’: [
function(ecjit) {

ctx = {
mouse: {location_y: 0},
mercury: {top: 0, bottom: 0},
thermometer: {top: 0, bottom: 0},
temperature: {c: 0},
gray: {top: 0, bottom: 0},
white: {top: 0, bottom: 0},
display: {number: 0}},

solver = new ClSimplexSolver();
solver.ecjit = ecjit;
solver.setAutosolve(false);

bbb.always({solver: solver, ctx: ctx}, function () { return temperature.c == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.top == thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return white.bottom == mercury.top });
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bbb.always({solver: solver, ctx: ctx}, function () { return gray.top == mercury.top });
bbb.always({solver: solver, ctx: ctx}, function () { return gray.bottom == mercury.bottom });
bbb.always({solver: solver, ctx: ctx}, function () { return display.number == temperature.c });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top == mouse.location_y });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.top <= thermometer.top });
bbb.always({solver: solver, ctx: ctx}, function () { return mercury.bottom == thermometer.bottom });

}, function(iterations) {
for (var i = 0; i < iterations; i++) {

ctx.mouse.location_y = i;
console.assert(ctx.mouse.location_y == i);

}
}, function() {

cb = bbb.edit(ctx.mouse, [”location_y”]);
}, function(iterations) {

for (var i = 0; i < iterations; i++) {
cb([i]);
console.assert(ctx.mouse.location_y == i);

}
}],

}

jits = [’EmptyECJIT’, ’ClassicECJIT’, ’AdditiveAdaptiveECJIT’, ’MultiplicativeAdaptiveECJIT’, ’LastECJIT’]
iterations = 1;

var idx = 0
function wrap(options, fn) {

var str = fn.toString();
for (var k in options) {

window[k + idx] = options[k];
str = str.replace(RegExp(”([^a-zA-Z])” + k + ”([^a-zA-Z0-9])”, ”g”), ”$1” + k + idx + ”$2”);
idx += 1;

}
return eval(”(” + str + ”)”);

}

for (var k in ecbenchmarks1) {
jits.each(function (jit) {

ecjit = eval(jit)
suite.add(k + ” ” + jit, wrap({k: k, iterations: iterations}, function() {

ecbenchmarks1[k][1](iterations)
}), {setup: wrap({k: k, ecjit: ecjit}, function() {

ecbenchmarks1[k][0](new ecjit)
})})

});
suite.add(k + ” Edit Constraints”, wrap({k: k, iterations: iterations}, function() {

ecbenchmarks1[k][3](iterations)
}), {setup: wrap({k: k, ecjit: ecjit}, function() {

ecbenchmarks1[k][2]()
})})

}

[1, 3].each(function(sheer) {
jits.each(function(jit) {

var ecjit = new (eval(jit))
var numIterations = iterations;
var setup = function() {

ctx = {
mouse: {x: 100, y: 100},
wnd: {w: 100, h: 100},
comp1: {w: 70, display: 0},
comp2: {w: 30, display: 0}

};
var solver = new ClSimplexSolver();
solver.ecjit = ecjit;
solver.setAutosolve(false);

bbb.always({solver: solver, ctx: ctx}, function () { return wnd.w == mouse.x });
bbb.always({solver: solver, ctx: ctx}, function () { return wnd.h == mouse.y });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w <= 400; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w+comp2.w == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.display == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp2.display == wnd.h; });

};
suite.add(’clDrag2DSim’ + sheer + ” ” + jit,

wrap({sheer: sheer, numIterations: numIterations, ecjit: ecjit}, function() {
for(var i = 0; i < numIterations; i++) {

ctx.mouse.x = 100+i;
if(i % sheer == 0) {

ctx.mouse.y = 100+i;
}
console.assert(ctx.mouse.x == 100+i);
if(i % sheer == 0) {

console.assert(ctx.mouse.y == 100+i);
}

}
}),
{setup: wrap({sheer: sheer, numIterations: numIterations, ecjit: ecjit}, setup)});

suite.add(’clDrag2DSimEdit’ + sheer + ” ” + jit,
wrap({sheer: sheer, numIterations: numIterations, ecjit: ecjit}, function(numIterations, sheer) {

for(var i = 0; i < numIterations; i++) {
cb([100+i, Math.floor((100+i)/sheer)*sheer]);
console.assert(ctx.mouse.x == 100+i);
console.assert(ctx.mouse.y == Math.floor((100+i)/sheer)*sheer);

}
}),
{setup: wrap({sheer: sheer, numIterations: numIterations, ecjit: ecjit}, function() {

setup();
cb = bbb.edit(ctx.mouse, [”x”, ”y”]);

})});
});

});

