
Solving Interactive Logic Puzzles With Object-Constraints

An Experience Report Using Babelsberg/S for Squeak/Smalltalk

Maria Graber1 Tim Felgentreff2 Robert Hirschfeld2

Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

1 maria.graber@student.hpi.uni-potsdam.de
2 firstname.lastname@hpi.uni-potsdam.de

Alan Borning
University of Washington

Seattle, WA, USA
borning@cs.washington.edu

ABSTRACT
Logic puzzles such as Sudoku are described by a set of prop-
erties that a valid solution must have. Constraints are a
useful technique to describe and solve for such properties.
However, constraints are less suited to express imperative in-
teractions in a user interface for logic puzzles, a domain that
is more readily expressed in the object-oriented paradigm.

Object constraint programming provides a design to in-
tegrate constraints with dynamic, object-oriented program-
ming languages. It allows developers to encode multi-way
constraints over objects and object collections using exist-
ing, object-oriented abstractions. These constraints are au-
tomatically maintained at run-time.

In this paper we present an application of this design to
logic puzzles in the Squeak/Smalltalk programming environ-
ment. We argue that our implementation facilitates event-
driven applications with constraints on different parts of the
system, by moving the burden to maintain the constraints
from the developer to the runtime environment.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints

General Terms
Languages

Keywords
Constraints, Object Constraint Programming, Constraint
Imperative Programming, Babelsberg

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
REBLS ’14 Portland, Oregon USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Logic puzzles are declarative. These puzzles can be solved

without any world knowledge other than the rules of the puz-
zle and logical deduction techniques. A famous example is
Sudoku. The rules of a logic puzzle describe properties that
should be maintained while solving the puzzle. For exam-
ple, in Sudoku, the properties are that each row, column,
and box contain the numbers from 1 to 9 exactly once. The
properties of a logic puzzle can be formulated as formal con-
straints, which a constraint solver can use to find one or
more solutions or to check if a solution input by the user is
valid [?].

User interface frameworks such as Morphic [?] are inher-
ently imperative – the user interface consists of compositions
of Morphs that have state and react to user input events.
Morphic was first implemented in Self, with later implemen-
tations in Squeak [?] and JavaScript [?].

Babelsberg [?] is a design to integrate constraints into
object-oriented languages in a way that allows programmers
to dynamically create and satisfy constraints on objects.
The design is a strict extension of the object-oriented seman-
tics of the underlying host language. Babelsberg uses object-
oriented method definitions to define constraints rather than
a constraint domain-specific language (dsl) [?, ?, ?]. As a
consequence, Babelsberg respects encapsulation and object-
oriented abstractions. The design also supports solver fea-
tures such as constraint priorities [?] and incremental re-
solving [?]. Recently, the design has been extended to allow
multiple constraint solvers to cooperate to find a solution [?].

This design lends itself well to build interactive user inter-
faces for logic puzzles where the puzzle rules are expressed
as constraints on the Morphic objects. In a standard im-
perative programming language, constraint solving and sat-
isfaction is implemented explicitly. Using just Morphic in
a standard imperative language, developers have to ensure
that all event sources that might change the user interface
resatisfy constraints or call an external constraint solver.
In contrast, Babelsberg maintains constraints automatically,
regardless of how the system was perturbed. This reduces
the amount of knowledge the developer has to have about
possible event sources for the Morphs. We argue that this is

more in line with the encapsulation and abstraction desired
in object-oriented applications.

An incomplete aspect of the existing Babelsberg design
was that it only allowed constraints on objects and their
parts, but did not operations on structures such as collec-
tions. In the context of logic puzzles the rules are usually
defined on sets of objects (for example, Sudoku constraints
are defined on rows, columns, and boxes.) We extended the
Babelsberg design to support operations on collections of
objects.

The contributions of this work are:

• We describe an implementation of the Babelsberg de-
sign in Squeak/Smalltalk.

• We describe extensions to Babelsberg that let the pro-
grammer conveniently specify constraints on collec-
tions.

• We present a technique for Morphic applications to
interact with constraints, using as a running example
an interactive Sudoku application

2. OBJECT CONSTRAINT PROGRAM-
MING IN SQUEAK

This section describes how constraints are expressed in our
Squeak implementation of Babelsberg, called Babelsberg/S.
For our examples, we use the rules of a Sudoku puzzle.

1 constraint := [(sudoku at: 1 at: 1) between: 1 and: 9]
2 alwaysSolveWith: solver.

