
A World of Active Objects for Work and Play
The First Ten Years of Lively

Daniel Ingalls
Y Combinator Research
San Francisco, CA, USA
Dan.Ingalls@ycr.org

Tim Felgentreff
Hasso Plattner Institute

Potsdam, Germany
tim.felgentreff@hpi.de

Robert Hirschfeld
Hasso Plattner Institute, Potsdam,

Germany
robert.hirschfeld@hpi.de

Robert Krahn
Y Combinator Research
San Francisco, CA, USA
robert.krahn@ycr.org

Jens Lincke
Hasso Plattner Institute

Potsdam, Germany
jens.lincke@hpi.de

Marko Röder
Y Combinator Research
San Francisco, CA, USA
marko.roeder@ycr.org

Antero Taivalsaari
Nokia Technologies
Tampere, Finland

antero.taivalsaari@nokia.com

Tommi Mikkonen
Tampere University of Technology

Tampere, Finland
tommi.mikkonen@tut.fi

Abstract
The Lively Kernel and the Lively Web represent a continu-
ing effort to realize a creative computing environment in the
context of the World Wide Web. We refer to that evolving
system simply as Lively. Lively is a live object computing
environment implemented using JavaScript and other tech-
niques available inside the browser. When first built in 2006,
it was a grand accomplishment to have created such a sys-
tem that would run in any web browser and that could be
saved and loaded simply as a web page. Since that time we
have learned a lot about the goals we had, the challenges
and opportunities that come with life in the browser, and the
exciting possibilities that still lie ahead.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Interactive environments; D.2.m [Miscel-
laneous]: Rapid prototyping; D.3.3 [Language Constructs
and Features]: Frameworks

General Terms Design, Experimentation

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

Onward! 2016, October 23-28 2016, Amsterdam, Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4076-2/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2986012.2986029

Keywords Web programming, Software as a Service, Live
Object System, Lively Kernel, Lively Web, Lively, JavaScript,
Morphic

1. Live Object Systems
Lively [12] is a live object system which provides a web
programming and authoring system to its users. By live ob-
jects we mean entities that can usually be seen, touched, and
moved and that will react in a manner prescribed by some set
of internal rules. A live object system is thus a kernel system
for creating, manipulating, and composing live objects. A
live object system is less and more than a web programming
environment. That kernel is much less than a web program-
ming environment; it may only allow the manipulation of
a few shapes and a few rules of behavior. Yet, from such a
kernel can be built an entire web programming environment,
a complex data visualization system, a visual programming
system, or even the kernel itself. In that sense it is much
greater than a web programming environment.

Producing a live object system is more of an artistic chal-
lenge. One must choose a suitable set of atomic objects to
begin with, a mechanism for composing them, a paradigm
for their behavior, and a simple yet general framework for
controlling all these properties. This may sound more tech-
nical, but the goal is an artistic one: to support the entire flow
from a sketch of an idea to a concrete manifestation to an-
imation of parts to a simulation of the whole and then to a
presentation or publication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4076-2/16/11...$15.00
http://dx.doi.org/10.1145/2986012.2986029

238

Many live object systems have come before Lively:
Sketchpad [26], Smalltalk-72 [2], ThingLab [1], Fabrik [13],
Smalltalk-76 [6], Squeak [11], and Etoys [14], to name
a few. The earlier of these are live constraint systems,
live dataflow systems, and live educational systems. Only
Squeak succeeds in being simple and yet general enough to
implement its entire user interface and ultimately its own
virtual machine. In that sense Squeak can be said to be a
universal live object system. Our goal for Lively was and is
to provide such a universal live object system that runs in
any web browser.

We consider the Morphic graphics architecture [22] –
originally pioneered in Self [30] – to be a uniquely powerful
framework for producing a simple live object system. It
defines a scene graph and paradigm for scripting behavior
and a scheduler for coordinating dynamic behavior of many
objects in complex relationships on the screen.

This paper begins with a brief history of live object sys-
tems and summarizes what it took to build the first such one
running in a web browser. We then trace a number of inter-
esting additions that have made Lively an ever more power-
ful tool for exploring the possibilities of live object systems
on the Internet, and some notable applications that have been
built and deployed using Lively. We note a number of exper-
iments that we have tried and not yet incorporated into the
Lively environment, and we observe some areas where we
feel there is work yet to be done. Finally, we put things in
a broader context of web programming and discuss ways to
make Lively and similar systems ever more useful to users
and relevant in the evolving world of the Internet.

2. How Lively Came to Be
Year 2005 found several of the authors at Sun Microsystems
Labs, the birthplace of the Java programming language, feel-
ing stifled by the static nature of this language and its devel-
opment systems. By comparison, web programming looked
like fun, and certainly more au courant. However, the Web
too seemed burdened by the complexity of HTML, CSS,
PHP and other technologies developed by non-programmers
for non-programmers.

With the growth of the World Wide Web, it was obvious
to us that the web browser would became a universal plat-
form for graphical display. The JavaScript language, slipped
into the web standard almost as an afterthought, turned
out to have intriguing strengths. JavaScript was a garbage-
collected dynamic language that could behave much like
Smalltalk, only with the syntax of C and Java. It was tempt-
ing to consider re-purposing this language and the web
browser to recreate the conditions for creative programming
in the context of what was becoming a universal platform.
To investigate this possibility, we equipped a browser with
general (Java2D) graphics hooked to JavaScript, and added a
small class library (Prototype.js and some graphics support).
This allowed us to duplicate simple Java test programs in the

browser framework, which was very motivating. JavaScript
may not be the best programming language, but it was a
refreshing change from the complex Java frameworks avail-
able at the time.