[iterations / 2, iterations / 10].each(function(numSwitch) {
jits.each(function(jit) {

var ecjit = new (eval(jit))
var numIterations = iterations;
var setup = wrap({numSwitch: numSwitch, numIterations: numIterations, ecjit: ecjit}, function() {

ctx = {
mouse: {x: 100, y: 100},
wnd: {w: 100, h: 100},
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comp1: {w: 70, display: 0},
comp2: {w: 30, display: 0}

};
var solver = new ClSimplexSolver();
solver.ecjit = ecjit;
solver.setAutosolve(false);

bbb.always({solver: solver, ctx: ctx}, function () { return wnd.w == mouse.x });
bbb.always({solver: solver, ctx: ctx}, function () { return wnd.h == mouse.y });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w <= 400; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w+comp2.w == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.display == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp2.display == wnd.h; });

});
suite.add(’clDrag2DSimChange’ + numSwitch + ” ” + jit,

wrap({numSwitch: numSwitch, numIterations: numIterations, ecjit: ecjit}, function() {
for(var i = 0; i < numIterations; i++) {

if(i < numSwitch) {
ctx.mouse.x = 100+i;
console.assert(ctx.mouse.x == 100+i);

} else {
ctx.mouse.y = 100+(i-numSwitch);
console.assert(ctx.mouse.x == numSwitch-1);
console.assert(ctx.mouse.y == 100+(i-numSwitch));

}
}

}),
{setup: setup});

suite.add(’clDrag2DSimChangeEdit’ + numSwitch + ” ” + jit,
wrap({numSwitch: numSwitch, numIterations: numIterations, ecjit: ecjit}, function() {

for(var i = 0; i < numIterations; i++) {
if(i < numSwitch) {

cb([100+i]);
console.assert(ctx.mouse.x == 100+i);

} else {
if(i == numSwitch) {

cb();
cb = bbb.edit(ctx.mouse, [”y”]);

}
cb([100+(i-numSwitch)]);
console.assert(ctx.mouse.x == numSwitch-1);
console.assert(ctx.mouse.y == 100+(i-numSwitch));

}
}

}),
{setup: function() {

setup();
cb = bbb.edit(ctx.mouse, [”x”]);

}});
});

});

[5, 10].each(function(switchFreq) {
jits.each(function(jit) {

var ecjit = new (eval(jit))
var numIterations = iterations;
var setup = wrap({switchFreq: switchFreq, numIterations: numIterations, ecjit: ecjit}, function() {

ctx = {
mouse: {x: 100, y: 100},
wnd: {w: 100, h: 100},
comp1: {w: 70, display: 0},
comp2: {w: 30, display: 0}

};
var solver = new ClSimplexSolver();
solver.ecjit = ecjit;
solver.setAutosolve(false);

bbb.always({solver: solver, ctx: ctx}, function () { return wnd.w == mouse.x });
bbb.always({solver: solver, ctx: ctx}, function () { return wnd.h == mouse.y });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w <= 400; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.w+comp2.w == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp1.display == wnd.w; });
bbb.always({solver: solver, ctx: ctx}, function () { return comp2.display == wnd.h; });

});
suite.add(’clDrag2DSimFreqChange’ + switchFreq + ” ” + jit,

wrap({switchFreq: switchFreq, numIterations: numIterations, ecjit: ecjit}, function() {
for(var i = 0; i < numIterations; i++) {

if(i % (switchFreq*2) < switchFreq) {
ctx.mouse.x = 100+i;
console.assert(ctx.mouse.x == 100+i);

} else {
ctx.mouse.y = 100+i;
console.assert(ctx.mouse.y == 100+i);

}
}

}),
{setup: setup});

suite.add(’clDrag2DSimChangeEdit’ + switchFreq + ” ” + jit,
wrap({switchFreq: switchFreq, numIterations: numIterations, ecjit: ecjit}, function() {

for(var i = 0; i < numIterations; i++) {
if(i % (switchFreq*2) < switchFreq) {

cb([100+i, 100+i/(switchFreq*2)]);
console.assert(ctx.mouse.x == 100+i);

} else {
cb([100+i/(switchFreq*2), 100+i]);
console.assert(ctx.mouse.y == 100+i);

}
}

}),
{setup: function() {

setup();
cb = bbb.edit(ctx.mouse, [”x”, ”y”]);

}});
});

});

Language: JavaScript, Filename: benchmark-jit/jitbenchmarks.js
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Constraint-* Language Comparisons

In the following subsections, we show the code listings for the three cross-language constraint
benchmarks that we ran to compare Babelsberg performance to Prolog, Kaplan, and Turtle. Each
subsection presents the code in Babelsberg/R in Ruby, Babelsberg/JS in JavaScript, Babelsberg/S
in Squeak/Smalltalk, Prolog using the constraint-logic programming library, Kaplan, and Turtle.
Depending on the language, repetitions are sometimes hard coded and at other times were injected
by an outside benchmark runner. Each of these benchmarks were run 1, 3, 5, 10, 50, and 100 times,
either by configuring the benchmark runner or tweaking the hard coded repetitions.

