
SqueakJS
A Modern and Practical Smalltalk that Runs in Any Browser

Bert Freudenberg
Communications Design Group

Potsdam, Germany
bert@cdglabs.org

Dan Ingalls
Communications Design Group

San Francisco, CA, USA
dan@cdglabs.org

Tim Felgentreff
Hasso Plattner Institute

University of Potsdam, Germany
tim.felgentreff@hpi.uni-potsdam.de

Tobias Pape
Hasso Plattner Institute

University of Potsdam, Germany
tobias.pape@hpi.uni-potsdam.de

Robert Hirschfeld
Hasso Plattner Institute

University of Potsdam, Germany
robert.hirschfeld@hpi.uni-potsdam.de

Abstract
We report our experience in implementing SqueakJS, a bit-
compatible implementation of Squeak/Smalltalk written in pure
JavaScript. SqueakJS runs entirely in the Web browser with a virtual
file system that can be directed to a server or client-side storage. Our
implementation is notable for simplicity and performance gained
through adaptation to the host object memory and deployment lever-
age gained through the Lively Web development environment. We
present several novel techniques as well as performance measure-
ments for the resulting virtual machine. Much of this experience is
potentially relevant to preserving other dynamic language systems
and making them available in a browser-based environment.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages—Interpreters

General Terms Languages, Virtual Machines, Performance

Keywords Smalltalk, Squeak, Web browsers, JavaScript

1. Motivation
The Squeak/Smalltalk development environment [8] and its deriva-
tives are the basis for a number of interesting applications in research
and education. Educational applications such as Etoys [9] and early
versions of Scratch [12], however, suffer from restrictions against
installing native software in scholastic environments. To cope with
this limitation, web browsers have become the preferred target for
those applications; Scratch has been rewritten in Flash, and for
Etoys, a browser plugin for major web browser has been available
for a several years. Yet, both approaches still need either software
alien to the browser or a complete rewrite. With JavaScript as the de-
facto standard for Web programming, a JavaScript-based, and thus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’14, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3211-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2661088.2661100

Figure 1. SqueakJS running an Etoys image in a stand-alone Web
page

browser-native, implementation of Squeak’s virtual machine (VM)
is desirable.

With SqueakJS, we aim to provide a fully backwards-compatible
Squeak/Smalltalk system in the browser, able to directly run ap-
plications like Etoys or Scratch. Figure 1 shows SqueakJS running
a Squeak Etoys image directly in the browser1, on a plain HTML
page.

Dynamic languages such as Python or Ruby have successfully
been translated into JavaScript using the automatic translation tool-
chain Emscripten [20]. In contrast to such language implementations
that host much of its core functionality inside of the VM, Squeak
implements much of its kernel in Smalltalk [5] itself. Additionally,
Squeak is a graphical programming system and, to run in the
browser, requires at least minimal interaction with the browser’s
document object model (DOM).

1 Squeak images are binary dumps of a running Squeak system’s memory.
SqueakJS supports reading and writing the same format as the standard
Squeak VM.

57

Recent attempts at re-implementing or re-engineering the Squeak
VM have shown that good performance is difficult to achieve
[2, 13, 17]. To us, Squeak appeared to be too slow to actually emulate
in JavaScript, and too complex to subdivide into an interpreter layer
and browser graphics layer.

Potato, an earlier Squeak VM experiment written in Java, allowed
us to asses the performance of our approach, and served as basis for
the SqueakJS design in many respects, like the mapping of Squeak
objects to JavaScript objects or the separation of the VM into the
interpreter and a primitive handler.

The fact that SqueakJS represents Squeak objects as plain
JavaScript objects and integrates with the JavaScript garbage collec-
tion (GC) allows existing JavaScript code to interact with Squeak
objects. This has proven useful during development as we could
re-use existing JavaScript tools to inspect and manipulate Squeak
objects as they appear in the VM. This means that SqueakJS is not
only a “Squeak in the browser”, but also that it provides practical
support for using Smalltalk in a JavaScript environment.

In this paper, we report our experience with this implementation,
highlighting the following items in particular:

• the mapping of Squeak objects in the VM to JavaScript objects
with direct references,

• a hybrid garbage collection scheme to allow Squeak object
enumeration without a dedicated object table, while delegating
as much work as possible to the JavaScript GC,

• a Web-appropriate adaption of file management to load and store
Squeak images and other file types supported within Squeak,
and

• the interaction with JavaScript for clipboard access, graphics,
debugging, and providing plugins, that allowed us to use a rapid-
prototyping approach to VM development.

The rest of this paper is structured as follows: We describe our
rationales for resolving various issues that emerged in our attempt
to implement a Squeak VM in the browser. A description of the
implementation details of SqueakJS, highlighting its innovative
approaches, follows in Section 3. We evaluate our findings in
Section 4 and put SqueakJS into perspective with other work in
Section 5. Finally, Section 6 presents some lessons learned and
suggestions for future work.

2. Approach
The core of SqueakJS is inspired by Potato, a Squeak VM written
in Java. The sources of its precursor, Dan Ingalls’s 2008 original
“JSqueak”, served as reference. Some fundamental design decisions,
such as the mapping of Squeak objects to JavaScript objects or the
separation of the VM into the interpreter and a primitive handler are
exactly as in Potato. Some parts of the interpreter were transcribed
literally, just removing Java’s type annotations. Even some bugs
were faithfully transcribed and only fixed later.

Apart from using another programming language, there are also
differences in the SqueakJS implementation. For example, there is
no object table, corresponding to the WeakReference array that is
used in Potato for object enumeration.

These implementation differences, however, are less important
than the context for which SqueakJS is intended. Java applications
are less accommodating to direct manipulation development than
JavaScript applications where live objects are inspected and manip-
ulated with developer tools at run-time. Besides Browser-provided
introspection tools, self-supporting development environments in the
browser such as the Lively Kernel provide developers with malleable
tools that can be easily adapted for specific use-cases. In Lively, most
tools are parts [10]—parts are compositions of morphs [11] with
associated, instance-specific behavior. In this context, the proper-

Figure 2. A Lively tool to load Squeak images, inspect, and debug
SqueakJS

ties inherited from Potato are beneficial and allowed us to tailor
Lively’s tools towards inspecting and debugging the VM to provide
immediate feedback during the development of SqueakJS.