It was exciting to see a much simpler system duplicat-
ing these test programs, but it still lacked the live object feel
of our earlier experience with Squeak. Feeling this frustra-
tion, and armed with this essential language and graphics
support, one of the authors over Christmas vacation 2006
implemented a Morphic system in JavaScript, and in a mat-
ter of weeks we had a working set of widgets, a live code
browser, in fact all the essential characteristics of a live ob-
ject system, running in a web browser.

Once we had Morphic running in a browser, we could
sense success within our reach but much remained to be
done. While we could edit code live in the system, it could
not be saved back into the source code base, so we had to
devise a bridge from the live code edits back to our source
files. At first we had direct access to source code files on
our local disks, but we knew that Lively, to be live web
software, must work entirely from a server. To that end we
devised a mechanism using WebDAV on our Apache server
to access an SVN repository with our code in it. Around the
same time, we wrote a Smalltalk-style code editor and file
format convention that allowed us to browse source code
by class and method name, even though they were stored
as JavaScript files that could be loaded at full speed in any
browser.

We needed a way to save Lively worlds, both for conti-
nuity of project development and for the release of useful
creations as web pages. For that, we implemented a conven-
tion whereby every morph in the scene graph of a Lively
world held its persistent state in a known format. This al-
lowed Lively worlds to be saved by walking the scene graph
tree and storing the state in a format similar to JSON.

Based on our experience with Squeak, we were commit-
ted to providing a completely general graphics system, with
lines and curves and the ability to translate, scale and rotate
any of the graphical elements in a general manner. For this
we had relied on our Java2D plugin, but we knew that many
users would not have access to such a plugin. Fortunately,
at about this same time, browser support for SVG was be-
coming available, and we were able to rewrite our graphics
implementation layer on top of SVG.

With the ability to access code and stored worlds in a
repository and support for SVG graphics available in the
browser, Lively was finally ready to be released as a live
object system that runs in any browser. It was released to the
public on October 1, 2007.

The following key points are from the press release notes
from the October 2007 release of Lively:

1. It comes live off a web page. There is no installation.
The entire system is written in JavaScript, and it becomes
active as soon as the page is loaded by a browser.

239

Figure 1. Lively Kernel from October 2007.

2. It can change itself and create new content. The Lively
Kernel includes a basic graphics editor that allows it to
alter and create new graphical content, and also a simple
IDE that allows it to alter and create new applications.
It comes with a basic library of graphical and computa-
tional components, and these, as well as the kernel, can
be altered and extended on the fly.

3. It can save new artifacts, even clone itself, onto new
web pages. The kernel includes WebDAV support for
browsing and extending remote file systems, and thus has
the ability to save its objects and ”worlds” (applications)
as new active web pages.

Back in mid-2000’s, the concept of Software as a Service
had not been popularized widely yet, so the idea of running
an entire software development environment within the web
browser was seen as radical by our peers. However, we
actually wanted to go further and turn the entire Web into
a playground for dynamic objects.

3. The Evolution of Lively
While the first release of Lively was somewhat of a triumph,
much work remained to be done, some by choice, some
by necessity. Almost immediately we had need of a decent
module system. We were bound to the list of .JS files in the
preamble of our stored pages, and it was very difficult to
restructure our system for that reason. Also, as the system
grew, there were many files that were only needed for spe-
cial operations, so we wanted to be able to load parts of the
system on demand. Exploring in advance of other develop-
ment systems on the Web, we had to do this on our own in
2008, but it quickly repaid our efforts by simplifying organi-
zation and reducing our load times.

Next, feeling the need for a more forgiving storage sys-
tem, we implemented a client-side Wiki system. In this man-
ner, all files retained prior versions, so that it was always
possible to revert changes if something went wrong. This
robustness extended to stored web pages and applications as
well as to the JavaScript files for the core system. At this

time a new more powerful version of the code browser for
system classes was developed to partner with the new mod-
ule system and the underlying SVN repository that we used
at the time (see Figure 2).

Figure 2. Lively Wiki from 2009. Lively Kernel pages can
link to each other. Multiple users can asynchronously modify
objects on a page, performing not only text editing but also
graphical manipulation and programming. Full access to the
version history of individual pages allows users to revert
changes. Unlike traditional wikis, the entire environment
including the wiki system itself can be edited from inside
Lively, rendering the development of Lively Kernel self-
supportive [15].

As Lively matured, so did much other dynamic content on
the Web, most of it in HTML format. While mashup creation
– the ability to combine code and content flexibly on the fly
– was a key strength of Lively, we were constrained by our
dependence on SVG for a rendering architecture. Therefore
in 2010 we undertook a somewhat traumatic rewrite of the
entire system to convert our Morphic rendering system to be
compatible with HTML. This was complicated by the fact
that in our original SVG-based implementation we had had
to implement our own text system from scratch. There were
no live text editors for the Web at the time of our release, so
all of this code had to be rewritten from SVG to HTML.