Animals Puzzle
require ”libz3”

CENTS = 10000
ANIMALS = 100
DOGC = 1500
CATC = 100
MICEC = 25

def action
cents, animals, dogc, catc, micec = [0.0] * 5

always { cents == CENTS &&
animals == ANIMALS &&
dogc == DOGC &&
catc == CATC &&
micec == MICEC }

dog, cat, mouse = 0, 0, 0
c1 = always { dog >= 1 && cat >= 1 && mouse >= 1 }
c2 = always { dog + cat + mouse == animals }
c3 = always {dog * dogc + cat * catc + mouse * micec == cents }
puts ”Dogs: #{dog}, cats: #{cat}, mice: #{mouse}”
[c1,c2,c3].each(&:disable)

end

Language: Ruby, Filename: benchmark-constraint-languages/animals.rb

CENTS = 10000
ANIMALS = 100
DOGC = 1500
CATC = 100
MICEC = 25
TIME_ = 0
REPEATS = 10

function action() {
var solver = new EmZ3();
var oldPM = solver.postMessage;
solver.postMessage = function(string) {

return oldPM.apply(solver, [string.replace(/Real/g, ”Int”)]);
}

setTimeout(function () {
var start = Date.now();
var obj = {cents: 0, animals: 0, dogc: 0, catc: 0, micec: 0};
bbb.always({

solver: solver,
ctx: {obj: obj}}, function () {

return obj.cents == CENTS &&
obj.animals == ANIMALS &&
obj.dogc == DOGC &&
obj.catc == CATC &&
obj.micec == MICEC });

var obj2 = {dog: 0, cat: 0, mouse: 0};
bbb.always({

solver: solver,
ctx: {obj2: obj2}}, function () { return obj2.dog >= 1 && obj2.cat >= 1 && obj2.mouse >= 1 });

bbb.always({
solver: solver,
ctx: {obj: obj, obj2: obj2}}, function () { return obj2.dog + obj2.cat + obj2.mouse == obj.animals });

bbb.always({
solver: solver,
ctx: {obj: obj, obj2: obj2}}, function () {

return obj2.dog * obj.dogc + obj2.cat * obj.catc + obj2.mouse * obj.micec == obj.cents
});

console.log(”Dogs: ” + obj2.dog + ”, cats: ” + obj2.cat + ”, mice: ” + obj2.mouse)
TIME_ += (Date.now() - start);

if (REPEATS > 0) {
REPEATS -= 1;
setTimeout(action, 0);

} else {
console.log(”THIS IS THE TIME:” + TIME_);
alert.original.apply(window, [”CLOSE ME”])

}
}, 3000);

}

Language: JavaScript, Filename: benchmark-constraint-languages/animals.js
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’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 5 October 2015 at 11:56:17 am’!
!ConstraintZ3Variable methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:33’!
initialize

”Use integers”
varName := ’noName’.
type := ’Int’.! !

Object subclass: #AnimalsObject
instanceVariableNames: ’cents animals dogc catc micec dog cat mouse’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

”... accessors and initializers for the animals object ...”

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 5 October 2015 at 12:01:34 pm’!
Benchmark subclass: #ConstraintsBenchmarks

instanceVariableNames: ’obj’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!ConstraintsBenchmarks methodsFor: ’nil’ stamp: ’tfel 10/5/2015 12:01’!
benchAnimals
10 timesRepeat: [

| solver |
obj := AnimalsObject new.
solver := ConstraintSolver newZ3Solver.
[ (obj cents = 10000) &

(obj animals = 100) & (
obj dogc = 1500) & (

obj catc = 100) & (
obj micec = 25) ] alwaysSolveWith: solver.

[ obj dog >= 1 & ( obj cat >= 1 ) & ( obj mouse >= 1) ] alwaysSolveWith: solver.
[ obj dog + obj cat + obj mouse = obj animals ] alwaysSolveWith: solver.
[ (obj dog * obj dogc) + (obj cat * obj catc) + (obj mouse * obj micec) = obj cents ] alwaysSolveWith: solver.
FileStream stdout nextPutAll: ’Dogs: ’, obj dog, ’, cats: ’, obj cat , ’, mice: ’, obj mouse; cr; flush].

! !