Listing 1: Defining the domain of a Sudoku cell

?? shows the constraint for defining the domain of one Su-
doku cell. In general, a constraint in Babelsberg/S is spec-
ified as a block that evaluates to a boolean — if the block
evaluates to true, the constraint is satisfied. The constraint
is created by sending the message alwaysSolveWith: to the
block. The argument should be an instance of Constraint-
Solver. It is also possible to solve the constraint with a
default constraint solver, which is global inside the Squeak
image, by sending alwaysTrue. As mentioned in ??, the
constraint is defined by using object-oriented method defi-
nitions in Squeak rather than a dsl. The variable sudoku

in ?? represents the grid of cells in the interactive applica-
tion and the method between:and: is a predefined predicate
on Squeak numbers that just checks whether the receiver’s
value is between the upper- and lower-bound arguments.

Constraint Construction in Babelsberg/S.
To construct the constraint, the constraint block is exe-

cuted in a different execution mode called constraint con-
struction mode, which uses symbolic execution [?, ?] to
create constraint expressions from the code. The block is
only evaluated in constraint construction mode when either
alwaysTrue or alwaysSolveWith: are sent to it, otherwise
it is just an ordinary Squeak block.

After constraint construction has interpreted the block,
the generated constraint expressions are added to a Con-

straint object, which is passed to the constraint solver. We
explain the solving process in more detail in ??. If solving
succeeds, the method alwaysSolveWith: returns the newly
created constraint object. This object can then be used for

Figure 1: The architecture of Babelsberg/S con-
straint construction mode

reflection (e.g., to inspect which variables participate in the
constraint) as well as to dynamically disable and re-enable
the constraint. If solving fails, an exception is raised, which
must be handled by the programmer. In that case, the con-
straint is not added and the system remains unperturbed.

Squeak/Smalltalk includes an in-image Smalltalk inter-
preter that we instrumented to implement constraint con-
struction mode. The resulting architecture is shown in ??.
Squeak stack frames can be reified into instances of sub-
classes of the ContextPart class. These provide methods to
interpret each bytecode. This facility is used by the Squeak
debugger. Babelsberg/S uses the instrumented interpreter
to evaluate the constraint block. The alwaysTrue method
creates a new Process (a Smalltalk green-thread) that is
interpreted stepwise using the interface of the ContextPart

objects. Where interpretation in constraint construction
mode deviates from normal Smalltalk semantics, we use
ContextS [?] to instrument methods whose behavior needs
to change inside a constraint construction mode layer.

Consider the above constraint: the block
[(sudoku at: 1 at: 1) between: 1 and: 9] is compiled
into bytecode. A new Squeak process is created (but not
scheduled) by sending the method newProcess to it. The
process has a stack with exactly one frame (a ContextPart

object.) That frame’s program counter is set to 0 and
it contains the bytecode for the constraint block. The
Babelsberg/S interpreter then steps through this frame
by interpreting the bytecodes one by one, including doing
method lookup and creating new frames as needed. An
important consequence of this is that a variable binding
that is used as receiver in a constraint block cannot be
allowed to change, because then the lookup, and thus the
constructed constraint, might be invalid. Thus, for ??, the
solver cannot simply find a collection that already satisfies
the constraint and change the binding of the sudoku variable.
Instead, it has to change the contents of the Sudoku to
satisfy the constraint. This restriction does not apply to
bindings that were created during constraint construction,
such as return values of methods – so the solver can (and
will) change what the method at:at: returns when sent to
sudoku.

The modified interpreter creates ConstraintVariable ob-
jects for instance variables that are accessed through acces-
sor methods. All methods are then called on these Con-

straintVariable objects. Operator methods such as +, -,
or <= construct constraint expressions instead of evaluat-
ing directly. Other methods that the solver does not di-
rectly support are partially evaluated to break them down

into the primitive operations. In the case of between:and:,
for example, the constraint constructed from partially
evaluating the method would be equivalent to specifying
n >= lower and: [n <= upper] directly. By re-using exist-
ing methods, Babelsberg/S supports the object-oriented
abstractions that already exist in the system. This is
equivalent to the Babelsberg implementations in Ruby and
JavaScript [?].

Additionally, the interpreter creates instance-specific
method wrappers to intercept access to these variables. The
wrappers delegate read and write access to the correspond-
ing ConstraintVariable, which calls the solver as needed
to keep the constraints satisfied and returns the value of the
variable from the solver’s solution.

