
149

Visibility of Context-oriented Behavior and

State in L

Robert Hirschfeld　Hidehiko Masuhara　Atsushi Igarashi

Tim Felgentreff

One of the properties of context-oriented programming languages is the composition of partial module

definitions. While in most such language extensions the state and behavior introduced by partial definitions

are treated equally at the module level, we propose a refinement of that approach to allow for both public

and restricted visibility of methods and local and shared visibility of fields in our experimental language L.

Furthermore, we propose a new lookup mechanism to reduce the risk of name captures.

1 Introduction

Context-oriented Programming (COP) is an ap-

proach to software modularity [8]. COP languages

and systems provide constructs and mechanisms to

combine and abstract behavioral variations, which

can be activated and deactivated according to com-

putational context at run-time.

Most COP language extensions are add-ons to

other modularity mechanisms provided by the

host language—usually classes in a contemporary

object-orienged environment.

L is our exploration of the design of a COP lan-

guage that tries to avoid asymmetry between mod-

ule constructs for capturing partial or full imple-

mentations of system properties [10]. Instead of

having COP constructs adding behavioral varia-

tions to a base system implemented using other

文脈指向言語 L における挙動と状態のアクセス制御
Robert Hirschfeld and Tim Felgentreff, Hasso Plat-

tner Institute, University of Potsdam.

増原英彦, 東京工業大学大学院情報理工学研究科, De-

partment of Mathematical and Computing Sciences,

Tokyo Institute of Technology.

五十嵐淳, 京都大学大学院情報学研究科, Department of

Communications and Computer Engineering, Kyoto

University.

コンピュータソフトウェア,Vol.32,No.3 (2015),pp.149–158.

[研究論文] 2014 年 10 月 1 日受付.

大会同時投稿論文

composition mechanisms, L systems are based only

on partial objects and layers.

So far, state and behavior introduced by differ-

ent partial definitions are treated almost as if they

originate from one and the same defining module,

with the exception that they can be dynamically

activated and deactivated depending on the execu-

tion context on an individual basis. Visibility con-

trol respects the constraints imposed by the host

language, but usually does not go beyond that†1.
In a more dynamic execution environment where

composition units can be added to and withdrawn

from the system at run-time, it seems desirable

to assist developers with additional visibility con-

structs that allow them to describe which units of

behavior and state to be made available to or hide

from other parts of a composition.

With Lfour (our fourth version of L) we propose

a new visibility mechanism and lookup mechanism

that allow for that.

In the following we give a short overview on how

L developed and present our proposal in more detail

by discussing an example and describing a revised

†1 JCop [1] is an exception in that it introduced the

keyword thislayer to explicitly refer to a partial

method definition provided by the same layer the

currently executed code belongs to. While this al-

lows to achieve a limited form of visibility control,

it burdens the caller to be explicit about that for

every single activation.

150 コンピュータソフトウェア

object Person {
var name;
var address;
// constructors ...

}
layer LPerson {

object Person {
toString () {

↑ "Name : " + name;
}

}
}
layer LResidence {

object Person {
toString () {

↑ next()
+ " Address : " + address;

}
}

}

Listing 1 Lone Example.

lookup mechanism in its support.

2 L So Far

L went through a series of design steps, each

focusing on a particular aspect of the language.

We now briefly describe the key properties of each

version—simply named after their respective ver-

sion numbers ranging from Lone to Lfour—using a

running example.

Lone [10] was our first attempt to work on a

symmetric approach to modularity in a layer-based

language. Here we moved all partial method defi-

nitions into layers, leaving only the declaration of

state to object definitions forming the base layer.

In Lone methods are public and state is private but

shared among all partial method definitions of an

object. While this already removed asymmetry in

the definition of behavior, it still left us with a base

layer with respect to state.

In Listing 1, object Person defines all of its-

fields, here name and address—centrally and out-

side of any layer. Behavior—here the generation of

a String representation via toString—is partially

defined in layers LPerson and LResidence.