Language: Squeak Changesets, Filename: benchmark-constraint-languages/animals.st

:- use_module(library(clpfd)).

animals(Vars) :-
Animals is 100,
Cents is 10000,
Dogc is 1500,
Catc is 100,
Micec is 25,
Vars = [Dog,Cat,Mouse],
Vars ins 1..Animals,
Dogc*Dog + Catc*Cat + Micec*Mouse #= Cents,
Dog + Cat + Mouse #= Animals.

bench(Count) :-
T1 is cputime,
dobench(Count),
T2 is cputime,
report(Count, T1, T2).

dobench(Count) :-
nrepeat(Count),
Vars = [Dog,Cat,Mouse],
animals(Vars),
label(Vars),
write(Vars),
nl,
fail.

dobench(_).

nrepeat(_).
nrepeat(N) :-

N>1,
N1 is N-1,
nrepeat(N1).

report(Count, T1, T2) :-
Time is T2-T1,
nl,
write(’THIS IS THE TIME: ’),
write(Time),
nl.

Language: Prolog, Filename: benchmark-constraint-languages/animals.prolog

import z3.scala._
import cp.Definitions._
import cp.Terms._
import cp.LTrees._
import cp.ConstraintSolving
import purescala.FairZ3Solver

object Animals extends App {
object Example {
val name = ”Animals”

def run : Unit = {
println(”*** Running ” + name + ” ***”)
action

}

def asserting(c : Constraint0) : Unit = {
var entered = false
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for(i <- c.lazyFindAll) {
entered = true

}
if(!entered) { throw new Exception(”Asserting failed.”) }

}

def action : Unit = {
val anyInt : Constraint1[Int] = ((n : Int) => true)

val cents = anyInt.lazySolve
val animals = anyInt.lazySolve
val dogc = anyInt.lazySolve
val catc = anyInt.lazySolve
val micec = anyInt.lazySolve

asserting( cents == 10000 )
asserting( animals == 100 )
asserting( dogc == 1500 )
asserting( catc == 100 )
asserting( micec == 25 )

val dog = anyInt.lazySolve
val cat = anyInt.lazySolve
val mouse = anyInt.lazySolve

asserting( dog >= 1 )
asserting( cat >= 1 )
asserting( mouse >= 1 )
asserting( animals == dog + cat + mouse )
asserting( cents == dog * dogc + cat * catc + mouse * micec )

println(”Dogs: ” + dog.value + ”, cats: ” + cat.value + ”, mice: ” + mouse.value)
}

}
}

Language: Kaplan, Filename: benchmark-constraint-languages/animals.kaplan

module animals;

import io, sys.times;

fun test0()
var cents: !int := var 0;
var animals: !int := var 0;
var dogc: !int := var 0;
var catc: !int := var 0;
var micec: !int := var 0;

require cents = 10000;
require animals = 100;
require dogc = 1500;
require catc = 100;
require micec = 25;

var dog: !int := var 0;
var cat: !int := var 0;
var mouse: !int := var 0;

require dog >= 1;
require cat >= 1;
require mouse >= 1;
require dog < animals;
require cat < animals;
require mouse < animals;
require dog + cat + mouse = animals;
require dog * dogc + cat * catc + mouse * micec = cents;

io.put (”Dogs: ”); io.put (!dog);
io.put (”, cats: ”); io.put (!cat);
io.put (”, mice: ”); io.put (!mouse); io.nl ();

end;

Language: Turtle, Filename: benchmark-constraint-languages/animals.turtle

Layout Constraints
require ”libz3”

def fun
gap, pw, lw, rw = [0]*4

c1 = always { pw == 40000 }
c2 = always { gap == pw / 20000 }
c3 = always { lw + gap + rw == pw }
c4 = always { lw >= 0 }
c5 = always { rw >= 0 }

puts ”gap #{gap}, left column #{lw}, right column #{rw}, page width #{pw}”
[c1,c2,c3,c4,c5].each(&:disable)

end

Language: Ruby, Filename: benchmark-constraint-languages/layout.rb

function fun() {
var solver = new ClSimplexSolver();
var obj = {gap: 0,

pw: 0,
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lw: 0,
rw: 0};

bbb.always({solver: solver, ctx: {obj: obj}}, function () { return obj.pw == 40000 });
bbb.always({solver: solver, ctx: {obj: obj}}, function () { return obj.gap == obj.pw / 20000 });
bbb.always({solver: solver, ctx: {obj: obj}}, function () { return obj.lw + obj.gap + obj.rw == obj.pw });
bbb.always({solver: solver, ctx: {obj: obj}}, function () { return obj.lw >= 0 });
bbb.always({solver: solver, ctx: {obj: obj}}, function () { return obj.rw >= 0 });
console.log(”gap ” + obj.gap + ”, left column ” + obj.lw + ”, right column ” + obj.rw + ”, page width ” + obj.pw)

}

Language: JavaScript, Filename: benchmark-constraint-languages/layout.js

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 11:09:18 am’!
Object subclass: #ConstraintMockObject

instanceVariableNames: ’gap pw lw rw’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

”... accessors and initializers for the mock object ...”