In contrast to JavaScript or Ruby, Squeak/Smalltalk does
not allow instance-specific behavior directly. All methods
and instance variables are declared on the class. How-
ever, wrapping accessors on the class of any encountered
object would cause all instances of that class in the sys-
tem to go through our wrapper, which imposes considerable
performance overhead. To wrap only the encountered in-
stances, we create anonymous subclasses of their class, and
use Smalltalks become: facility to change the class of the ob-
ject to the anonymous subclass. We then install our wrap-
pers only on this instance-specific subclass.

This solution to instance-specific behavior means that
there is no run-time overhead when using objects that have
no constraints on them. Constrained objects are easily dis-
covered through Smalltalk’s meta-programming interface,
because their class has no name and only wraps the acces-
sors encountered in the constraint. We encountered methods
in the core system that check for the class of its arguments
not using the isKindOf: method (which works correctly for
instances of subclasses), but by directly comparing the class
pointer. Although one might consider this as a bug in the
method, we are working on a solution to instance-specific
behavior that is completely transparent to these common
uses of meta-programming.

Constraints on Collections.
The existing Babelsberg design does not support con-

straints on collections directly; rather, it was proposed to
use a specialized solver for collections [?]. To model an en-
tire Sudoku puzzle, we need to assert the constraint given in
?? for each cell. With the existing Babelsberg design, this
would either require a solver for collections that supports
domains for numbers, or alternatively, loop over the cells
imperatively (??.)

1 (1 to: sudoku size) do: [:index |
2 [(sudoku at: index) between: 1 and: 9]
3 alwaysSolveWith: solver].

Listing 2: Defining the domain of all Sudoku cells with
a loop

This code is incorrect if the size of the puzzle can change,
because new elements will not have constraints on them.
Additionally, if there is a method that hides the loop (e.g.
allCellsDo:), it might not always be clear for developers if
a method can be used in a constraint.

Babelsberg/S contributes to the development of more con-
sistent and human-readable constraints by supporting the
collection application programming interface (api) directly
in constraints, rather than requiring a specialized solver for

anySatisfy: ∃x ∈ array : f(x)
noneSatisfy: ∀x ∈ array : ¬f(x)
allSatisfy: ∀x ∈ array : f(x)

Table 1: Mapping from collection predicates to
declarative representation

arrays. As a result, the domain constraint of a Sudoku
puzzle can be expressed through sending allSatisfy: to
sudoku (??.)

1 [sudoku allSatisfy: [:cell | cell between: 1 and: 9]]
2 alwaysSolveWith: solver.

Listing 3: Defining the domain of all Sudoku cells with
the Collection api

The extension to support collections directly in
Babelsberg/S leverages the fact that Smalltalk comes with
only one fixed-size pointer array type, upon which the
Smalltalk collections library builds. This type provides three
methods implemented in primitives for all low-level access:
at:, at:put:, and replaceFrom:to:with:startingAt:.

Babelsberg/S subclasses the basic Array class and over-
rides the three low-level access methods to intercept any
modifications to the array. In addition, it overrides the
copyFrom:to: method, which is regularly used in Squeak to
access sub-sequences of an array.

In constraint construction mode, any array that is vis-
ited in the dynamic extent of the execution is transparently
replaced by the Babelsberg/S subclass. Besides the over-
ridden methods, this subclass is a completely transparent
proxy. Each element in the array that participates in the
constraint is wrapped in a ConstraintVariable.

The predicates of the collection api are straightforward
to support. The predicates anySatisfy:, noneSatisfy:, and
allSatisfy: are mapped as per ??. Note that for the first
relation, a disjunction over all elements must be created.
For solvers that do not support disjunctions, Babelsberg/S
forces the first element to satisfy the block. This prevents
the system from finding solutions in many cases. To find ad-
ditional solutions with solvers without disjunctions requires
backtracking in the case of unsatisfiable constraints. This is
not implemented yet, but is left for future work.

In general, any predicate method available on collections
can be used in constraints. For example, additional predi-
cate methods such as allDifferent are mapped to pair-wise
inequalities by simply interpreting their implementation in
constraint construction mode. Predicate methods are use-
ful to ensure properties on all elements of a collection, for
example, that they all be between 1 and 9 for a Sudoku.

Other methods that are useful in constraints reduce all ele-
ments of a collection and then express properties over those
reductions. Reduction methods including sum and count:,
which sum the elements or count the number of elements
which satisfy a particular condition, are represented as lin-
ear expressions. The constraints created with these methods
are reconstructed when the elements in the array change,
but since the size of arrays is fixed, the length of the linear
expressions is bounded. Such expressions are useful to state
constraints on a collection as a whole, rather than on each of
its elements. We have used this, for example, in our imple-
mentation of the Outside-Sum-Sudoku. Here, all elements
in a collection must sum to the number outside the Sudoku.