As we left the convenience of SVG’s excellent graphical
transformation architecture, we had to subvert CSS to per-
form those functions, while leaving the Morphic program-
ming layer as clean and simple as ever. We also undertook to
go even further and support not only simple HTML, but also
embedded SVG elements for lines and curves, and Canvas
elements for arbitrary sketches and bitmap images. The fruit
of this labor was that we were soon able to include web con-
tent such as Google maps and embedded videos in Lively,
all as easily as any other components. While this was a huge
amount of work (born almost entirely by one of the authors),
it is probably the single factor most responsible for work in
Lively remaining relevant to this day.

Also in 2010, two of the authors were asked to prototype
a visual guidance system for Daimler that would help drivers
to find the nearest gas station or, better, the one that would
be near enough but require the least extra driving (see Figure

240

3). To make for a smooth demonstration, they constructed a
palette of useful components that could easily be dragged
in to the evolving application as required. Soon they were
also using the palette to save new components for later use
and, naturally, wanting to save these components into the
Lively repository. This facility was enormously valuable and
quickly evolved into the PartsBin that we know today in
Lively (see Figure 6) [21].

Figure 3. First draft of an interactive fuel consumption
demo shown in Figure 5 from 2010. The Connections visu-
alization tool in the final simulation evolved while building
the application itself.

In the very same prototyping effort there was a need to
quickly and simply add scripts to simple shapes and ele-
ments of the demonstration without having to go through the
system browser and its JavaScript class definitions stored in
module files. For this, in an afternoon, they used Lively itself
to build a simple code window in which they could attach
simple JavaScript methods to any object in the world. This
too was immediately useful and quickly evolved into the Ob-
ject Editor that we know in Lively today (Figure 7). The fact
that two of the most useful tools in the Lively environment
came about in a week of working on customer prototypes
and demos illustrates the fact that nothing helps to improve
a system more than a real-world challenge and real users.

By 2011 we had become aware of the Node.js project and
started following it with interest. We shared the same need
for a decent module system and good JavaScript coding stan-
dards and libraries. We experimented with a proxy from our
Apache server to a Node.js server, and finally in 2012 we
moved all our system over to use Node.js. The wonderful
thing about Node.js for us was that it looked and worked so
much like Lively; it was built on the V8 JavaScript engine,
and was compatible to the point of being able to run much
of our code unaltered. We quickly developed the ”Subserver
Viewer” that allowed us to create and test new server pro-
cesses in a minute, without having to reload either client or
server. Suddenly we were able to work with our server as
easily as with any other Lively component. In Lively, it is a
simple matter to have one window open on client code, and
another on server code, and to make and test corresponding
changes in both in seconds.

Figure 4. Lively Fabrik from 2008, a data flow based end-
user programming environment in Lively. The whole system
consists of UI components, scripts, components and wires
establishing data flows between them.

Figure 5. Dataflow visualization of an interactively scripted
auto fuel consumption simulation from 2010. Leveraging
Lively Fabrik, Lively Connection bindings allow JavaScript
objects to observe each other. With this generalization we
were able to extend the domain-specific dataflow develop-
ment style into a general Lively Kernel feature for applica-
tion and tool development.

A part of our vision for Lively has always been to escape
the browser per se, and to spawn and manage independent
processes anywhere on the Internet. With the introduction
of support for WebSockets in browsers beginning in 2012,
we started experimenting with new possibilities for Lively.
Soon a framework was developed for messaging between
active Lively Web sessions, called Lively-to-Lively, or L2L.
L2L promises to open Lively way beyond its current bounds.
We can begin to think not just of worlds of active objects,
but an entire connected universe of active objects as simple
and malleable as the Lively objects we know today. This
offers the possibility to incorporate an Internet of Things
with almost nothing new to learn or build. We have already
experimented with a real-time interconnection of all Lively
users that lets each know (and even see) what they are doing,
controlled by various privacy preferences of course.

A Lively-to-Lively message is a JSON object that carries
fields for sender, receiver, selector and arbitrary payload
data. Sender and receiver are UUIDs identifying the Lively

241

Figure 6. Lively PartsBin from 2011, a repository to share
live objects. Parts can be taken out, used, explored, modified,
and shared again. Unlike in conventional source code reposi-
tories, all those interactions are based on direct manipulation
of actual objects and not their abstract source code represen-
tation to better understand complex applications, tools, and
systems only by inspecting their visual representation [21].

Figure 7. Using a Halo context menu, shape and position of
Lively objects can be directly manipulated and more com-
plex editors opened. For example, the Object Editor can be
used for adding and modifying object-specific behavior as
scripts or connections.

component from which the message originates (to allow for
answer messages) and to whom which component is sent,
respectively. The selector is the name of a method that the
receiving side can implement. If such a method exists, it
is called with the message data in the receiver’s runtime
upon message delivery. If no matching method is available,
the system automatically returns a does-not-understand an-
swer message. With this direct and extensible messaging
scheme, Lively applications a) do not have to limit network-
based communication around the HTTP server-client re-
sponse model, and b) can dynamically add and remove
network services as required by applications. By connect-
ing Lively components via both WebSockets and WebRTC
channels (allowing direct browser-to-browser connections),
the Lively-to-Lively model allows practical peer-to-peer
communication. Moreover, since the messaging mechanism
is based on a simple JSON format, external systems can be
connected to the Lively-to-Lively network as well. Using
these facilities, a number of Lively applications such as the
user visualization and chat shown in Figures 8 and 9 as well
as remote development tools were created.