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 30 September 2015 at 10:53:31 am’!
Benchmark subclass: #ConstraintsBenchmarks

instanceVariableNames: ’obj constrObj constraints’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!ConstraintsBenchmarks methodsFor: ’benchmarks’ stamp: ’tfel 9/23/2015 15:42’!
benchLayout

10 timesRepeat: [
obj := ConstraintMockObject new.
[ obj pw = 40000 ] alwaysTrue.
[ obj gap = (obj pw / 20000) ] alwaysTrue.
[ obj lw + obj gap + obj rw = obj pw ] alwaysTrue.
[ obj lw >= 0 ] alwaysTrue.
[ obj rw >= 0 ] alwaysTrue.
FileStream stdout
nextPutAll: ’gap = ’, obj gap, ’, pw = ’, obj pw, ’ lw = ’, obj lw, ’ rw = ’, obj rw;
crlf; flush.

]
! !

Language: Squeak Changesets, Filename: benchmark-constraint-languages/layout.st

:- use_module(library(clpfd)).

layout(Vars) :-
Vars = [Gap,Pw,Lw,Rw],
Pw #= 40000,
Gap * 20000 #= Pw,
Lw + Gap + Rw #= Pw,
Lw #>= 0,
Rw #>= 0,
Gap #= 2,
Lw #= 0.

bench(Count) :-
T1 is cputime * 1000,
dobench(Count),
T2 is cputime * 1000,
report(Count, T1, T2).

dobench(Count) :-
nrepeat(Count),
Vars = [Gap,Pw,Lw,Rw],
layout(Vars),
label(Vars),
write(Vars),
nl,
fail.

dobench(_).

nrepeat(_).
nrepeat(N) :-

N>1,
N1 is N-1,
nrepeat(N1).

report(Count, T1, T2) :-
Time is T2-T1,
nl,
write(’THIS IS THE TIME: ’),
write(Time),
nl.

Language: Prolog, Filename: benchmark-constraint-languages/layout.prolog

import z3.scala._
import cp.Definitions._
import cp.Terms._
import cp.LTrees._
import cp.ConstraintSolving
import purescala.FairZ3Solver

object Layout extends App {
object Example {
val name = ”Turtle Layout”

def run : Unit = {
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println(”*** Running ” + name + ” ***”)
action

}

def asserting(c : Constraint0) : Unit = {
var entered = false
for(i <- c.lazyFindAll) {
entered = true

}
if(!entered) { throw new Exception(”Asserting failed.”) }

}

def action : Unit = {
val anyReal : Constraint1[Int] = ((n : Int) => true)

val gap = anyReal.lazySolve
val pw = anyReal.lazySolve
val rw = anyReal.lazySolve
val lw = anyReal.lazySolve

asserting( pw == 40000 )
asserting( gap == pw / 20000 )
asserting( pw == lw + gap + rw )
asserting( lw >= 0 )
asserting( rw >= 0 )

println(”gap ” + gap.value + ”, left column ” + lw.value + ”, right column ” + rw.value + ”, page width ” + pw.value)
}

}
}

Language: Kaplan, Filename: benchmark-constraint-languages/layout.kaplan

// layout.t -- A simple layout example.
// Copyright (C) 2003 Martin Grabmueller <mgrabmue@cs.tu-berlin.de>
module layout;

import io, sys.times;

fun test0()
// Gap between the columns.
var gap: !real := var 0.0;
// Page width.
var pw: !real := var 0.0;
// Left and right column.
var lw: !real := var 0.0;
var rw: !real := var 0.0;

require pw = 40000.0;
require gap = (pw / 20000.0);
require lw + gap + rw = pw;
require lw >= 0.0;
require rw >= 0.0;

io.put (”gap = ”); io.put (!gap); io.nl ();
io.put (”lw = ”); io.put (!lw); io.nl ();
io.put (”rw = ”); io.put (!rw); io.nl ();
io.put (”pw = ”); io.put (!pw); io.nl ();

end;