2.1 Getting it Going
Squeak has been implemented a number of times by now. The
process to get it up and running roughly consists of the steps
described by Dan Ingalls [8]:

• implement a new image reader and writer,
• write a new interpreter and essential plugins such as BitBlt and

FilePlugin, and
• compile the interpreter to make it practical.

Of these steps, only the first two apply to our context. We decided
early on to transcribe our implementation from the Potato sources.
The original Squeak VM is written in “Slang”, a subset of Smalltalk
with C semantics, which can be translated to C easily [6]. It does
not use any of C’s structured data types to describe objects. Instead,
Slang operates on words in memory, much like machine code would.
The Slang-to-C translator could be re-targeted to produce Java or
JavaScript, but that would keep these low-level semantics, which
does not map well to a high-level language. That is why Potato and
SqueakJS are not based on the Slang implementation.

Potato’s object representation departs significantly from that
of Squeak. All Squeak objects appear as plain Java objects, with
slots that store the information required by the VM such as instance
variables, class, format code, and indexable data. The same scheme
is carried forward in SqueakJS. In the context of Lively, this allows
us to easily adapt existing JavaScript tools to work on Squeak
objects. Once the image loader began working, we could compose
various Lively tools to create a virtual machine inspector, as shown
in Figure 2.

Because stack frames and threads (contexts and processes in
Squeak parlance) are Squeak objects as well, we can use the
inspector to watch the VM stack while it is executing and debug
any problems directly. This was useful early on to verify that
the image loader and scheduler work correctly, and that dispatch
actually worked when the VM started executing. Additionally, the
debugging support available in Squeak—to break at, step into, and
to disassemble methods—is available to the inspector as well.

58

2.2 Drawing to the Screen
Besides the interpreter, some way of drawing to the screen is
required. Squeak uses a BitBlt plugin to render into bitmaps, which
is fairly well separated from the rest of the interpreter. Potato only
supports 1 bit per pixel color depths and a minimal set of graphics
features. To support full color and all graphics features used in
modern Squeak and Etoys image, the much larger Slang code for
the BitBlt and WarpBlt plugins had to be transcribed to JavaScript.

Both BitBlt and WarpBlt can be simulated in Squeak, so con-
ceivably, the Smalltalk code could be executed directly to render
graphics. The R/SqueakVM (based on the Spy [2]) is an RPython-
based implementation of Squeak that uses this scheme [17]. How-
ever, even with RPython’s tracing just-in-time (JIT) compiler [1],
the performance of pure-Smalltalk BitBlt is still about an order of
magnitude slower than a C-based implementation, indicating that a
native (which in our case means JavaScript) implementation is still
preferable to achieve good performance.

SqueakJS exposes a module interface similar to that of regular
Squeak VMs, and BitBlt is implemented as an internal module, i. e.,
one that comes with the VM. A simple HTML5 canvas is used to
mirror the contents of the Squeak display object, a bitmap object
that contains an array of bytes. Whenever an update to the display is
needed, the Squeak system calls a primitive, which we use to update
the HTML5 canvas.

Another module required by modern Squeak images is the
“Balloon” 2D renderer. It supports anti-aliased drawing of graphics
primitives not available in BitBlt, e.g., Bézier curves (needed to
render TrueType fonts), and color gradients (used on various user
interface elements). Porting the Slang code for this module would
have been a major undertaking, likely resulting in a very slow
simulation. Instead, we use an off-screen HTML5 canvas to draw
these shapes, read the pixels back, and composite them over the
original Squeak bitmap.

2.3 Cleaning up Garbage
Many core functions in Squeak depend on the ability to enu-
merate objects of a specific class using the firstInstance and
nextInstance primitive methods. In Squeak, this is easily imple-
mented since all objects are contiguous in memory, so one can sim-
ply scan from the beginning and return the next available instance.
This is not possible in a hosted implementation where the host does
not provide enumeration, as is the case for Java and JavaScript.
Potato used a weak-key object table to keep track of objects to enu-
merate them. Other implementations, like the R/SqueakVM, use the
host garbage collector to trigger a full GC and yield all objects of a
certain type. These are then temporarily kept in a list for enumera-
tion. In JavaScript, neither weak references, nor access to the GC
is generally available, so neither option was possible for SqueakJS.
Instead, we designed a hybrid GC scheme that provides enumeration
while not requiring weak pointer support, and still retaining the
benefit of the native host GC.

SqueakJS manages objects in an old and new space, akin to a
semi-space GC. When an image is loaded, all objects are created
in the old space. Because an image is just a snapshot of the object
memory when it was saved, all objects are consecutive in the image.
When we convert them into JavaScript objects, we create a linked
list of all objects. This means, that as long as an object is in the
SqueakJS old-space, it cannot be garbage collected by the JavaScript
VM. New objects are created in a virtual new space. However, this
space does not really exist for the SqueakJS VM, because it simply
consists of Squeak objects that are not part of the old-space linked
list. New objects that are dereferenced are simply collected by the
JavaScript GC.

When full GC is triggered in SqueakJS (for example because the
nextInstance primitive has been called on an object that does not

have a next link) a two-phase collection is started. In the first pass,
any new objects that are referenced from surviving objects are added
to the end of the linked list, and thus become part of the old space.
In a second pass, any objects that are already in the linked list, but
were not referenced from surviving objects are removed from the
list, and thus become eligible for ordinary JavaScript GC. Note also,
that we append objects to the old list in the order of their creation,
simply by ordering them by their object identifiers (IDs). In Squeak,
these are the memory offsets of the object. To be able to save images
that can again be opened with the standard Squeak VM, we generate
object IDs that correspond to the offset the object would have in an
image. This way, we can serialize our old object space and thus save
binary compatible Squeak images from SqueakJS.