In Ltwo [10], we removed the concept of a base

layer entirely by moving state declarations into par-

tial object definitions. We decided that all such

declarations need to be repeated in all partial ob-

ject definitions that access the respective state—to

both remove centers and dependencies on them as

formerly introduced by base layers and help pro-

grammers understand a particular code fragment

layer LPerson {
object Person {

var name;
// setters ...
toString () {

↑ "Name : " + name;
}

}
}
layer LResidence {

object Person {
var address;
// setters ...
toString () {

↑ next()
+ " Address : " + address;

}
}

}

Listing 2 Ltwo Example.

by providing necessary information as close as pos-

sible. All declarations of fields using the same name

refer to the same (shared) state, both allowing and

requiring shared field definitions distributed across

layers. Due to the distributed nature of state decla-

ration we gave up on the notion of constructors but

assume state to be initialized via regular accessors

where appropriate.

In Listing 2, all field declarations are now lo-

cated in partial object definitions that require ac-

cess to the respective fields—here the part of object

Person defined in layer LPerson and also another

part of the same object defined in layer LResidence.

With Lthree [11], we introduced refinement re-

lationships for both layers and objects to al-

low for code sharing. We tried to avoid many

of the problems associated with multiple inheri-

tance and mixins [5] by explicit conflict resolution

at development-time via static Traits-like flatten-

ing [13]. Flattening ensures that all partial defi-

nitions imported from other layers or objects are

treated as if they were implemented directly in the

refining layers or objects. Conflicts are resolved by

selectively aliasing or hiding definitions.

In Listing 3, layer LResidence statically refines

layer LPerson by adding to the implementation of

its toString method of object Person. Since there

cannot be more than one version of toString of-

fered by one partial object definition, we alias the

partial method definition originating from LPerson

in LResidence as LPerson toString and with that

resolve a name conflict.

With the visibility control of behavior and state

Vol. 32 No. 3 Aug. 2015 151

layer LPerson {
object Person {

var name;
// setters ...
toString () {

↑ "Name : " + name;
}

}
}
layer LResidence refines LPerson {

alias {
Person :

toString () -> LPerson_toString ();
}
object Person {

var address;
// setters ...
toString () {

↑ LPerson_toString ()
+ " Address : " + address;

}
}

}

Listing 3 Lthree Example.

layer LPerson {
object Person {

shared var name;
// setters ...
public toString () {

↑ "Name : " + name;
}

}
}
layer LResidence {

object Person {
shared var name;
local var address;
// setters ...
public toString () {

↑ next()
+ formattedAddress ();

}
restricted formattedAddress () {

↑ " Address : " + address;
}

}
}

Listing 4 Lfour Example.

as introduced in Lfour , our example can be imple-

mented as shown in Listing 4. An explanation of

how local, shared, public, and restricted work

is provided in the remainder of the paper.

3 Visibility

We want to control visibility for both behavior

and state with respect to the objects and layers

they are defined in and used. (In this text we use

the terms behavior/methods and state/fields inter-

changebly.)

3. 1 Behavior

For behavior we want to allow for partial method

definitions to contribute to the public interface of

an object, either by changing the way the object

responds to a message received or by allowing an

object to respond to entirely new messages it was

not able to understand so far.

On the other hand, we want to explicitly mark

methods to be only accessible from within a set of

partial definitions. To not complicate matters un-

necessarily, we want to ensure that the visibility

of methods can be restricted to a particular layer

implementation.

We introduce two method markers named pub-

lic and restricted—public for partial method def-

initions of the former kind and restricted for the

latter.

Methods marked public can be accessed not

only from anywhere in the layer they are defined

in but also from any other partial definition in

any other layer, assuming that the current layer

composition—usually established by a sequence of

preceding with or without constructs—was set up

accordingly.

If a method is marked restricted, it can be ac-

tivated only if the corresponding message received

originated from the same layer that defines that

method. It is important to note that restricted

methods cannot be called via next, or put differ-

ently, methods from one layer can only proceed to

public methods if available. (next [11] is similar

to CLOS’ call-next-method [14] or ContextFJ’s

proceed) [10] in that it invokes the next available

partial method defintion of the same name and sig-

nature in the current composition.)