Language: Turtle, Filename: benchmark-constraint-languages/layout.turtle

Send+More=Money Puzzle
require ”libz3”
require ”libarraysolver”

class Array
def ins(range)
return true if self.empty?
self[1..-1].ins(range) &&
self[0] >= range.first &&
self[0] <= range.last

end
end

def action
s,e,n,d,m,o,r,y = [0]*8

# each digit is between 0 and 9
c = always { [s,e,n,d,m,o,r,y].ins(0..9) }

c1 = always { [s,e,n,d,m,o,r,y].alldifferent? }

c2 = always do
s*1000 + e*100 + n*10 + d +
m*1000 + o*100 + r*10 + e ==
m*10000 + o*1000 + n*100 + e*10 + y

end

c3 = always { s>0 && m>0 }

puts (”solution: [s,e,n,d,m,o,r,y] = ” + [s,e,n,d,m,o,r,y].to_s)
[c, c1, c2, c3].each(&:disable)

end

Language: Ruby, Filename: benchmark-constraint-languages/sendmoremoney.rb
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CENTS = 10000
ANIMALS = 100
DOGC = 1500
CATC = 100
MICEC = 25
TIME_ = 0
REPEATS = 10

function action() {
var solver = new EmZ3();
var oldPM = solver.postMessage;
solver.postMessage = function(string) {

return oldPM.apply(solver, [string.replace(/Real/g, ”Int”)]);
}

setTimeout(function () {
var start = Date.now();
var obj = {s: 0, e: 0, n: 0, d: 0, m: 0, o: 0, r: 0, y:0};
var names = [”s”, ”e”, ”n”, ”d”, ”m”, ”o”, ”r”, ”y”];
var fo;
names.forEach(function (f) {

bbb.always({
solver: solver,
ctx: {obj: obj, f: f}}, function () {

return obj[f] <= 9 && obj[f] >= 0 });
});
bbb.always({

solver: solver,
ctx: {obj: obj}}, function () {

return obj.s != 0 && obj.m != 0 });
names.forEach(function (f) {

names.forEach(function (fo) {
if (f !== fo) {

bbb.always({
solver: solver,
ctx: {obj: obj, f: f, fo: fo}}, function () {

return obj[f] != obj[fo] });
}

})
})

bbb.always({
solver: solver,
ctx: {obj: obj}}, function () {

return obj.s * 1000 + obj.e * 100 + obj.n * 10 + obj.d +
obj.m * 1000 + obj.o * 100 + obj.r * 10 + obj.e ==
obj.m * 10000 + obj.o * 1000 + obj.n * 100 + obj.e * 10 + obj.y });

console.log(”solution: [s,e,n,d,m,o,r,y] = ” + [obj.s,obj.e,obj.n,obj.d,obj.m,obj.o,obj.r,obj.y])
TIME_ += (Date.now() - start);

if (REPEATS > 0) {
REPEATS -= 1;
setTimeout(action, 0);

} else {
console.log(”THIS IS THE TIME:” + TIME_);
alert.original.apply(window, [”CLOSE ME”])

}
}, 3000);

}

Language: JavaScript, Filename: benchmark-constraint-languages/sendmoremoney.js

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 5 October 2015 at 11:56:17 am’!
!ConstraintZ3Variable methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:33’!
initialize

”Use integers”
varName := ’noName’.
type := ’Int’.! !

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 5 October 2015 at 1:48:46 pm’!
Object subclass: #SMM
instanceVariableNames: ’ary’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
initialize

ary := {0. 0. 0. 0. 0. 0. 0. 0}! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
d

↑ary at: 4! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
e

↑ary at: 2! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
m

↑ary at: 5! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
n

↑ary at: 3! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
o

↑ary at: 6! !
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!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
r

↑ary at: 7! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
s

↑ary at: 1! !

!SMM methodsFor: ’initialize-release’ stamp: ’tfel 10/5/2015 13:45’!
y

↑ary at: 8! !

!SMM methodsFor: ’as yet unclassified’ stamp: ’tfel 10/5/2015 13:46’!
ary

↑ary! !

!SMM methodsFor: ’as yet unclassified’ stamp: ’tfel 10/5/2015 13:46’!
ary: anArray

ary := anArray.! !

’From Squeak4.5 of 19 February 2014 [latest update: #13680] on 5 October 2015 at 1:48:48 pm’!
Benchmark subclass: #ConstraintBenchmarks
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’Constraints-Benchmarks’!

!ConstraintBenchmarks methodsFor: ’as yet unclassified’ stamp: ’tfel 10/5/2015 13:48’!
benchSendMoreMoney
| solver p |
50 timesRepeat: [
p := SMM new.
solver := ConstraintSolver newZ3Solver.
[p ary allSatisfy: [:ea | (ea <= 9) & (ea >= 0)]] alwaysSolveWith: solver.
[p ary allDifferent] alwaysSolveWith: solver.
[ ((p s * 1000) + (p e * 100) + (p n * 10) + (p d) +

(p m * 1000) + (p o * 100) + (p r * 10) + (p e)) =
((p m * 10000) + (p o * 1000) + (p n * 100) + (p e * 10) + (p y))
] alwaysSolveWith: solver.
[(p s > 0) & (p m > 0)] alwaysSolveWith: solver.
FileStream stdout nextPutAll: ’solution: ’, p ary; cr; flush.