When one element changes, the others must change, too, to
ensure the total sum does not.

We have found few use-cases for the most general
collection-methods do:, collect:, and select: that could not
be expressed using more specific methods. These methods
create new collections from existing ones. What the de-
veloper means when using them and how to translate that
meaning to the solver is less clear in the general case, and
we do not support them for now. We have found that uses
of select:, collect:, and detect: in predicate expressions
can usually be replaced by the direct predicate methods.
We have found that the iteration method do: is usually just
used to express constraints on each element, and can usu-
ally be pulled outside of the constraint block. We might lift
this restriction in the future if we find a significant number
of uses of these methods in constraints that are much more
expressive than their direct predicate counterparts. Until
then, and for simplicity in the implementation, we do not
allow these methods in constraints.

3. MAINTAINING CONSTRAINTS AUTO-
MATICALLY

Once asserted, constraints need to continue to be satis-
fied until they are disabled, all objects they apply to are
garbage collected, or the program stops. To ensure this,
the Babelsberg design follows the perturbation model es-
tablished by the Kaleidoscope constraint-imperative lan-
guage [?]. This model is similar to reactive systems in
that changes to one part of the system propagate to other
parts. In reactive systems, these changes are made by sam-
pling a continuous process or through discrete events. In
Babelsberg, the changes are the concrete event of assigning
a new value to a variable that participates in a constraint.
These changes then potentially propagate to other variables
to keep constraints satisfied.

Each variable that participates in a constraint implicitly
reacts to programmatic changes to its value by calling one
or more solvers to re-satisfy the variable’s constraints. Our
wrappers around accessors intercept changes to variables
that were used in a constraint and call suggestValue: on
their associated ConstraintVariable. This adds a temporary
equality constraint for the new value to the underlying con-
straint solver. The solver tries to solve all constraints. If
the constraints are satisfiable, the new value is assigned. As
a side-effect, other variables might change to satisfy con-
straints. If the solver cannot find a solution, a runtime error
is generated and the new value is ignored.

In our Sudoku example, if a new value is assigned to a cell,
the Sudoku constraints are solved in the background. If the
solver finds a solution, the cell changes its value and the rest
of the puzzle is adjusted to keep the Sudoku solveable. That
is possible because the Sudoku application interacts with the
underlying constraints.

Babelsberg/S can accommodate a variety of constraint
solvers. Currently, it supports the Squeak implementation
of Cassowary [?], and Z3 [?] through an IPC interface.

4. EVALUATION
The constraints in Sudoku are easy to state, but not al-

ways easy to satisfy. A correct solution must assign each cell
a number between 1 and 9 inclusively, while at the same time
ensuring the no number occurs twice in a row, a column, or

Figure 2: The Morphic UI of the Sudoku puzzle

a block of 3 by 3 cells. We argue that logic puzzles such as
Sudoku are good examples for interactive constraint appli-
cations. The user interface (written in Morphic) is shown in
??. Some numbers (in black) are given initially. Each cell is
a standard Morphic text box, which allows the user to input
a single character (in blue). The system can also generate
hints (printed in red).

?? shows the constraints necessary to solve a Sudoku puz-
zle. These constraints use the Z3 constraint solver. Line 1
ensures that the user cannot change the numbers that were
given initially. In some solvers, such as Cassowary, stay
constraints can be used to express that the solver may not
change a given variable, or to only change it if the con-
straints cannot be satisfied otherwise. Stay constraints are
currently not supported in Z3, but will be in future versions.
Currently, the method addConstraintsForAllGivenNumbers it-
erates over cells and creates a constraint that each cell that
already has a value is always equal to just that value. Lines
3–4 assert the constraint that all cells must contain numbers
between 1 and 9. Finally, lines 6–10 ensure that no row, col-
umn, or 3×3 box of cells can have duplicate numbers.

Note that the Squeak collection api does not contain a
method allDifferent. Babelsberg/S adds this predicate
for convenience. It is a normal object-oriented method in
the Collection class that iterates over all elements in the
collection and tests them for pairwise inequality. In ordi-
nary code, this is just a test – the constraint interpreter,
however, creates an inequality constraint expression for each
comparison, exploding the allDifferent method into multiple
constraints that the solver can understand. This means also,
that subclasses can override the method and any different
behavior will be reflected in the created constraints.

Note also that the normal accessor methods for rows and
columns from Squeak Matrix objects are used, too. The Su-
doku grid is just a subclass of Matrix that, besides a method
to assert constraints on the given numbers, adds the atBox:

accessor method to access each of the 9 boxes of size 3×3.