Also, restricted methods, when called within

their defining layer, have precedence over other

public partial definitions of the same method from

outer layers to prevent name captures.

For example as shown in Figure 1, method m2

of object O1 and layer L3 calls m1 and m3 directly

since both methods are declared restricted and in

the same layer as the calling m2 and so are consid-

ered first. (The code accompanying the composi-

tion in Figure 1 is presented in Listings 5 to 8 of

Section 4.)

152 コンピュータソフトウェア

Fig. 1 Composition with (L4 L3 L2 L1).

3. 2 State

For state we want to enable the interaction of par-

tial definitions via side effects since sharing fields

between methods has been shown convenient and is

common practice in object-oriented programming

from its inception.

But we also want to confine state so that it is only

visible from within a particular partial definition—

for now from within a partial object definition.

We provide two field markers named shared and

local—shared for field declarations of the former

kind and local for the latter.

Fields marked shared can be accessed from all

partial definitions of an object if declared there as

such. All these partial definitions then refer to one

and the same field meaning that, if changed from

within one partial definition, this modification is

the same to all partial definitions that participate

in sharing that field.

From outside a partial object definition, all fields

marked local cannot be accessed directly. With

that, state is not only confined to a particular ob-

ject but also to a specific layer.

In Figure 1 one can see that only the fields de-

clared in L3 (f1, f2, and f3) can be accessed from

methods defined there.

When layered, field declarations can shadow each

other. While there is no such mechanism like next

for fields, sharing resembles next since it allows

implicit state propagation in-between participating

partial definitions. However, there is an important

difference between the two: While control propaga-

tion via next can only proceed to layers more inner

than the current one, state propagation (via side

effects) goes both inward and outward.

Note that the visibility of fields is orthogonal to

their lifetime and that local fields keep their values

if their defining layers are inactive.

4 Composition Example

We illustrate some of the consequences of the ap-

plication of public/restricted and shared/local in

the following rather abstract example. We show

both a textual representation and a corresponding

visual illustration of a composition of layers of par-

tial object definitions.

The values assigned to fields and returned from

methods are strings encoded as follows: ‘L’ stands

for layer, ‘O’ for object, ‘f’ for field, and ‘m’ for

method. And the digits following the latter fur-

ther qualify the respective layer, object, field, or

method. For example, ‘L3O1f2’ was assigned to

field f2 of object O1 in layer L3 and ‘L4O1m3’ is

returned from method m3 of object O1 in layer L4.

Layer L1 (Listing 5) provides partial definitions

for object O1. There are four variables f1, f2,

f3, and f4, that can be set via the public method

setVars, and three more methods m2, m3, and m4.

All fields are shared fields so they can be altered

not only from within O1 of L1, but also by other

partial definitions of O1, assuming that f1 is de-

clared there to be a public field also. All methods

are public methods and with that contribute to O1’s

public interface—that is, the interface that can be

accessed from outside of L1 if L1 is activated.

Layer L2 (Listing 6) defines only local fields (f2,

f3, and f4) and restricted methods (m2, m3, and

m4) for object O1 so that L2’s partial definition of

O1 cannot directly cause side effects with other par-

tial definitions of O1 and does not add to O1’s public

interface.

Layers L3 and L4 (Listing 7) provide another mix

of shared and local fields and public and restricted

methods to make the composition discussed more

interesting.