]
! !

Language: Squeak Changesets, Filename: benchmark-constraint-languages/sendmoremoney.st

:- use_module(library(clpfd)).

sendmoremoney(Vars) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
S #\= 0,
M #\= 0,
all_different(Vars),

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y.

bench(Count) :-
T1 is cputime,
dobench(Count),
T2 is cputime,
report(Count, T1, T2).

dobench(Count) :-
nrepeat(Count),
Vars = [S,E,N,D,M,O,R,Y],
sendmoremoney(Vars),
label(Vars),
write(Vars),
nl,
fail.

dobench(_).

nrepeat(_).
nrepeat(N) :-

N>1,
N1 is N-1,
nrepeat(N1).

report(Count, T1, T2) :-
Time is T2-T1,
nl,
write(’THIS IS THE TIME: ’),
write(Time),
nl.

Language: Prolog, Filename: benchmark-constraint-languages/sendmoremoney.prolog

import z3.scala._
import cp.Definitions._
import cp.Terms._
import cp.LTrees._
import cp.ConstraintSolving
import purescala.FairZ3Solver

object Sendmoremoney extends App {
object Example {
val name = ”SEND+MORE=MONEY”
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def run : Unit = {
println(”*** Running ” + name + ” ***”)
action

}

def asserting(c : Constraint0) : Unit = {
var entered = false
for(i <- c.lazyFindAll) {
entered = true

}
if(!entered) { throw new Exception(”Asserting failed.”) }

}

def action : Unit = {
val anyInt : Constraint1[Int] = ((n : Int) => true)

val letters @ Seq(s,e,n,d,m,o,r,y) = Seq.fill(8)(anyInt.lazySolve)

for(l <- letters) {
asserting(l >= 0 && l <= 9)

}

when(distinct[Int](s,e,n,d,m,o,r,y)) {
println(”Letters now have distinct values.”)

} otherwise {
println(”Letters can’t have distinct values.”)

}

val fstLine = anyInt.lazySolve
val sndLine = anyInt.lazySolve
val total = anyInt.lazySolve

asserting(fstLine == 1000*s + 100*e + 10*n + d)
asserting(sndLine == 1000*m + 100*o + 10*r + e)
asserting(total == 10000*m + 1000*o + 100*n + 10*e + y)

asserting(s >= 1)
asserting(m >= 1)

println(”Solution: ” + letters.map(_.value) + ” (” + fstLine.value + ” + ” + sndLine.value + ” = ” + total.value + ”)”)
}

}
}

Language: Kaplan, Filename: benchmark-constraint-languages/sendmoremoney.kaplan

// sendmory2.t -- Demonstration for Constraint Programming in Turtle.
// Copyright (C) 2003 Martin Grabmueller <mgrabmue@cs.tu-berlin.de>

module sendmory2;

import io, sys.times;

constraint all_different (l: list of !int)
while tl l <> null do
var ll: list of !int := tl l;
while ll <> null do
require hd l <> hd ll;
ll := tl ll;

end;
l := tl l;

end;
end;

constraint domain (v: !int, min: int, max: int)
require v >= min and v <= max;

end;

fun test0()
var s: !int := var 0;
var e: !int := var 0;
var n: !int := var 0;
var d: !int := var 0;
var m: !int := var 0;
var o: !int := var 0;
var r: !int := var 0;
var y: !int := var 0;

require domain (s, 0, 9) and domain (e, 0, 9) and domain (n, 0, 9) and
domain (d, 0, 9) and domain (m, 1, 9) and domain (o, 0, 9) and
domain (r, 0, 9) and domain (y, 0, 9) and
all_different ([s, e, n, d, m, o, r, y]) and
(s * 1000 + e * 100 + n * 10 + d) +
(m * 1000 + o * 100 + r * 10 + e) =
(m * 10000 + o * 1000 + n * 100 + e * 10 + y)

in
io.put (”s = ”); io.put (!s); io.nl ();
io.put (”e = ”); io.put (!e); io.nl ();
io.put (”n = ”); io.put (!n); io.nl ();
io.put (”d = ”); io.put (!d); io.nl ();
io.put (”m = ”); io.put (!m); io.nl ();
io.put (”o = ”); io.put (!o); io.nl ();
io.put (”r = ”); io.put (!r); io.nl ();
io.put (”y = ”); io.put (!y); io.nl ();

end;
end;

Language: Turtle, Filename: benchmark-constraint-languages/sendmoremoney.turtle
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Constraint Hierarchies

This is a reproduction of the theory of constraint hierarchy relevant to this work, originally pub-
lished in [33] and given here for convenience.