Figure 8. Part of a network visualization showing Lively-
to-Lively sessions of users and servers.

Figure 9. Lively-to-Lively group chat experiment using
WebRTC.

In parallel to the brief historical summary provided
above, Lively Kernel evolved into a number of variants
supporting different rendering technologies, such as the Qt
framework and WebGL. A more generalized mobile version
of the system – Cloudberry HTML5 mobile phone platform
– was also built at Nokia Research Center [29]. A short his-
tory and summary of the different versions is provided in
Table 1.

Figure 10. Collaborative HyperCard Application [4].

242

System Overview Features Applications
Lively Kernel
1.0 [12]

The original baseline and
showcase implementation
demonstrating the feasibility
of building a self-contained
programming environment
running inside a generic
web browser (Figure 1).

JavaScript source code
browser, reflective eval-
uation capabilities, lively
objects, Morphic graphics
framework implemented on
top of SVG.

Morphic windowing sys-
tem [23], Asteroids game,
Clock, 3D maze walker,
stock viewer, weather
widget, and many others.

Lively Kernel
1.5: Lively
Wiki [15]

Smalltalk-like source code
browser that provides a class
and method-centered view
on top of JavaScript mod-
ules.

Self-supporting devel-
opment, Apache SVN-
WebDav used as backend.

CPU Visualization. Quick
Brown Fox Game. Fuel and
Gas Station Demo (Fig-
ure 5). Lively Journal. De-
velopment Layers [18]. Web
Cards (Figure 10)

Lively Kernel
2.0: Lively
Webwerkstatt
[19]

Fully self-supporting devel-
opment. New rendering ar-
chitecture developed inside
the Webwerkstatt Wiki.

Create and adapt content,
applications, and tools in the
same way. Direct manipula-
tion and scripting of objects
and publishing them as parts
in a shared PartsBin [19].
Runtime adaptatation via
Development Layers [18]
and Context-oriented Pro-
gramming [9].

Presentation Tools (Fig-
ure 12). Lively note taking
App. Block heat and
power plant Simulation and
Simulation Environment
(Figure 13). Interactive
Explanations for Algo-
rithms (Figure 11). Neo4J
Query Workbench in D3
Visualization.

Lively Kernel
3.0: Lively
Web [21]

Implemented a backend
service based on Node.js
[3] that enables running
JavaScript also on the
server.

Server-side Lively develop-
ment through Node.js. De-
velopment of Lively Ker-
nel as GitHub Project. Intro-
duction of debugging tools
through source code trans-
formation.

Traffic Simulation, Intro-
duction to Programming
Courses.

Lively for Qt
[25]

A variant of the Lively Ker-
nel that uses Qt APIs for ren-
dering and accessing native
platform features.

Feature-compliant with
Lively Kernel 1.0; SVG
replaced with Qt Graphics
API. In addition, access
to various system APIs
enabled via Qt APIs.

Morphic windowing system
[23], Asteroids, Clock, 3D
maze walker, stock viewer,
map widget, various mashup
applications.

Lively 3D
[32]

3D enabled version of the
core ideas of the Lively Ker-
nel implemented on top of
WebGL.

3D rendering engine for
Lively applications based on
WebGL and 3D libraries that
implemented features that
are beneficial for 3D visual-
ization.

3D Golf Simulator, number
of 3D arcade games inspired
by game consoles.

Cloudberry
[29]

Fully functional smartphone
implemented using HTML5,
CSS, and JavaScript,
demonstrating the feasibil-
ity of a ”zero-installation”
application platform in the
mobile context.

Connectivity features
needed for a smartphone,
cloud backend to support
multi-device operations.
HTML5 App Cache lever-
aged to avoid excessive
application (re)loading.

All the generic smartphone
applications – even system
apps such as the Phone Di-
aler – implemented as web
pages.

Table 1. Versions and derivatives of the Lively Kernel.

243

Figure 11. Interactive tutorial examples illustrating Bal-
anced Search Trees and Alpha Beta Pruning.

Figure 12. An interactive presentation tool built using Parts
in Webwerkstatt.

4. Lively Applications
The evolution of the Lively system made it possible to con-
struct rich, complex applications collaboratively without the
users ever having to leave the confines of the web browser.
In this brief paper we will not be able to dive deeply into
any specific applications. However, we have included a num-
ber of interesting applications in screen snapshots sprinkled
throughout the paper. Extended figure captions provide some
details on those applications.

5. Example Capabilities of a Live Object
System

We began by stressing that a live object system is more than a
web development environment. It is really an operating sys-
tem for simple (and also complex) components that can eas-
ily be composed, scripted and assembled to provide useful
services or produce any number of different artifacts. The

Figure 13. A simple simulation environment built from
Parts using D3.js for visualization.

critical difference in every case is that the end result remains
live, and thus able to meet unanticipated demands. In this
section we mention a few actual examples.

Presentations. A good example is the Lively presenta-
tion at JSConf [10]. Here the system is used to present itself
in real time, including the creation of several simple applica-
tions and demonstrating simultaneously running simulations
and real-time music synthesis.

Lifting. Lifting is a term we use for attaching a non-live
system to Lively and endowing it with a new dynamic per-
sonality. Typically this involves making a communication in-
terface to Lively, and then building a simple user interface
for the functions available in the system being lifted. Typi-
cally one begins with a simple text pane and the equivalent
of a read-eval-print loop, and then adds buttons and other
enhancements suited to the application being produced. We
have done this with Cyc (Doug Lenat, http://www.cyc.com),
Virtual Worlds Framework (David Smith, https://virtual.wf),
and a Clojure system (http://clojure.org), but the most com-
prehensive example is a connection to the R Data Analysis
Program as illustrated in Figure 14.