While the assignment of fields and the implemen-

tation of methods follows the simple pattern men-

tioned above, method m2 of object O1 in layer L3

(L3.O1.m2) is different in that it returns a string

Vol. 32 No. 3 Aug. 2015 153

layer L1 {
object O1 {

shared var f1, f2 , f3, f4;
public setVars(_f1 , _f2 , _f3 , _f4) {

f1 = _f1;
f2 = _f2;
f3 = _f3;
f4 = _f4;

}
public m1() { ↑ ’L1O1m1 ’; }
public m2() { ↑ ’L1O1m2 ’; }
public m3() { ↑ ’L1O1m3 ’; }
public m4() { ↑ ’L1O1m4 ’; }

}
}

Listing 5 Layer L1.

layer L2 {
object O1 {

local var f2, f3 , f4;
public setVars(_f2 , _f3 , _f4) {

f2 = _f2;
f3 = _f3;
f4 = _f4;

}
restricted m2() { ↑ ’L2O1m2 ’; }
restricted m3() { ↑ ’L2O1m3 ’; }
restricted m4() { ↑ ’L2O1m4 ’; }

}
}

Listing 6 Layer L2.

that assembles the values of all of the fields accessi-

ble from that method and all of the return values of

the methods that can be called from partial method

m2 defined in layer L3 for object O1. Also, m2 is de-

clared public and so can be called also from code

outside of L1.

We compose the layers described above using

a sequence of with statements with interspersed

method calls for setting newly introduced instance

variables or fields (Listing 8).

We now explain the visibility of fields and partial

methods as the system composition evolves. After

the activation of layer L1 and the initialization of

the instance variables accessible from object O1’s

definition in L1 (<1>), the values that can be re-

trieved from fields f1, f2, f3, and f4 are the ones

set via the preceeding invocation of setVars.

The situation after activating layer L2 <2> is sim-

ilar. Here it is important to note that partial def-

initions introduced by L2 for object O1 can only

access fields f2, f3, and f4 but not f1 since f1 is

not declared for O1 in L2.

With the activation of layer L3 and the initial-

ization of the fields declared for object O1 (<4>),

we can again only access fields explicitly declared

layer L3 {
object O1 {

shared var f2;
local var f1, f3;
public setVars(_f1 , _f2 , _f3) {

f1 = _f1;
f2 = _f2;
f3 = _f3;

}
restricted m1() { ↑ ’L3O1m1 ’; }
// *** point of interest ***
public m2() {

↑ ’*’ + f1 + ’_’ + f2 + ’_’ + f3
+ ’=’ + m1() + ’_’ + next() + ’_’
+ m3() + ’_’ + m4() + ’*’;

}
restricted m3() { ↑ ’L3O1m3 ’; }

}
}

layer L4 {
object O1 {

shared var f1, f2;
local var f3;
public setVars(_f1 , _f2 , _f3) {

f1 = _f1;
f2 = _f2;
f3 = _f3;

}
public m1() { ↑ ’L4O1m1 ’; }
restricted m3() { ↑ ’L4O1m3 ’; }

}
}

Listing 7 Layers L3 and L4.

local var o = new O1();
with (L1) {

o.setVars(
’L1O1f1 ’, ’L1O1f2 ’, ’L1O1f3 ’, ’L1O1f4 ’);

// <1>
with (L2) {

o.setVars(
’L2O1f2 ’, ’L2O1f3 ’, ’L2O1f4 ’);

// <2>
wiht (L3) {

o.setVars(
’L3O1f1 ’, ’L3O1f2 ’, ’L3O1f3 ’);

// <3>
o.m2();
// => ’*L3O1f1_L3O1f2_L3O1f3 =\
// L3O1m1_L1O1m2_L3O1m3_L1O1m4 *’
wiht (L4) {

o.setVars(
’L4O1f1 ’, ’L4O1f2 ’, ’L4O1f3 ’);

// <4>
o.m2();
// => ’*L3O1f1_L4O1f2_L3O1f3 =\
// L3O1m1_L1O1m2_L3O1m3_L1O1m4 *’

}
// <5>
o.m2();
// => ’*L3O1f1_L4O1f2_L3O1f3 =\
// L3O1m1_L1O1m2_L3O1m3_L1O1m4 *’

}
// <6>

}
// <7>

}

Listing 8 Composition.