To implement Squeak’s weak references, a similar scheme can
be employed: any weak container is simply added to a special list
of root objects that do not let their references survive. If, during a
full GC, a Squeak object is found to be only referenced from one of
those weak roots, that reference is removed, and the Squeak object
is again garbage collected by the JavaScript GC.

2.4 Adapting Squeak for the Web
A general problem when running Squeak in a Web browser is the
asynchronous nature of JavaScript. While most VMs are imple-
mented as a main loop that simply executes until the VM is stopped,
SqueakJS needs access to input events that are generated by the
browser, and has to give the browser time to update the DOM. Our
solution to this problem is to have SqueakJS regularly break out
of its interpreter loop and schedule a timeout function to continue
running after events have been processed.

Another common problem of running JavaScript applications is
the question of file system access. While Squeak can work without
a file system, a lot of functionality would be missing without the
ability to store files. This presents a challenge for a system designed
to run in a browser. One option would be to upload files to and
retrieve them from a server. But this would require continuous
connectivity, and we want SqueakJS to be usable offline.

Three options are available to store data in a browser. The first
is browser cookies, on top these, simple key-value stores can be
implemented. However, cookies are limited to 4 kB and are not a
good fit to emulate a file system, considering that to save a modern
Squeak image requires from ten to hundreds of Megabytes. The
second option is the browser’s local storage [7]. Like cookies, the
amount of local storage per web page is limited, in most browsers
to 5 MB. Again, this prevents us from saving most modern Squeak
images. The third and most recent way to store files in a browser is
IndexedDB [14].

IndexedDB is the only viable option that provides enough stor-
age to be useful as a file system for SqueakJS. It can store arbitrary
JavaScript objects and is intended to have both an asynchronous
and synchronous application programming interface (API). How-
ever, all current implementations only provide the asynchronous API,
whereas Squeak expects file system calls to work synchronously.
Breaking out of the interpreter loop as described previously allows
the browser to process asynchronous events. However, accessing the
IndexedDB may take longer than one event loop. To be able to sim-
ulate a synchronous API, we additionally need to be able to freeze
the VM—instead of scheduling the next interpretation step, the main
loop simply stores a continuation to continue running when it is
unfrozen. When a file primitive is called, the VM is frozen, and the
callback that receives the IndexedDB unfreezes the VM. The same
scheme can be used to synchronize any asynchronous JavaScript
API that we want to expose. This is useful even for network opera-
tions, so that only SqueakJS, and not the entire browser, waits for a
response.

59

3. Implementation
Our implementation closely follows the Potato VM in its basic ap-
proach, but deviates to accomodate JavaScript’s execution environ-
ment. SqueakJS is publicly available on GitHub2.

3.1 Object Representation
Implementation of a Smalltalk virtual machine is facilitated by
the relatively clean separation between the byte code interpreter,
the object memory and the graphics system. As noted above,
Potato departed significantly from the Squeak object implementation
without introducing any major perturbations in the rest of the virtual
machine. All Squeak objects were mapped to Java objects with slots
for

• Squeak hash (short)
• Squeak format code (short)
• class (pointer)
• pointer fields (array of pointers for instance variables and

indexable fields)
• indexable binary data fields (array of bytes or ints)

As the only exception, SmallIntegers were represented by Java
Integer objects. This is similar to the tagged pointers in other
Squeak VMs which are used to represent immediate SmallInteger
values. In contrast, Floats are represented by full objects, but their
binary data slot was set to a Java Double so it could be accessed
more quickly in arithmetic primitives.

Essentially the same scheme is used in SqueakJS. Since the
layout of JavaScript objects does not have to be declared in advance,
slots are added only when needed. The pointers (instance variables
and indexable fields), words, and bytes slots are only present if the
object actually needs them, that is, there is at least one element.
We chose an array for storing instance variables rather than named
JavaScript properties because the bytecodes reference them by index,
not by name. SmallIntegers are directly represented by JavaScript
numbers. In places where the VM needs to distinguish SmallIntegers
from other objects it uses a typeof check.

For making common tests more efficient, SqueakJS also adds
flags to special objects. For example, the isNil property is added
to the nil object so that a test for being nil can be written without
having to compare it to the VM’s nil object. Floats are marked by
an isFloat property, and the numeric value is stored directly in
another property. The conversion to words happens on-the-fly, and
only when the image tries to index individual words of the Float
object.

In the C implementation, each object was uniquely identified
through its position in memory, exposed to Smalltalk as the oop
property. SqueakJS maintains the oop numeric property mainly for
identifying objects when saving a snapshot. The oop also serves as a
key when objects need to be added to a hash map temporarily (e.g.,
during “become” operations) because JavaScript does not provide
an object-keyed hash map. New objects are assigned consecutive
negative oops. A real oop is assigned when the object survives a
full garbage collection, and during compaction oops are adjusted to
account for released objects. This emulates the consecutive memory
layout of the C Squeak VMs which is manifest in the snapshot
format. The oop also helps to distinguish objects while debugging.
The essential properties for a Squeak object in SqueakJS are thus:

• hash (number)
• format (number)
• class (object)

2 https://github.com/bertfreudenberg/SqueakJS/

• oop (number)
• pointers (Array, optional)
• words (Uint32Array, optional)
• bytes (Uint8Array, optional)
• mark (false, present after surviving GC)
• nextObject (object, present only for objects in old space)

The implementation takes advantage of a few JavaScript idiosyn-
crasies like treating a non-existing property as false. For instance,
a newly allocated object does not have the mark property, while an
old object might have it set to true or false during GC. But the test
can simply be written as “if (obj.mark) ...” because both cases
test equally.

3.2 Object Enumeration and Garbage Collection
For object enumeration and finding all instances of a class, Squeak
uses a primitive to answer the “next object” for a given object, or the
next instance given a particular instance. The next object is easily
found since all objects are contiguous in main memory, so simply
adding the size of an object to the object’s address gives the address
of the next object. This is not possible for Potato or SqueakJS.