Quick real-time visualizations. A good example of real-
time visualization is Figure 15 showing how a few compo-
nents were wired together to visualize geographic origins
of accesses to Lively servers. Another is a visualization of
all the active Lively browser sessions in the topology of our
servers in Figure 8.

Serious web/JavaScript development. The SqueakJS
project (https://bertfreudenberg.github.io/SqueakJS/) uses
Lively Kernel as the development environment for build-
ing a Squeak Virtual Machine in JavaScript [8]. The VM
itself does not need Lively Kernel to run, but Lively made
it possible to visualize all the state of the virtual machine,
essentially providing a Lively debugger for the simulated
machine.

244

Figure 14. Simple traffic simulation using the R Data Anal-
ysis Program.

Figure 15. Mapping Lively users to the globe using Google
Maps.

Collaboration. Lively provides an interface to both au-
dio and video streaming as shown in Figure 9. We plan to
integrate this with the community network (Figure 8) to pro-
vide even more straightforward, lively ways to communicate
between community members.

Alternative programming metaphors. Figure 4 shows
Lively Fabrik, a dataflow model for programming Lively
applications [20].

6. Lively in the Broader Context of Web
Programming

From the very beginning, a key difference between the
Lively Kernel and other systems in the same area is our
focus on uniformity – our goal was to build a platform us-
ing a minimum number of underlying technologies [27].
This is in contrast with many web technologies that utilize
a diverse array of technologies such as HTML, CSS, DOM,
JavaScript, PHP, XML, and so on. In the Lively Kernel we
attempt to do as much as possible using a single technol-
ogy: JavaScript. Along the way, we discovered numerous
shortcomings of the Web as an application platform [27],
discussed in the following.

Completeness of applications is difficult to determine.
Web applications are generally so dynamic that it is impos-

sible to know statically, ahead of application execution, if all
the structures that the program depends on will be available
at runtime. While web browsers are designed to be error-
tolerant and will ignore incomplete or missing elements, in
some cases the absence of elements can lead to fatal prob-
lems that are impossible to detect before execution. Further-
more, with scripting languages such as JavaScript, the ap-
plication can even modify itself on the fly, and there is no
way to detect the possible errors resulting from such modifi-
cations ahead of execution. Consequently, web applications
require significantly more testing (especially for coverage)
to make sure that all the possible application behaviors and
paths of execution are tested comprehensively. The situation
is further complicated by the lack of static verification and
static type checking.

Limited access to local resources or host platform ca-
pabilities. Web documents and scripts are usually run in a
sandbox that places restrictions on the resources and host
platform capabilities that the web browser can access. For
instance, access to local files on the machine in which the
web browser is being run is not allowed, apart from reading
and writing cookies. While these security restrictions pre-
vent malicious access, they make it difficult to build web
applications that utilize local resources or host platform ca-
pabilities.

Fine-grained security model is missing. A key point in
all the limitations related to networking and security the need
for a more fine-grained security model for web applications.
On the Web today, applications are second-class citizens that
are at the mercy of the classic, one size fits all sandbox se-
curity model of the web browser. This means that decisions
about security are determined primarily by the site (origin)
from which the application is loaded, and not by the specific
needs of the application itself.

Nano releases and continuous deployment. A software
release is the distribution of an initial or new and upgraded
version of a computer software product. Traditionally, new
software releases have occurred relatively infrequently, per-
haps a few times per year for a major software product such
as a word processor or spreadsheet application, or a few
times per month for some business-critical applications in
early stages of their deployment cycle. The instant deploy-
ment model has now changed all this, allowing new releases
to be made dramatically more frequently – even in near real-
time. Since the Lively Kernel was one of the very first sys-
tems to face this, we had no support from tools and tech-
niques that have later been introduced in the context of Con-
tinuous Deployment [17]. Instead, all such complications
were handled as a part of the manual development process.

Incompatible browser implementations; lack and dis-
regard of existing standards. A central problem in web ap-
plication development even today is browser incompatibil-
ity. Partly this is due to partial implementations of different
features in new web-related standards, but in general the sit-

245

uation is much different from, e.g., Java development, where
well-defined, organized JCP process was in place to ensure
compatibility and standards compliance.

While Lively has evolved, the world around us has not
stood still. Let us next take a look at the state of the art in
web programming today, reflecting our original objectives
and ideas to the present situation in the industry. We will
also list some of the work in related areas.

The Web and the Software as a Service (SaaS) model
have redefined personal computing. Today, the use of the
Web as a software platform and the benefits of the Software
as a Service model are widely understood. For better or
worse, the web browser has become the most commonly
used desktop application; often the users no longer open
any other applications than just the browser. Effectively,
for many desktop computer users today, the browser is the
computer. The recent VisionMobile developer survey report
confirms this observation, citing the following trends in year
2016 [31]:

1. The browser has become the default interface for desktop
applications.

2. If the browser isn’t used to run the desktop app, it is being
used to distribute it.

Based on the points above, it is fair to say that the Web
and the Software as a Service model have completely rede-
fined the notion of personal computing in the past ten years.
Desktop applications and their deployment model are now
primarily web-based.