154 コンピュータソフトウェア

in that partial definition (L3 and O1). But here

field f2 is marked shared and so shares its value

of other public fields of the same name declared in

other partial definitions of O1—currently (<4>) in

L1 and later (<5>) L4.

When calling m2 at <4>, we activate m2 of O1 in L3

(L3.O1.m2), which will construct a string showing

the content the fields are referring to and the re-

turn values provided by the other methods callable

from there. (Even though m2 could call m2, it does

not in our example to avoid infinite recursion.)

After adding layers L3 and L4 to our composition

(see Figure 1 for a more visual illustration), calls to

method m2 show the values of all accessible fields

and the return values of all methods callable from

m2 with L3 and L4 activated. As with the previous

compositions, fields f1, f2, and f3 hold the content

just assigned via setVars (all starting with ‘L3’).

For the methods, calling m1 and m3 from L3.O1.m2

invokes restricted methods m1 and m3 from the same

layer m2’s definition is located. The invocation of

next from L3.O1.m2 will skip L2.O1.m2 since it is

restricted to L2.O1 (!) and proceed to the next

public version of m2, which is the one defined in

L1.O1.

With the activation of layer L4 (<4>), the value

returned by m2 is based on the current values of

L3.O1.f1, L3.O1.f2, and L3.O1.f3. This is be-

cause the m2 executed is that found in L3.O1 and

so m2 has only access to fields defined by L3.O1.

Here, ‘L4O1f2’ is the value set for L4.O1.f2 after

activating L4 (<4>), thus ‘L4’ at the beginning of

the string. Since L4.O1.f2 and L3.O1.f2 (and also

L1.O1.f1) are all declared shared, assignments to

any one of them will also be an assignment to all

of them!

After leaving the scope of L4—now with L3 be-

ing the outermost layer of our composition (<5>)

again—the result of calling m2 from here shows that

the side effect caused by L4 via the assignmet to f2

shared between L4.O1, L3.O1, and L1.O1 was pre-

served across layer activation/deactivation.

At <6> the values of f2, f3, and f4 were not af-

fected by side effects since all of L2.O1’s fields are

local. However, at <7> with all fields of L1.O1 being

shared, previous assignmets initiated from partial

definitions located in other layers but L1 show also

in L1.O1.

5 Lookup

One of the core mechanisms of COP language

extensions is the method lookup in layer composi-

tions. This lookup mechanism corresponds roughly

to the one employed by plain object-oriented pro-

gramming languages such as Smalltalk [7]. Here,

the system starts its search for a method to be exe-

cuted in response to a message received in the class

of the receiver object.

The mechanism employed in most of the COP

systems including ours work informally as follows:

For each message received by an object the lookup

tries to find a matching method implementation

starting from the outermost layer of the current

layer composition. If such method is found, it is

invoked. With the exception of next, which pro-

ceeds to the next layers closer to the object to find

a partial method with the same name and invokes

that implementation if found, all subsequent mes-

sage sends (including the ones sent to the current

receiver object itself) cause the lookup mechanism

to start over from the outermost to the innermost

layer until a corresponding method implementation

is found or the end of the lookup chain is reached

(which usually leads to a run-time error to be dealt

with by the system).

If employed as described above, our lookup leaves

us with a high risk of name captures of restricted

methods by other public methods with the same

name introduced by other layers that contribute to

the same object and composed after.

In our example in Listing 8 at <4>, if lookup

would follow the algorithm described above, the

call to m1 originating from m2 (L3.O1.m2) would

start from the outermost layer, here L4, and find

its public partial implementation of m1 of O1 in L4

(Figure 2). This might lead to surprises since the

intent of declaring L3.O1.m1 to be restricted is to

make sure that, while callable from L3.O1.m2 (same

layer), it can neither be invoked directly from out-

side of L3 nor the invocation be taken over by outer

code.

For Lfour we changed partial method lookup as

follows: (1) First check if the method to be called

is implemented as a restricted method in the same

layer as the method from which the message was

sent. (2) If there is such a method, continue execu-

Vol. 32 No. 3 Aug. 2015 155

Fig. 2 Old Lookup.