Since Java provides no facility for enumerating objects, Potato
used an object table for the sole purpose of enumeration, as required
by Squeak’s enumeration facility as well as to support object
mutation which involves enumeration implicitly. By making use
of weak pointer objects in the object table, it was possible to leave
the task of garbage collection entirely up to the Java runtime, a
key to that port. In this regard, it is similar to Hobbes, a VM for
the original Smalltalk-80 written for VisualWorks Smalltalk (see
Section 5.) Unfortunately, current JavaScript engines provide no
support for weak pointers. This means that the use of an object
table for enumeration was out of the question, since it would have
prevented all objects from being garbage-collected by the JavaScript
runtime.

An important innovation in the SqueakJS object memory is
the use of enumeration links in a subset of Squeak objects that
corresponds to long-lived objects, or what is commonly referred
to as “old space”. When loading an object snapshot, objects are
created as outlined above. Additionally, each object is assigned a
nextObject slot pointing to the next object. The first and last object
in this linked list is held in the VM, constituting the “old space”.
When a new object is allocated at runtime, it is not added to that
list immediately. Instead, it is only held by references from other
objects and released automatically when no longer referenced.

For old objects that are in the old space linked list, the “next
object” primitive can simply return the object’s nextObject. But for
a new object, which does not have the nextObject slot yet, a full
garbage collection is triggered. This adds the object (and all other
surviving new objects) to the old-space list, setting the nextObject,
so the enumeration can continue.

The full GC is a variation on mark-and-sweep: In the first phase,
all objects reachable from the roots are marked recursively. If a new
object is found in this phase, it is added to a temporary collection.
In the second phase, the old-space linked list is traversed, unmarked
objects are unlinked, and the mark of remaining objects is cleared.
Finally, the new objects from the first phase are linked to the end of
the old-space list. The discovery of new objects from the “virtual”
new space during the mark phase is what sets this GC apart.

Interestingly, a full garbage collection does not occur regularly
as in most other implementations, since our new space is essentially
unlimited. No objects are tenured outside the full GC, so there
is no need to regularly compact old space. In fact, that GC is
invoked only from operations that are known to be expensive in
the regular Squeak VM: become:, and allInstances / allObjects.

60

https://github.com/bertfreudenberg/SqueakJS/

These operations are avoided in general because of their cost, and
hence occur only in code sections that are not critical to performance.
For example, during running the benchmarks in section 4.2 not a
single full GC happened, even though about 15 million objects
were allocated. In contrast, the startup code of an Etoys image
does 12 allInstances calls resulting in as many full GCs, taking
on average 300 ms, tenuring 980 of 150,000 allocated objects. But
during normal operation, again, no full GCs occur.

3.3 Snapshotting
The Potato implementation, being a proof of concept only, did not
support saving object images that could be stored and resumed
elsewhere. The SqueakJS implementation provides this function in
the following manner.

A Squeak object image consists of a file header for basic
parameters followed by a literal memory dump of the object memory.
Objects are laid out consecutively, with each object consisting of
one to three header words followed by zero or more body words, as
determined by bits in the header words. Object references (oops) are
one word wide direct pointers to the address of the always-present
“last” object header word immediately preceding the object body.
That means the actual starting address of the object may be smaller
than its oop, in the cases where it has a two- or three-word header.

Strictly speaking, oops matching the C VM memory layout are
only needed while snapshotting. The SqueakJS runtime does not
need them. They could be generated before taking a snapshot by
walking the old-space list and accumulating object sizes. But for
the reasons mentioned in section 3.1 they are kept up-to-date by
the garbage collector, so after doing a full GC we can rely on all
objects having accurate oops. The total number of bytes needed is
maintained by the GC, too.

Snapshotting then means invoking a full GC which updates oops
and sets the nextObject links. An ArrayBuffer of the needed size
is allocated and wrapped in a DataView for typed access. The image
header fields are written. The linked list of objects is traversed and
each object writes a representation of itself to the memory buffer:
one to three header words encoding the class oop, format, hash, and
size, followed by the pointers (tagged for SmallIntegers and oops for
all other objects), words, or bytes. The finished snapshot is stored as
file in the browser’s IndexedDB (see section 3.6). It can be resumed
later in SqueakJS, or be exported to the user’s disk and resumed in
another Squeak VM.

3.4 Graphics System
As mentioned above the Squeak graphics system is relatively well
separated from the rest of the virtual machine (VM) by the BitBlt and
WarpBlt APIs. While the Potato proof of concept implementation
did include BitBlt, it only supported the simplest 1 bit per pixel
format and the simplest combination functions. While SqueakJS
benefits from the similar syntax of C and JavaScript, the accurate
and complete port of Squeak’s BitBlt and WarpBlt functions was a
significant part of the overall implementation task.

The implementation closely follows Squeak’s, using the same
approach of having various optimized variants of main loops for
different arguments, or handling the start and end words of a
line separately so the inner-most loop can be executed without
conditionals. Most operations need to be done word-by-word, which
is most efficient for 1 bit graphics because each word stores 32 pixels.
The only place where more than one word can be processed at a
time is when copying pixels without the need for shifting or color
mapping. In that special case we use Uint32Array’s subarray()
and set() functions to copy a full line at once. This optimization
helps with scrolling, in particular.

The final stage of rendering the screen bitmap to an HTML5
canvas object uses the putImageData() drawing call. The image

data is assembled in a Uint32Array by mapping each individual
pixel of 1, 2, 4, 8, 16, or 32 bit to a single 32 bit ABGR pixel as
required by the canvas API. This needs to be done even in the 32 bit
case because the order of color components differs between Squeak
and HTML. These conversions incur additional overhead compared
to the standard Squeak VM. In Section 4, this additional overhead is
visible in the greater slowdown incurred when actually drawing to
the screen versus just blitting between bitmaps.

3.5 Main Loop
In most Squeak VMs, the VM itself has a main loop that executes
byte codes until the system quits. Not so in SqueakJS: as described
in section 2.4, the VM needs to break out of its interpreter loop
periodically, to allow the web browser to update the screen or
provide new input events.

The interpreter has two entry points: interpretOne() for exe-
cuting a single byte code (which is used only when single-stepping
in the VM debugger), and interpret() for executing multiple byte
codes. The latter loops for a certain time, or until a primitive requests
an immediate return of control to the browser. This happens e.g.,
after drawing to the screen: to minimize the delay between draw-
ing and the change being visible to the user, the drawing primitive
requests to exit the interpreter loop immediately.