Interactive, visual development on the Web has be-
come commonplace. From the viewpoint of the original
Lively vision, it is interesting to note that interactive, vi-
sual development for the Web has become commonplace.
There are numerous interactive HTML5 programming envi-
ronments such as Codepen.io (http://codepen.io/), Dabblet
(http://dabblet.com/), JSBin (https://jsbin.com/), LiveWeave
(http://liveweave.com/) and Plunker (https://plnkr.co/) that
capture many of the original qualities of the Lively vision –
such as the ability to perform software development entirely
within the confines of the web browser [16].

In addition, there are JavaScript visualization libraries,
including designs such as Chart.js (http://www.chartjs.org/),
D3 (https://d3js.org/) and Vis.js (http://visjs.org/) that pro-
vide rich, interactive, animated 2D and 3D visualizations
for the Web, very much in the same fashion as we envi-
sioned when we started the work on Lively back in 2006.
A central difference, though, is that these new libraries
are intended primarily for data visualization rather than for
general-purpose application development.

Web browser performance and JavaScript perfor-
mance have improved dramatically. While the original
versions of the Lively Kernel ran slowly, advances in web
browsers and high-performance JavaScript engines soon
changed the situation dramatically.

The emergence of the Chrome web browser and the V8
JavaScript engine kick-started web browser performance
wars. Raw JavaScript execution speed increased by three
orders of magnitude between years 2006 and 2013, effec-
tively repeating the dramatic performance advances that had
occurred with Java virtual machines ten years earlier. From
the end user’s perspective, today’s web browsers are easily
10-20 times faster than ten years ago, and raw JavaScript
execution speed (excluding UI rendering) can be thousand
times faster. This has made it possible to run serious appli-
cations in the web browser, enabling the Software as Service
revolution as a side effect.

HTML, CSS and the DOM turned out to be much
more ”sticky” than we thought. The browser and JavaScript
performance improvements – while definitely impressive –
were not really unforeseen to us. We were convinced that the
performance problems of the browser and JavaScript would
ultimately get resolved. However, what was unforeseen to
us how sticky the original ”holy trinity” of web develop-
ment – HTML, CSS and JavaScript – as well as the use
of the Document Object Model (DOM) would be. Our as-
sumption was that software developers would prefer having
a more conventional set of powerful graphics APIs instead
of using tools that were originally designed for document
layout rather than for programming.

Furthermore, when we gave presentations in web devel-
opers conferences, reminding web developers of traditional
software engineering principles such as separation of con-
cerns and the general importance of keeping specifications
and public interfaces separate from implementation details,
web developers shrugged and noted that the use of HTML,
CSS and JavaScript already gave them the necessary separa-
tion. Likewise, the ability to manipulate graphics by poking
the DOM tree was seen as a normal way of doing things
rather than as something that would raise any concerns.

The worlds of JavaScript and web programming are
highly fragmented. The number of JavaScript libraries and
frameworks has grown almost exponentially in the past
years. According to the latest estimates, there are now well
over 1100 JavaScript libraries and frameworks available
(https://www.javascripting.com/). Interestingly, there is still
very little convergence yet, except for some annually chang-
ing trends, with some libraries and frameworks gaining mo-
mentum one year, only to lose their momentum to newer
frameworks some time later. For instance, the once domi-
nant Prototype.js and jQuery libraries are now being forgot-
ten. While Angular.js seemed to capture the most developer
mindshare only a year ago, it is currently the React.js ecosys-
tem that seems more in focus.

Mobile computing is still dominated by apps – for
now. During the original development of the Lively Kernel,
some of us were heavily focused on making the system
run well also on mobile devices. Although the feasibility of
running the system on mobile devices was demonstrated, in

246

practice mobile devices and browsers were still so slow those
days that no serious Lively applications could be built.

It is interesting to note that in the past ten years desk-
top computing and mobile computing have evolved in en-
tirely different directions. While personal computers are now
driven mostly by the Software as a Service model, mobile
devices are still dominated by native apps. We claim that
today this divergence is driven primarily by user interface
needs. While screens of mobile devices have become con-
siderably larger, mobile browser use still is not very feasi-
ble because of different input modalities and usage contexts
(e.g., using devices while walking, running or while driving
a car). In contrast, the other historical reasons for keeping
personal and mobile software platforms separate – such as
CPU performance, memory and network bandwidth limita-
tions – have largely disappeared in the past years.

Our prediction is that in the next 5-10 years mobile and
desktop operating systems will converge. This convergence
will be driven by the emergence of multi-device comput-
ing environments in which average users will have a much
larger number of Internet-connected computing devices in
their daily lives. In such environments, the users will expect
a totally seamless, liquid software experience that allows the
users to pick the most applicable device and then effort-
lessly move to another device (e.g., with bigger screen or
larger keyboard) to continue the same activities. A recently
published Liquid Software Manifesto summarizes our pre-
dictions and expectations in this area [28].

7. Looking Forward
The computer is the ultimate dynamic medium of our civ-
ilization. Able to respond to our touch with billions of op-
erations per second, it is infinitely changeable and always
active. Lively is our latest attempt to preserve the power of
this dynamic medium and bring it to users in a form that is
universally accessible and simple to understand and control.