Fig. 3 New Lookup.

tion with that method, (3) otherwise proceed with

the lookup starting with the outermost layer of the

current composition.

This change was inspired again by the lookup of

Smalltalk—in this case in the context of messages

sent to super instead of self. As in many object-

oriented languages, self (or this) and super refer

to the receiver of a message. The difference with

messages sent to super is that lookup does not start

in the class of the receiver but in the superclass of

the class that implements the method where the

message send originates from, even if that partic-

ular method has been overridden in one or more

subclasses.

With that new lookup in place, name captures

like the one described above can be avoided (Fig-

ure 3).

6 Related Work

Scala’s traits [12] can be considered partial object

definitions without dynamic activation (that is, the

application of a trait must be specified statically be-

fore an instantiation of an object). Even though a

trait can override a public method of the base class,

it can only do so when this trait and the base class

extend the same interface that declares the method

to be overridden. This means that overriding pub-

lic methods is possible only for cases known and

planned for in advance. In addition, a trait cannot

declare a restricted method when a base class de-

clares a public method with the same name, even

if that name is not in a shared interface.

An instance variable or state declaration in Scala

has two roles: creation of accessors and allocation

of a store location. Since Scala treats accessors as

regular methods, they follow the visibility rules for

methods. Consequently, it is not possible in Scala

for two modules to declare a shared instance vari-

able without having a common interface in advance.

Ruby’s modules [6] can be considered partial ob-

ject definition without dynamic activation. Defi-

nitions in a module included later always precede

the ones of modules included earlier; even if defini-

tions are restricted. Surprisingly, restricted meth-

ods cannot be accessed even from the methods in

the same module.

Instance variables in Ruby (those accessed with

the @ mark before their names) are always shared

among modules. There is no visibility control

mechanism except explicitly declared accessor

methods.

Python’s multiple inheritance mechanism [16]

can be regarded a composition of partial class defi-

nitions. Method visibility in Python is achieved by

naming conventions and renaming. When a class

declares a method with a name beginning with dou-

ble underscores, the name becomes unique to that

class even if other classes used the same name in-

cluding underscores. This makes name clashes be-

tween public and restricted methods impossible, at

the cost of inconvenience to the programmers.

Instance variables in Python are treated the same

156 コンピュータソフトウェア

as methods. Leading double underscores make the

name unique to a class, which effectively makes it

restricted. Otherwise, instance variables are basi-

cally shared.

A comparison of access policies supported by

Scala, Ruby, and Python is provided in Table 1

in Appendix 7.

Stateful traits [3] [4] are an extension to stateless

traits [13]. Instance variables introduced by a state-

ful trait are considered to be private to that trait by

default but can be made accessible to an importing

client. Compared to L, this mechanism is static,

whereas visibility constrains on state in Lfour are

considered when composing layers and with that

state access at run-time.

7 Discussion and Outlook

For explaining the application of public and re-

stricted for methods and shared and local for fields,

we decided to always use these keywords every-

where in our code examples. We are aware of the

verbosity such keywords introduce and so suggest

as the default to assume methods to be restricted

and fields to be local if not marked otherwise.

To avoid confusion with other established uses

of private as an access modifier in languages like

Java [2] or C++ [15], we are reviewing alternative

names, but so far have not decided yet.

To reduce verbosity even more, we are consider-

ing the following replacements in future versions of

L: + for public, - for restricted, * for shared, and /

for local.

Another simplification we are contemplating is

the use of shared (+) and local (-) not only for fields

but also for methods.

Furthermore, the mechanisms to control visibil-

ity need to be integrated with our proposal on layer

and object refinement [11]. Also, adding visibil-

ity control to objects and layers and its interaction

with that of behavior and state needs to be inves-

tigated in future versions of L.

To allow for partial definitions to provide an in-

terface that cannot be layered any further once ac-

tivated, we are investigating some form of final to

allow for that at the level of methods, objects, and

layers.