Also, break points can be set for various conditions, e.g., when a
certain method is executed or returns. When the condition is met,
the interpreter loop exits to let the debugger show that state.

To support asynchronous functions in primitives that need to
appear synchronous to the Squeak runtime, we implemented a
feature to “freeze” the VM. A primitive can call the VM’s freeze()
function, which returns a callback function for unfreezing. All
subsequent calls to interpret() are ignored until the unfreeze
function was called by the primitive’s asynchronous event handler.
That means the VM’s state remains unchanged until the unfreeze, so
the primitive is allowed to defer pushing a return value onto the stack
until the asynchronous operation is done. This is used for example
to support asynchronous file access (see below).

Input Events Whenever SqueakJS breaks out of the interpreter
loop, the JavaScript runtime has the chance to deliver new input
events. The canvas object that draws the Squeak display regis-
ters to receive the available input events, such as onMouseMove,
onMouseDown, onKeyDown and so on. In older Squeak images, two
primitives regularly check the state of the input devices. To support
that behavior, whenever SqueakJS receives an input event, we store
it in a queue. When the running Squeak code calls the stateful input
primitives, states are popped from the front of the queue, so all
events are processed in order. Newer Squeak and Etoys images use
an “event-driven” approach: they call a primitive that, instead of
checking the current state of the input devices, releases an appropri-
ate Event instance. If this primitive fails, the newer images can fall
back to using the stateful primitives, so SqueakJS only implements
these.

3.6 Files
As mentioned in section 2.4, a goal for SqueakJS was to provide
for offline storage. Persistent offline storage is a relatively new
feature for web browsers. The most common way is the browser’s
localStorage, which is synchronous, and very easy to use, but
only supports storing strings, and is usually limited in size to 5 MB.
Fortunately, all major browsers now support the IndexedDB client-
side storage: Firefox since version 4, Chrome since version 11, and
Internet Explorer since version 10. Safari support for IndexedDB
is forthcoming with version 8 (and we implemented a fallback for
older versions). IndexedDB stores arbitrary JavaScript objects, and
has more generous size quotas, but current browsers only provide
an asynchronous API.

61

Squeak VM (Slang) R/SqueakVM (Python) SqueakJS (JavaScript)

Interpreter 5000 700 1000
Image & Object Memory 4000 1600 800

Primitives 2000 1200 1800
BitBlt 3000 900 1000

Table 1. Approximate lines of code for various VM concerns in different Squeak VMs

To optimize access times, the FilePlugin is implemented with
a combination of localStorage and IndexedDB. Directory entry
information (name, size, directory flag, creation date, modification
date) is serialized as a JSON string per directory and saved in
localStorage. It is accessed very often so the ability to access
it synchronously is helpful. Also, it takes a relatively small amount
of space. Due to idiosyncrasies of Squeak, often files are opened
and closed without actually accessing the file contents.

The file content is put into the IndexedDB. When the file content
is needed, it is loaded from the database into memory. Since every
database access is an asynchronous operation, the VM is frozen until
this read operation is finished. Write operations are performed in
memory only. It is stored to the database only when the file handle
is closed or explicitly flushed. The VM does not need to wait until
the write finishes (similar for deleting a file). A single copy of the
file contents in memory is shared for all open file handles of the
same file. The file handles are reference-counted, and the memory
is released when the last handle is closed.

A potential drawback of this scheme is that the two storages
could get out of sync. This has not been a problem so far. If it
becomes a problem, a file system check could restore consistency,
or directory information could be stored in IndexedDB as well.

To interact with the host file system, SqueakJS handles drag and
drop of files from the disk into the Lively world—Squeak image
files are loaded and run, graphics are read in-image and loaded
as Bitmaps. Files can also be stored into the host file system, by
generating an object URI in the HTML page, which can be saved to
the file system by the user.

3.7 Embedding
While SqueakJS is developed inside Lively, we have taken care not
to depend on Lively. The VM is implemented in a single JavaScript
file. For demonstration purposes we have written a simple harness
that runs Squeak without Lively. It consists of a 10 line HTML page,
30 lines of JavaScript to emulate the Lively module and class system,
and 200 lines to download an image, set up input and output, and run
the VM. Because the overhead of that harness is considerably lower
than the full Lively environment, it works nicely even on mobile
devices such as an iPad, and supports browsers that cannot run the
full Lively system, such as Internet Explorer and Firefox.

3.8 Extensions
SqueakJS can be extended with modules, just like most regular
Squeak VMs. There is an internal and an external modules interface.
Internal modules are part of the VM itself, they simply expose
primitives by name instead of by index. An example for an internal
module is the FilePlugin.

External modules are implemented outside the core VM. The
interface is purely object-based. Which module is implemented
in which file is unknown to the VM. A module object is simply
registered by name:

Squeak.registerExternalModule('ModuleName ',
moduleObject);

The module object needs to have a field named exports which
references all provided primitive functions by name. If a function

1 var SimplePlugin = function() {
2 var proxy;
3 function initializeModule(interpreterProxy) {
4 proxy = interpreterProxy;
5 };
6

7 function primitiveNavigatorInfo(argCount) {
8 if (argCount !== 1) return false; // fail
9 var which = proxy.stackInteger(0);

10 if (!proxy.success) return false; // fail
11 var result;
12 switch (which) {
13 case 1: result = navigator.userAgent; break;
14 case 2: result = navigator.language; break;
15 }
16 if (!result) return false; // fail
17 var resultObj = proxy.makeStString(result);
18 proxy.vm.popNandPush(1 + argCount, resultObj);
19 return true; // success
20 };
21

22 return {
23 exports: {
24 initializeModule:
25 initializeModule,
26 primitiveNavigatorInfo:
27 primitiveNavigatorInfo,
28 }
29 }
30 };
31

32 // register plugin in global Squeak object
33 Squeak.registerExternalModule('SimplePlugin',
34 SimplePlugin());

Listing 1. A simple Squeak Plugin

is exported as initializeModule then it will be executed when
loading the module, passing the VM’s primitive handler as argument.
This is similar to passing the interpreterProxy in C-based VMs,
it allows the module’s primitive functions to interact with the VM,
foremost to read arguments from the stack and push a result back. An
example external module is SimplePlugin.js as shown in listing 1.