The field of web development still bears the imprint of
pre-web development techniques. Spec the app, write a lot
of code, debug it, and hope the users are happy with it. Ag-
ile techniques that have softened this rigidity and enabled
more flow between implementers and target users, were ac-
tually inspired by early live object systems. Furthermore, ap-
proaches such as DevOps [5] have made live object systems
commonplace, and we are more and more accustomed to
systems that never sleep. Examples include massive online
games, business information systems as well as sites such as
Facebook whose evolution is defined by its users’ live pref-
erences [7]. Finally, while the adoption of Single-Page Ap-
plication (SPA) development style has improved the overall
user experience for web sites that want to behave like classic
desktop applications, our desire is to simplify and generalize
both the goals and how we move to achieve them.

Our wonderfully general computers are growing and
changing, and the challenge of live object systems in this

time should be to preserve the power of those changes and
deliver them all seamlessly and effortlessly to our users,
whether they are doing web programming, sketching the de-
sign of a water clock, giving a presentation, or playing drums
in five places around the planet in real time. While we would
be the first to cite the many improvements needed in Lively,
we must balance this with a more important need to move
forward and explore the world ahead for live object systems.

Sketching. Anyone who uses a designer’s sketchbook
will see it as the destiny of a live object system. Now that we
finally have tablets with capable pens, it is time to support
the creative flow from idea to sketch to scripts and simula-
tion, and finally to presentation and publication. This should
be a primary capability of any live object system.

Touch. Touch is a delightful enigma. On one hand it lacks
the precision of the pen and the symbolic power of text.
Yet on the other hand (so to speak) the finger is the most
immediate and intuitive physical extension from the brain.
How do we harness that immediacy and give it greater power
than merely pushing buttons? The answer lies in extremely
dynamic interfaces. Without the symbolic reference power
of text, we must provide an array of choices, presented to
our visual cortex, so the finger can navigate and press, to
provide the next finer choices along a path to the desired
tool or object, whatever it may be.

Tiles. Tiles appear to be the best adaptation of code to the
world of touch. Tiles can represent detailed programmatic
constructs as in EToys or Scratch, or they can represent
higher level commands which we have used for decades
as buttons. In the evolution toward simpler more general
concepts in live object systems, program tiles, action tiles,
buttons and menu items should surely all be the same kind
of object. We are currently experimenting with recording
the history of morphic actions in Lively as a sequence of
active tiles, and making this available as an on-ramp to
programming for end users.

Collaboration and social media. Social media are the
vehicle for sharing in today’s world. Surely any live object
capability would add depth to such sharing, and conversely
serve to greatly extend the universe of any live object system
so connected. So far, probably the best example is mashware
[24], where code and content from various locations are
integrated into a single system on the fly.

Internet of Things. A live object system would appear
to be the ideal interface to the Internet of Things. It offers
the facilities for communicating and interacting with visual
proxies for any object, and even integrating visual proxies
for things that do not yet exist. Live object systems will
have a major role in the Programmable World Era in which
all sorts of everyday objects will be connected to the Inter-
net and thus effectively have enough computing, storage and
networking capabilities to host a dynamic programming in-
terface integrated with systems such as Lively. Beyond just
making the World Wide Web more lively, we foresee making

247

the world around us being a world of ”Lively Things”, each
responsive in an effortless and natural fashion.

8. Conclusions
We have shown how a live object system is more than a
web development environment. The Lively Kernel became
the first fully interactive, self-sustaining web-based software
development environment precisely because it began with
the more general goals of a live object system. Ten years
ago we recognized that these goals could be met by web
browsers on the Internet, and it has been gratifying to make
it happen. While Lively itself is not widely known or used,
it did blaze the path for today’s Software as a Service based
systems and live web programming more broadly.

The promise of a live object system is to be an active de-
sign medium for beginners and experts alike; to empower
our individual thought processes and also our communica-
tion with others. With many of the hard problems solved,
and systems like EToys to inspire us, we can now concen-
trate on civilizing this instrument to be our most expressive
tool from idea to sketch to simulation to presentation and
deployment. No sooner do these goals appear within reach
than more opportunities such as touch, collaboration and the
Internet of Things come along to add more challenges. There
is plenty to keep us busy for another ten years!

Acknowledgments
Special thanks to Krzysztof Palacz, who had a central role
in the implementation of the first full-fledged SVG-based
version of the Lively Kernel.

This work has been partially supported by Sun Microsys-
tems Inc., SAP, the Academy of Finland (projects 283276
and 295913), and the Hasso Plattner Design Thinking Re-
search Program (HPDTRP).

References
[1] A. Borning. ThingLab – an Object-Oriented System for

Building Simulations Using Constraints. In Proc. of the
Fifth International Joint Conference on Artificial Intelligence,
pages 497–498, 1977.

[2] A. Goldberg, A. Kay, with The Learning Research Group.
The Smalltalk-72 Instruction Manual. Xerox Palo Alto Re-
search Center Technical Manual, March, 1976.

[3] M. Cantelon, M. Harter, T. Holowaychuk, and N. Rajlich.
Node.js in Action. Manning, 2014.

[4] J. Dannert. WebCards – Entwurf und Implementierung eines
kollaborativen, graphischen Web-Entwicklungssystems fur
Endanwender. Master’s thesis, Hasso-Plattner-Institut Pots-
dam, 2009.

[5] P. Debois. DevOps: A Software Revolution in the Making.
Journal of Information Technology Management, 24(8):3–39,
2011.