After our rather informal investigation of possi-

ble language designs, we need to work on both L’s

foundations [9] for clarifying some of our ideas and

on implementations to better understand their ap-

plicability.

Acknowledgments

This paper is based upon work supported in part

by the Hasso Plattner Design Thinking Research

Program (HPDTRP) and SAP’s Communications

Design Group (CDG).

References

[1] Appeltauer, M., Hirschfeld, R. and Lincke, J.:

Declarative Layer Composition With the JCop Pro-

gramming Language, Journal of Object Technology,

Vol. 12, No. 2(2013), pp. 4:1–37.

[2] Arnold, K., Gosling, J. and Holmes, D.:

The Java Programming Language, 4th Edition,

Addison-Wesley, 2005.

[3] Bergel, A., Ducasse, S., Nierstrasz, O., and

Wuyts, R.: Stateful Traits, in Proceedings of

IWST’07, Lecture Notes in Computer Science,

Vol. 4406, Springer, 2007, pp. 66–90.

[4] Bergel, A., Ducasse, S., Nierstrasz, O. and

Wuyts, R.: Stateful Traits and Their Formaliza-

tion, Computer Languages, Systems and Structures,

Vol. 34, No. 2–3(2008), pp. 83–108.

[5] Bracha, G.: The Programming Language Jig-

saw: Mixins, Modularity and Multiple Inheritance,

PhD Thesis, University of Utah of Utah, 1982.

[6] Flanagan, D. and Matsumoto, Y.: The Ruby

Programming Language, O’Reilly, 2008.

[7] Goldberg, A. and Robson, D.: Smalltalk-80:

The Language and its Implementation, Addison-

Wesley, 1983.

[8] Hirschfeld, R., Costanza, P. and Nierstrasz, O.:

Context-oriented Programming, Journal of Object

Technology, Vol. 7, No. 3(2008), pp. 125–151.

[9] Hirschfeld, R., Igarashi, A. and Masuhara, H.:

ContextFJ: A Minimal Core Calculus for Context-

oriented Programming, in Proceedings of FOAL’11,

ACM, 2011.

[10] Hirschfeld, R., Masuhara, H. and Igarashi, A.:

L—Context-oriented Programming With Only Lay-

ers, in Proceedings of COP’13, ACM, 2013.

[11] Hirschfeld, R., Masuhara, H. and Igarashi, A.:

Layer and Object Refinement for Context-oriented

Programming in L, in Proceedings of 95th IPSJ

Workshop on Programming, IPSJ, 2013.

[12] Odersky, M.: The Scala Language Specification

Version 2.9, Technical report, Programming Meth-

ods Laboratory LAMP, EPFL, 2014.

[13] Schaerli, N., Ducasse, S., Nierstrasz, O. and

Black, A. P.: Traits: Composable Units of Be-

haviour, in Proceedings of ECOOP’03, Lecture

Notes in Computer Science, Vol. 2743, Springer,

Vol. 32 No. 3 Aug. 2015 157

2003, pp. 248–274.

[14] Steele Jr., G. L.(ed.): Common Lisp: The Lan-

guage, 2nd Edition, Digital Press, 1990.

[15] Stroustrup, B.: The C++ Programming Lan-

guage, 4th Edition, Addison-Wesley, 2013.

[16] van Rossum, G. and Drake Jr., F. L.: The

Python Language Reference, Technical report,

Python Software Foundation, 2014.