4. Evaluation
We have evaluated SqueakJS on two accounts: the amount of code
it took us to produce a working version, and the performance
compared to the regular Squeak VM. Because we are interested in
running SqueakJS in any modern browser, we provide performance
results for different major browsers.

4.1 Lines of Code
SqueakJS aims to be small enough to be understandable and modular
enough to be easily extended. Table 1 compares the lines of code
in the regular Squeak VM, R/SqueakVM, and SqueakJS directly
used for certain VM concerns. Note that both the Squeak VM and
the R/SqueakVM require a translation toolchain to generate C code,
which has not been counted towards the required lines of code. For

62

0

50

100

150

200

250

300

Bytecodes per second Sends per second

R
e
la

ti
v
e
 S

lo
w

d
o

w
n

Platform

Chrome 38

Firefox 34

Internet Explorer 11

Safari 7

Figure 3. Overall speed: Bytecodes per second, sends per second.
Each bar shows the arithmetic mean of 5 runs, normalized to the
Squeak 3.9 interpreter VM.

Squeak, we have only counted the source code required for the
so-called Interpreter VM, that does not include code for a JIT.

4.2 Performance
To measure the performance of SqueakJS in various scenarios,
we used five benchmarks across Chrome 38, Firefox 34, Internet
Explorer 11, Squeak VM 3.9, and Safari 7. We used an older version
of the Squeak VM, because newer versions cannot load the Squeak
mini image we used for testing. Our benchmarks are as follows:

blt measures the efficiency of the BitBlt implementation. It renders
alternating patterns of pixels to a bitmap, without drawing it to
the screen.

draw measures how fast the VM can push updates the the screen. A
Mandala is drawn repeatedly and flushed to the display.

fib measures the impact of large stack depths and many sends by
calculating Fibonacci numbers recursively.

fill measures the performance when allocating a large object and
filling it with constant data.

prims measures raw bytecode performance by finding primes in a
loop using a prime sieve.

richards measures allocation and send performance by simulating
an operating system kernel.

Timing results of these benchmarks are presented in Figure 4. To
make our measurements comparable, we report the arithmetic mean
of five benchmark runs along with bootstrapped [4] confidence
intervals showing the 95 % confidence level. The raw numbers for
these browsers as well as those of Squeak 3.9 and Potato/JSqueak
are included in the appendix (Table B and Table C).

A method, tinyBenchmarks, is included in Squeak to measure
raw speed of sends and bytecode processing. It is used by various
VMs to give an indication of the number of bytecodes and sends per
second. Inverse speedup (i.e., slowdown) in bytecodes per second
and sends per second is given in Figure 3.

These results show that SqueakJS is, depending on the browser,
consistently between one and two orders of magnitude slower than
the Squeak Interpreter in C. Note also that these numbers do not
change significantly if we disable breaking out of the VM to process
browser events or run them on the headless V8 VM.

We have not spent time optimizing the JavaScript code because
using SqueakJS already feels responsive. We already regard these
performance results as acceptable, but also see much room for
optimization. For example, we are planning to add a just-in-time
compilation to JavaScript.

5. Related Work
Squeak virtual machines The root for all Squeak implementa-
tions is the original Squeak VM [8], that aims to provide an open
Smalltalk-80 system [5]. Initially, the original VM did only pro-
vide an interpreter-based execution, hence it is sometimes called
interpreter VM; it serves as the reference implementation for other
Squeak VMs. A Squeak Web Plugin based on this VM has been avail-
able for several years; however, the plugin runs completely isolated
from the browser, thus, not providing any interaction from within
the browser, let alone JavaScript.

Another well-known Squeak VM is the CogVM [15], providing a
fully functional JIT compiler for Squeak. Cog’s primary concern is
performance. Both are written in Slang [6], a Smalltalk subset that
directly translates to C.

The RoarVM [16] implements Squeak with a focus on exploiting
manycore hardware. It is written directly in C++.

Potato3 and its ancestor JSqueak are implementations of Squeak
in Java. R/SqueakVM, based on Spy [2], is an implementation of
Squeak in the PyPy framework [17]. It is implemented in a subset
of Python, RPython, to test its viability as VM platform.

NaClSqueak4 is a deviation of the Squeak interpreter VM,
modified to run natively on the NativeClient framework of the
Chrome browser family. Emscripten provides a similar option to
NaCl, compiling C code directly into JavaScript. While to the
best of our knowledge there is no Squeak VM compiled with
Emscripten, PyPy (which is based on the same RPython translation
toolchain that R/SqueakVM uses) has been successfully compiled
using Emscripten, and the same might work for R/SqueakVM
also. However, both NaCl and Emscripten focus on whole-system
translation, implement a C semantics, and are not intended for
rich interactions with the JavaScript environment. In this regard,
NaClSqueak and a hypothetical Emscripten-compiled Squeak VM
come close to the Squeak Web Plugin. Their most direct advantage
is near native performance through highly optimized JavaScript
code, but they are difficult to debug and instrument from JavaScript.
Additionally, NativeClient is only available to Chrome browsers.

Dynamic languages on dynamic languages Squeak itself can be
run on top of Squeak within its Simulator. While being slow, this
provides means of introspection into the Squeak VM. However, these
means are limited to the C-oriented view of Slang; objects of the
hosted Squeak image cannot be accessed as such. In SqueakJS,
objects of the hosted Squeak are readily available.

Since Self 4.0, a Smalltalk implementation [18] is an optional
part of the Self distribution. Here, Smalltalk is directly translated to
Self bytecode, without loss of expressiveness; there is no difference
between running Smalltalk code and running Self code in “self
includes: Smalltalk”.