***

Formally, a constraint is a relation over some domainD. The domainD determines the con-
straint predicate symbols ΠD of the language, so that a constraint is an expression of the form
p(t1, . . . , tn)where p is an n-ary symbol inΠD and each ti is a term.

A labeled constraint is a constraint labeled with a priority, written pc, where p is a priority and c
is a constraint. For clarity in writing labeled constraints, we give symbolic names to the different
priorities.We thenmap each of these names onto the integers 0 . . . n, where n is the number of non-
required priorities. Priority 0, with the symbolic name required, is always reserved for required
constraints.

A constraint system is amultisetH of labeled constraints. LetH0 denote the required constraints
in H, with their labels removed. In the same way, we define the sets H1, H2, . . . , Hn for levels
1, 2, . . . , n. We also defineHk = ∅ for k > n.

A solution to a set of labeled constraints H is a valuation for the free variables in H, i.e., a
function that maps the free variables in H to elements in the domain D. We wish to define the
set S of all solutions toH. Clearly, each valuation in S must be such that, after it is applied, all the
required constraints hold. In addition, we desire each valuation in S to be such that it satisfies the
non-required constraints as well as possible, respecting their relative strengths. To formalize this
desire, we first define the set S0 of valuations such that all the H0 constraints hold. Then, using
S0, we define the desired set S by eliminating all potential valuations that are worse than some
other potential valuation using the comparator predicate better. (In the definition, cθ denotes the
boolean result of applying the valuation θ to c, and we say that “cθ holds” if cθ = true. Note that
this is a specification of S, not an algorithm for computing it!)

S0 = {θ | ∀c ∈ H0 cθ holds}
S = {θ | θ ∈ S0 ∧ ∀σ ∈ S0 ¬better(σ, θ,H )}

Wenow define the locally-predicate-better andweighted-sum-better comparators. As also noted
above,we use an error function e(cθ) that returns a non-negative real number indicating hownearly
constraint c is satisfied for a valuation θ. This function must have the property that e(cθ) = 0 if
and only if cθ holds. For any domainD, we can use the trivial error function that returns 0 if the
constraint is satisfied and 1 if it is not. A comparator that uses this error function is a predicate
comparator. For a domain that is a metric space, we can use its metric in computing the error
instead of the trivial error function. Such a comparator is a metric comparator.

The first of the comparators, locally-better, considers each constraint inH individually to find
Pareto-optimal solutions.
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Definition. A valuation θ is locally-better than another valuation σ if, for each of the constraints
through some level k − 1, the error after applying θ is equal to that after applying σ , and at level k
the error is strictly less for at least one constraint and less than or equal for all the rest.

locally-better(θ, σ, H ) ≡

∃k > 0 such that
∀i ∈ 1 . . . k − 1 ∀p ∈ Hi e(pθ) = e(pσ)
∧ ∃q ∈ Hk e(qθ) < e(qσ)
∧ ∀r ∈ Hk e(rθ) ≤ e(rσ)

Locally-predicate-better is then locally-better using the trivial error function that returns 0 if the
constraint is satisfied and 1 if it is not.

Next, we define a schema globally-better for global comparators. The schema is parameterized
by a function g that combines the errors of all the constraintsHi at a given level.

Definition. A valuation θ is globally-better than another valuation σ if, for each level through
some level k − 1, the combined errors of the constraints after applying θ is equal to that after
applying σ , and at level k it is strictly less.

globally-better(θ, σ, H, g) ≡
∃k > 0 such that
∀i ∈ 1 . . . k − 1 g(θ,Hi) = g(σ,Hi)

∧ g(θ,Hk) < g(σ,Hk)

Using globally-better, we now define weighted-sum-better by selecting a particular combining
function g. The weight for constraint p is denoted by wp. Each weight is a positive real number.

weighted-sum-better(θ, σ, H ) ≡ globally-better(θ, σ, H, g)

where g(τ,Hi) ≡
∑
p∈Hi

wpe(pτ)

Different constraint solvers find solutions for different comparators. In ourwork to date, the two
solversweuse that accommodate soft constraints areDeltaBlue,which finds locally-predicate-better
solutions, and Cassowary, which finds weighted-sum-better solutions. (When there are infinitely
many solutions, as in the above example with the two medium constraints x = 0 and y = 0,
Cassowary has the additional property that it finds solutions that “tilt” toward one constraint or
the other, so that it would find either the solution x = 0, y = 10 or else x = 10, y = 0— but not
for example x = 3.6 and y = 6.4, even though that is also a weighted-sum-better solution.)
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