[6] D. Ingalls. The Smalltalk-76 Programming System. Proceed-
ings of the 5th ACM Principles of Programming Languages
Symposium, Pages 9-16, Tucson, January 23-25, 1978.

[7] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Develop-
ment and Deployment at Facebook. IEEE Internet Comput-
ing, 17(4):8–17, 2013.

[8] B. Freudenberg, D. H. Ingalls, T. Felgentreff, T. Pape, and
R. Hirschfeld. SqueakJS: A Modern and Practical Smalltalk
That Runs in Any Browser. In Proceedings of the 10th ACM
Symposium on Dynamic Languages, DLS’14, pages 57–66,
New York, NY, USA, 2014. ACM.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented Programming. Journal of Object Technology, 7(3):
125–151, March - April 2008.

[10] D. Ingalls. The Live Web. JSConf 2012,
https://www.youtube.com/watch? v=QTJRwKOFddc.

[11] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. ACM SIGPLAN Notices, 32(10):318–326,
1997.

[12] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikko-
nen. The Lively Kernel: A Self-Supporting System on a
Web Page. In Self-Sustaining Systems, pages 31–50. Springer,
2008.

[13] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle.
Fabrik: A Visual Programming Environment. SIGPLAN Not.,
23(11):176–190, 1988.

[14] A. Kay. Squeak Etoys Authoring and Media, 2005. as of
Aug 01, 2005, http://www.squeakland.org/pdf/
etoys_n_authoring.pdf.

[15] R. Krahn, D. Ingalls, R. Hirschfeld, J. Lincke, and K. Palacz.
Lively Wiki: A Development Environment for Creating and
Sharing Active Web Content. In Proceedings of the 5th
international Symposium on Wikis and Open Collaboration,
page 9. ACM, 2009.

[16] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikko-
nen, and M. Englund. Cored: browser-based collaborative
real-time editor for java web applications. In Proceedings of
the ACM 2012 conference on Computer Supported Coopera-
tive Work, pages 1307–1316. ACM, 2012.

[17] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itko-
nen, M. V. Mäntylä, and T. Männistö. The Highways and
Country Roads to Continuous Deployment. IEEE Software,
32(2):64–72, 2015.

[18] J. Lincke and R. Hirschfeld. Scoping Changes in Self-
Supporting Development Environments using Context-
Oriented Programming. In Proceedings of the Interna-
tional Workshop on Context-Oriented Programming, COP
’12, pages 2:1–2:6, New York, NY, USA, 2012. ACM.

[19] J. Lincke and R. Hirschfeld. User-Evolvable Tools in the
Web. In Proceedings of the 9th International Symposium on
Open Collaboration, page 19. ACM, 2013.

[20] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld. Lively
Fabrik - A Web-Based End-User Programming Environment.

248

In Proceedings of the Conference on Creating, Connecting
and Collaborating through Computing (C5) 2009, Tokyo,
Japan, 2009. IEEE.

[21] J. Lincke, R. Krahn, D. Ingalls, M. Röder, and R. Hirschfeld.
The Lively PartsBin–A Cloud-Based Repository for Collab-
orative Development of Active Web Content. In System Sci-
ence (HICSS), 2012 45th Hawaii International Conference
on, pages 693–701. IEEE, 2012.

[22] J. Maloney and R. Smith. Directness and Liveness in the Mor-
phic User Interface Construction Environment. In Proceed-
ings of UIST’95, pages 21–28, 1995.

[23] J. Maloney and Walt Disney Imagineering. An Introduction
to Morphic: The Squeak User Interface Framework. Squeak:
OpenPersonal Computing and Multimedia, 2001.

[24] T. Mikkonen and A. Taivalsaari. The Mashware Challenge:
Bridging the Gap Between Web Development and Software
Engineering. In Proceedings of the FSE/SDP workshop on
Future of software engineering research, pages 245–250.
ACM, 2010.

[25] T. Mikkonen, A. Taivalsaari, and M. Terho. Lively for Qt:
A Platform for Mobile Web Applications. In Proceedings
of the 6th International Conference on Mobile Technology,
Application & Systems. ACM, 2009.

[26] I. E. Sutherland. Sketchpad a Man-Machine Graphical Com-
munication System. PhD thesis, 1963.

[27] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web
Browser as an Application Platform: The Lively Kernel Ex-
perience. Technical report, TR-2008-175, Sun Microsystems
Laboratories.

[28] A. Taivalsaari, T. Mikkonen, and K. Systä. Liquid Software
Manifesto: The Era of Multiple Device Ownership and Its
Implications for Software Architecture. In Proceedings of
COMPSAC’2014, 2014.

[29] A. Taivalsaari and K. Systä. Cloudberry: An HTML5
Cloud Phone Platform for Mobile Devices. Software, IEEE,
29(4):40–45, 2012.

[30] D. Ungar and R. Smith. Self: The Power of Simplicity. In
Proceedings of OOPSLA’87, pages 227–241, 1987.

[31] VisionMobile. Cloud and Desktop Developer Landscape.
http://www.visionmobile.com/product/
cloud-and-desktop-developer-landscape/. [Online; accessed
5-March-2016].

[32] J.-P. Voutilainen, A.-L. Mattila, and T. Mikkonen. Lively
3D: Building a 3D Desktop Environment as a Single Page
Application. Acta Cybern., 21(3):291–306, 2014.

249