Amber5 is a Smalltalk dialect implemented in JavaScript. It
includes a complete development environment and a Smalltalk-to-
JavaScript compiler. Amber does not interpret bytecodes but parses
Smalltalk source code. Hence, it is not possible to load pre-exisiting
Squeak image files. The performance of Amber is in the same order
of magnitude as SqueakJS. It is possible to directly call JavaScript
from Amber Smalltalk code.

3 http://sourceforge.net/projects/potatovm/
4 https://github.com/yoshikiohshima/NaClSqueak/
5 http://amber-lang.net/

63

http://sourceforge.net/projects/potatovm/
https://github.com/yoshikiohshima/NaClSqueak/
http://amber-lang.net/

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

blt draw fib fill prims richards

R
e
la

ti
v
e
 E

x
e
c
u

ti
o

n
 T

im
e

Platform

Chrome 38

Firefox 34

Internet Explorer 11

Safari 7

Figure 4. Benchmark execution time results. Each bar shows the arithmetic mean of 5 runs, normalized to the Squeak 3.9 interpreter VM.

Hobbes by Bykov is a VM for the original Smalltalk-80 written
in VisualWorks Smalltalk and later ported by Ingalls to Squeak/
Smalltalk.

Whalesong [19] (Racket), Biwa6 (Scheme), and Skulpt7 (Python),
among others, are JavaScript implementations of VMs for dynamic
languages.

Other languages on top of JavaScript O’Browser [3] (OCaml),
BicaVM8 (Java), and Doppio9 (Java), among others, are JavaScript
implementations of VMs for static languages.

For a plethora of languages, including Dart, CoffeeScript, Type-
Script, the Google Web Toolkit (Java) and others, source-to-source
compilers exists that emit JavaScript code as result of the compila-
tion process. Browsers then execute JavaScript, rather than the code
of the source language directly.

6. Conclusion and Future Work
We have presented our experience with implementing SqueakJS,
a fully compatible implementation of a Squeak VM that runs in
modern Web browsers. We were able to develop SqueakJS quickly
using a rapid prototyping approach to VM development. We started
from the earlier Potato design, which was small enough to be a
tractable experiment, yet complete enough to be motivating. From
Potato, SqueakJS inherits its mapping of Squeak objects to native
JavaScript objects that can be inspected and manipulated using
other JavaScript tools. This allowed us to take advantage of mature
JavaScript tools for development and debugging and made a Web-
appropriate adaption of file and image-file management possible.

We also designed and implemented a hybrid GC scheme to allow
for Squeak object enumeration without a dedicated object table,
while delegating as much work as possible to the JavaScript GC.
SqueakJS rarely has to do manual garbage collection, and even then
our algorithm provides good performance, pausing only in our setup
for about300 ms with a typical object memory of 300,000 objects.

We have found that the Squeak VM approach to provide a virtual
environment without direct access to platform libraries was useful

6 http://www.biwascheme.org/
7 https://github.com/skulpt/skulpt/
8 https://github.com/nurv/BicaVM/
9 http://int3.github.io/doppio/about.html

for our implementation. The Squeak plugin interface that abstracts
from many platform-specific details was implementable even in the
JavaScript environment.

Some non-essential primitives have fallback code in Squeak, so
they can initially be skipped during the implementation, and only be
added as an optimization. This made implementing easier. It would
have been nice if all non-essential primitives had working fallback
code in image, so that implementing Squeak runtime support on
new platform can be carried out even faster.

There are different directions for future work. Firstly, we want
to make SqueakJS feature-complete so it can be used as a drop-
in replacement for a regular Squeak VM. Weak references and
finalization are still missing, as are many modules, e.g., to allow
SqueakJS to play sounds or perform network requests. Secondly, to
improve performance, we are planning to add a JIT that compiles
Squeak methods to JavaScript. We will investigate separating event-
processing and bytecode interpretation; currently, the constant
switching between both imposes a performance trade-off. Another
significant increase in responsiveness would come from improving
BitBlt performance. One idea would be to run BitBlt in a separate
process to utilize multiple cores. It might also be possible to re-
implement it using GPU processing via WebGL. Lastly, we would
like to package SqueakJS in a way to be easily used on any web
page, transforming it from a novelty to a serious tool. This also
means improving compatibility with a wider range of web browsers
on both desktop and mobile platforms.

SqueakJS is still a very young project, but already performs well
enough to be usable, and is complete enough to run both old and
modern Squeak images.

References
[1] C. F. Bolz. Meta-tracing Just-in-time Compilation for RPython. PhD

thesis, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich Heine
Universität Düsseldorf, 2012.

[2] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nierstrasz,
L. Renggli, A. Rigo, and T. Verwaest. Back to the Future in One
Week—Implementing a Smalltalk VM in PyPy. In Self-Sustaining
Systems (S3), volume 5146 of Lecture Notes in Computer Science,
pages 123–139. Springer, 2008.

[3] B. Canou, V. Balat, and E. Chailloux. O’Browser: Objective Caml on
Browsers. In ACM SIGPLAN Workshop on ML, pages 69–78. ACM,
2008.

64

http://www.biwascheme.org/
https://github.com/skulpt/skulpt/
https://github.com/nurv/BicaVM/
http://int3.github.io/doppio/about.html

[4] A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their
Application, chapter 5. Cambridge, 1997.

[5] A. Goldberg and D. Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[6] M. Guzdial and K. Rose. Squeak—Open Personal Computing and
Multimedia. Prentice Hall, 2002.

[7] I. Hickson. Web storage. W3C Recommendation, 2013.
[8] D. H. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to

the Future: the Story of Squeak, a Practical Smalltalk Written in Itself.
In Conference on Object- Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 318–326. ACM, 1997.

[9] A. Kay. Squeak Etoys, Children & Learning. Technical Report RN-
2005-001, Viewpoints Research Institute, 2005.

[10] J. Lincke, R. Krahn, D. Ingalls, M. Röder, and R. Hirschfeld. The Lively
PartsBin: A Cloud-Based Repository for Collaborative Development
of Active Web Content. In Hawaii International Conference on System
Science (HICSS), pages 693–701. IEEE, 2012.

[11] J. Maloney. Morphic: The self user interface framework. Self, 4, 1995.
[12] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and M. Resnick.