1 sudoku addConstraintsForAllGivenNumbers.
2
3 [sudoku allSatisfy: [:cell | cell between: 1 and: 9]]
4 alwaysSolveWith: solver.
5
6 (1 to: sudoku rowCount) do: [:index |
7 [(sudoku atRow: index) allDifferent &
8 (sudoku atColumn: index) allDifferent &
9 (sudoku atBox: index) allDifferent]

10 alwaysSolveWith: solver].

Listing 4: All Constraints of a Sudoku Puzzle

As can be seen from ??, the amount of code necessary for
specifying all properties of a Sudoku puzzle is very small.
With these, a solver can solve an arbitrary given Sudoku
puzzle. The constraints are completely decoupled from the
specific Sudoku puzzles and their given numbers.

In Babelsberg, constraints can be constructed, enabled
and disabled at run-time, and, because they work correctly
with method polymorphism, it is possible to subclass a logic
puzzle to construct another by adding or removing con-
straints only. As an example, we have created Sudoku puzzle
subclasses for Diagonal Sudokus and Outside-Sum Sudokus.
In the former, the numbers of the two main diagonals have
to be all different, and in the latter, the first three numbers
in a row or a column must add up to a specific sum.

For a Diagonal Sudoku, provided there are accessor meth-
ods for the two diagonals, the method to create constraints
is shown in ??.

1 super createConstraints. "from normal Sudoku"
2 [(self diagonalFromTopLeft allDifferent)
3 and: [self diagonalFromTopRight allDifferent]]
4 alwaysSolveWith: solver.

Listing 5: The Diagonal Sudoku

With object-constraint programming (ocp), it does not
matter in which way a constraint variable or a constraint
changes. The constraint satisfaction automatically works on
each disturbance of the system. Currently, the values of cells
only change when the user enters a new value into the morph
that represents a cell. If that value is not a number between
1 and 9, or the Sudoku cannot be solved by adding this
value, the solver rejects the input. However, the constraints
encode no source for the change, so it does not matter if
the change actually occurred through keyboard input. The
Sudoku could also be calculated entirely by the computer, or
the game could allow remote users to send values over the
network. The constraints thus provide flexibility, because
the developer does not need to know all events that might
change the puzzle.

5. CONCLUSIONS
We have argued that ocp facilitates reactive systems in

which dependencies between objects can be declared as con-
straints. It modularizes the relationship between objects
and decouples constraint satisfaction from the application.
Constraints can be dynamically added and removed, and are
maintained automatically. This makes them useful for writ-
ing interactive applications. As an example, we implemented
applications for specifying and solving different variants of
Sudoku with constraints with a graphical user interface. The
user can change the values of the constraint variables inter-
actively without breaking the properties of the Sudoku. The
application reacts on the user input by resolving the under-
lying constraints.

Figure 3: Squeak debugger with constraints

There are two major directions for future work. Regard-
ing the implementation, we plan to implement an alternative
solution to provide instance-specific wrappers. This will im-
prove the compatibility of constrained objects with existing
Smalltalk code. We also plan to support more features of
the Babelsberg design as found in its JavaScript and Ruby
implementations, such as incremental resolving, local prop-
agation, and identity constraints.

Furthermore, we plan to leverage the Smalltalk meta-
programming facilities to explore how to aid developers in
debugging and understanding constraints. If incorrect con-
straints are generated, why? If the solver cannot find a
solution or is slow, what can be done? These are still open
questions for Babelsberg, because constraints cannot be eas-
ily debugged. In Babelsberg/S, because we are re-using the
Squeak debugger’s bytecode interpreter, we have extended
the debugger to support stepping into constraints (see ??).
When stepping through code with constraints, the debugger
shows which constraints are created and when the solver is
invoked. If developers suspect that constraints were created
incorrectly, they can remove the constraint, change the code,
and restart the method as appropriate. We plan to extend
this prototype into a debugger that is useful to answer differ-
ent questions that arise when developing with constraints.

Despite these avenues for future work, we think that
Babelsberg/S is already a useful implementation of object-
constraint programming and we plan to include it in a future
release of the R/Squeak distribution, a Squeak distribution
that includes research projects considered useful for general
purpose development1.

1https://www.hpi.uni-potsdam.de/swa/trac/
SqueakCommunityProjects

https://www.hpi.uni-potsdam.de/swa/trac/SqueakCommunityProjects
https://www.hpi.uni-potsdam.de/swa/trac/SqueakCommunityProjects