Appendix A

Table 1 compares access control policies in Lfour ,

Scala, Ruby, and Python, which are discussed

in Section 6. When there are member (either

M(ethod) or S(tate)) definitions of the same name

in a base module and a overriding module at the

same time with different access modifiers (either

pub(lic), priv(ate), shar(ed), or local), each table

entry indicates which definition or store-location

is accessed from different methods. The three let-

ters separated by a slash correspond to the module

in which the accessing method is defined, namely

the base module, the overriding module, or another

module, in this order. The letters, either B(ase),

overriding member

M S
Lfour pub priv shar local

pub O/O/O B/O/B

M priv B/O/O B/O/–

shar U/U/– U/O/–

S

local B/U/– B/O/–

Scala pub priv pub priv

pub O/O/O†1 †2

M priv B/O/O B/O/–

pub †2 †2

S

priv B/O/O B/O/–

Ruby pub priv (default)

pub O/O/O –/–/–

M priv O/O/O –/–/–

S (def) U/U/U†3
Python pub priv pub priv

pub O/O/O B/O/O

M priv O/B/B B/O/–

pub O/O/O B/O/O

b
a
se

(o
v
er
ri
d
d
en

)
m
em

b
er

S

priv O/B/B B/O/–

†1 The overriding module must be defined with the

“override” modifier as well.
†2 Compile error.
†3 No access control modifiers for instance variables that

are accessed through variables with an at-mark (@).

Table 1 Comparison of access policies.

O(verriding), U(nique), or – (prohibited) denote

the module that the accessed member belongs to.

For example, the second column (M priv) at the

first row (M pub) in the Lfour table has “B/O/B”,

meaning “when base and overriding objects respec-

tively define public and private method with the

same name, a call on the method dispatches to

the method defined in the base object unless the

method call is performed by the overriding object.”

Robert Hirschfeld

Robert Hirschfeld (hirschfeld@hpi.

de) is a professor of Computer Sci-

ence at the Hasso Plattner Insti-

tute at the University of Potsdam,

Germany. He is interested in im-

proving the comprehension and design of software

systems. Robert enjoys explorative programming

in interactive environments. He served as a vis-

iting professor at the Tokyo Institute of Technol-

ogy and The University of Tokyo, Japan. Robert

was a senior researcher with DoCoMo Euro-Labs,

the European research facility of NTT DoCoMo

Japan, where he worked on infrastructure compo-

nents for next generation mobile communication

systems with a focus on dynamic service adapta-

tion and context-oriented programming. Prior to

joining DoCoMo Euro-Labs, he was a principal en-

gineer at Windward Solutions in Sunnyvale, Cal-

ifornia, where he designed and implemented dis-

tributed object systems, consulted in the area of

object database technologies, and developed inno-

vative software products and applications. Robert

studied engineering cybernetics and computer sci-

ence at Ilmenau University of Technology, Ger-

many. (See also http://hpi.de/swa/)

Hidehiko Masuhara

Hidehiko Masuhara is a Professor

at the Department of Mathematical

and Computing Sciences, Tokyo In-

stitute of Technology. He received

his B.Sc., M.Sc., and Ph.D degrees

from Department of Information Science, Univer-

sity of Tokyo in 1992, 1994, and 1999, respec-

tively. His research interest is in programming

158 コンピュータソフトウェア

languages and programming environments, espe-

cially advanced modularization mechanisms, opti-

mization techniques, code recommendations, and

debuggers.

Atsushi Igarashi

Atsushi Igarashi is a Professor

at Dept. of Communication and

Computer Engineering, Graduate

School of Informatics, Kyoto Uni-

versity. He received his B.Sc.,

M.Sc., and Ph.D degrees from Department of In-

formation Science, University of Tokyo in 1995,

1997, and 2000, respectively. His major research

interest is in principles of programming languages.

He received the 20th IBM Japan Science Prize in

Computer Science in 2006 and Dahl–Nygaard Ju-

nior Prize in 2011. He is a member of ACM, IEEE

Computer Society, JSSST, and IFIP TC2 WG2.11

and served as Chair of SIG-PPL, JSSST from 2009

to 2012.

Tim Felgentreff

Tim Felgentreff (tim.felgentreff@

hpi.de) is a Ph.D student at the

Software Architecture Group at the

Hasso Plattner Institute (HPI) at

the University of Potsdam and a

member the HPI Research School for Service-

Oriented Systems Engineering since. His research

interests are around programming language con-

structs and virtual machines. (See also http://hpi.

de/swa/people/felgentreff/.)