Scratch: A Sneak Preview. In Conference on Creating, Connecting and
Collaborating through Computing (C5), pages 104–109. IEEE, 2004.

[13] S. Marr and T. D’Hondt. Identifying a Unifying Mechanism for
the Implementation of Concurrency Abstractions on Multi-language
Virtual Machines. In Conference on Objects, Models, Components,
Patterns (TOOLS), volume 7304 of Lecture Notes in Computer Science,
pages 171–186. Springer, 2012.

[14] N. Mehta, J. Sicking, E. Graff, A. Popescu, J. Orlow, and J. Bell. Web
storage. W3C Candidate Recommendation, 2013.

[15] E. Miranda. The Cog Smalltalk Virtual Machine: Writing a JIT in a
High-level Dynamic Language. In Workshop on Virtual Machines and
Intermediate Languages (VMIL), 2011.

[16] D. Ungar and S. S. Adams. Hosting an Object Heap on Manycore
Hardware: an Exploration. SIGPLAN Notices, 44(12):99–110, 2009.

[17] L. Wassermann. Tracing Algorithmic Primitives in R/Squeak-VM.
Master’s thesis, Software Architecture Group, Hasso-Plattner-Institut
Potsdam, 2013.

[18] M. Wolczko. self includes: Smalltalk. In Workshop on Prototype-Based
Languages (co-located with ECOOP), Linz, Austria, 1996.

[19] D. Yoo and S. Krishnamurthi. Whalesong: Running Racket in the
Browser. SIGPLAN Notices, 49(2):97–108, 2013.

[20] A. Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In
SPLASH’11 Companion (Wavefront), pages 301–312. ACM, 2011.

65

Appendix
For reference, we present the raw data for our benchmarks in
Table C and Table B. Due to operating system restrictions, it
was impossible to run all Squeak platforms on the same machine.
Therefore, the numbers for Safari are normalized to Squeak on OS X
while all numbers of the other platforms are normalized to Squeak
on Windows.

Table A lists all exact version numbers of the platforms used.

Full version

Squeak 3.9 SqueakVM 3.9
Potato 0.1 Potato (formerly JSqueak) 0.1
Firefox 34 Firefox 34.0a1 (2014-07-23)
Chrome 38 Chrome 38.0.2002.0
Internet Explorer 11 Internet Explorer 11.0.9600.17207
SqueakOSX Squeak 4.2.5beta1U
Safari 7 Safari 7.0.5 (9537.77.4)

Table A. Exact platform versions

Benchmark Safari 7 SqueakOSX
mean error mean error

blt 539.600 ms ± 46.126 24.000 ms ± 1.640
draw 1251.600 ms ±126.036 40.200 ms ± 5.660
fib 790.200 ms ±175.777 18.200 ms ± 0.392
fill 254.000 ms ± 81.655 2.800 ms ± 0.392
prims 266.400 ms ± 99.794 5.000 ms ± 0.000
richards 5393.000 ms ±757.060 185.200 ms ± 3.124

Safari 7 SqueakOSX
mean error mean error

Bytecodes 16655888 4051326 782878362 13360834
Sends 565604 82545 21313809 490523

Table B. Benchmarks and speeds, raw numbers (run on OS X on
Intel Core i7-4850HQ CPU @ 2.30 GHz)

B
enchm

ark
C

hrom
e

38
Firefox

34
InternetE

xplorer
11

Potato
0.1

Squeak
3.9

m
ean

error
m

ean
error

m
ean

error
m

ean
error

m
ean

error

blt
1121

.800
m

s
±

19
.584

982
.800

m
s
±

188
.140

564
.000

m
s
±

8
.129

252
.400

m
s
±

19
.418

25
.800

m
s
±

0
.733

draw
3337

.800
m

s
±

86
.112

5451
.600

m
s
±

44
.438

1717
.400

m
s
±

51
.153

0
.000

m
s
±

0
.000

9
.400

m
s
±

7
.244

fib
2912

.000
m

s
±

16
.883

1448
.400

m
s
±

82
.329

671
.000

m
s
±

7
.094

150
.200

m
s
±

5
.382

18
.800

m
s
±

0
.392

fill
1147

.400
m

s
±

18
.988

765
.000

m
s
±

72
.171

263
.800

m
s
±

2
.659

5201
.400

m
s
±

82
.381

3
.200

m
s
±

0
.392

prim
s

1745
.000

m
s
±

22
.079

594
.600

m
s
±

198
.044

263
.800

m
s
±

1
.143

391
.800

m
s
±

408
.781

5
.800

m
s
±

0
.392

richards
13816

.400
m

s
±

116
.125

11684
.000

m
s
±

2844
.545

5643
.000

m
s
±

45
.448

8249
.000

m
s
±

6761
.833

182
.600

m
s
±

3
.136

C
hrom

e
38

Firefox
34

InternetE
xplorer

11
Potato

0.1
Squeak

3.9
m

ean
error

m
ean

error
m

ean
error

m
ean

error
m

ean
error

B
ytecodes

2296769
8200

8186019
214742

15157722
82399

22126742
245474

657239930
17551026

Sends
135157

625
737809

19835
591498

1307
2685416

62465
20096527

702311

T able
C

.
B

enchm
arks

and
speeds,raw

num
bers

(run
on

W
indow

s
on

IntelC
ore

i5-4300U
C

PU
@

2.80
G

H
z).N

ote
thatPotato

could
notrun

the
draw

benchm
ark

due
to

its
incom

plete
B

itB
ltim

plem
entation,and

thatthe
filland

richards
benchm

arks,both
ofw

hich
putm

uch
pressure

on
the

G
C

,perform
very

badly
on

Potato.

66

	Motivation
	Approach
	Getting it Going
	Drawing to the Screen
	Cleaning up Garbage
	Adapting Squeak for the Web

	Implementation
	Object Representation
	Object Enumeration and Garbage Collection
	Snapshotting
	Graphics System
	Main Loop
	Files
	Embedding
	Extensions

	Evaluation
	Lines of Code
	Performance

	Related Work
	Conclusion and Future Work

