

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Modularity '16, March 14 - 18, 2016, Málaga, Spain

Multi-level Debugging for Interpreter Developers

Bastian Kruck* Stefan Lehmann✝ Christoph Keßler*
Jakob Reschke* Tim Felgentreff✝ Jens Lincke✝ Robert Hirschfeld✝

* {firstname.lastname}@student.hpi.de
✝{firstname.lastname}@hpi.de

Hasso Plattner Institute
University of Potsdam, Germany

Abstract
Conventional debuggers require programmers to work on multiple
levels of abstraction at once when inspecting call stacks or data.
This demands considerable cognitive overhead and deep system
knowledge of all implementation technologies involved. When de-
veloping an interpreter, programmers often create a dedicated de-
bugger to have a higher-level perspective on the client-language;
the resulting use of multiple debuggers at once leads to mental con-
text switches and needs an elaborated method.

We present an integrated debugging tool in which interpreter
developers define and select the levels of abstraction on which they
focus. Our debugger provides them with an abstraction-specialized
view. We consider both host-language and guest-language levels,
since either may be levels of interest in a debugging session. We
show how this separation into host-language levels can ease the de-
bugging of applications through filtering call stacks and specializ-
ing call stack representation on levels.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Debuggers, Interpreters; D.2.5 [Software En-
gineering]: Testing and Debugging–Debugging aids, Diagnostics;

Keywords Language Workbenches; Squeak; IDE; DSL; Inter-
language debugging; Language-oriented programming

1. Introduction
A language-specific and still feature-rich tooling is essential when
building and using a language [1]. While modern IDEs provide a
number of desirable features, those features still need to be imple-
mented for a particular language. This might be a time-consuming
and complex challenge [6, 8]. Language workbenches [4, 7] are in-
tended to help DSL developers use modern IDE functionality with-
out much effort. However, these projects mainly focus on compil-
ing DSLs statically and do not support creating interpreters.

When debugging an interpreter, developers need to reason about
the interpreter’s state based on the encoded host-language represen-
tation. All of the guest-level program’s data, call stack and static
information are wrapped into internal representations of the host
VM. As a result, developers need to have knowledge of both the
guest and the host language to understand the interpreter’s behavior
and isolate the root causes of errors [9]. Additionally, the developer

needs to understand the executed guest program to trace its faulty
behavior at the interpreter level.

Conventional debuggers show the guest-language state encoded
in the host-language level representation only [7]. Most debuggers
provide a one-dimensional list of stack-frames to navigate through
the active call chain. As exemplified in Figure 1, an interpreter con-
tains another execution state itself that corresponds to the host-lan-
guage stack in a one-to-many relationship. Interpreter-Program-
mers pay high cognitive overhead to manually map those two exe-
cution environments onto each other. Furthermore, they are over-
whelmed with host-level information while trying to step through
the user program only. This cognitive effort prevents gaining an
overview and requires developers to bind their analytical resources
to the decoding instead of the problem domain.

To reduce the number of manually followed abstractions, some
developers of interpreters open an additional debugger for the guest
language [5]. They can switch back and forth between the debug-
gers to compare the VM state with the state of the user program and
step through either language to observe the state changes in the
other one. Nonetheless, this requires them to do context switches
and manage two executions at once.

We present a debugging tool in which users define and select
the language level that they focus on. Explicitly selecting debugged
abstractions enables our user to reduce the cognitive overhead.
They only see level-related stack-frames and scope items and may
expand foreign level information on demand. This solution has the
benefits, that (i) we deliver only the information needed and (ii)
display them in a way that is desired for the current use-case.

In this paper, we present the concept of a debugger, that facili-
tates explicit debugging perspectives to ease the debugging pro-
cess. Our contributions are:
• The concept of an interpreter-aware debugger that facilitates a

merge-and-filter strategy and context-dependent callstack views
• A prototypical implementation of our concept in Squeak/Small-

talk based on Ohm/S

Figure 1. Debugging an interpreter requires interaction in the
context of the guest as well as the host language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
ACM. 978-1-4503-4033-5/16/03...$15.00
http://dx.doi.org/10.1145/2892664.2892679

91

2. Dynamic Multi-level Debugging
Our key concept is to use levels of abstraction as interaction units
to allow developers to see the system from the perspective they
have in mind.

When speaking of levels, we refer to both (i) host-language lev-
els and (ii) guest-language levels, as either form a mental unit that
the user works within or explicitly wants to switch between. Host-
language levels are levels of abstraction or working units, like
packages, libraries or internal DSLs. Guest-language levels evolve
when building an interpreter in the debugged language; they form
a new level of interest as well. In our system, the levels are de-
scribed in two perspectives: (1) By default, there is a grouping for
each module (e.g. a package in Squeak Smalltalk), (2) developers
may use extension points to add domain specific levels.

A level-aware debugger enriches the debugging experience of
any type of applications that have multiple libraries or frameworks.
The developer of a library can use his debugging experience to
modify the presentation of his code in the debugger. Having done
that, the developer and others do not need to apply (nor build) the
knowledge on non-self-explanatory errors and frames anymore.

2.1 Merge-and-Filter the Call Stacks of Levels

A multi-level debugger merges and filters the call stacks of levels
of abstraction. While conventional debuggers already show the un-
structured call stacks where all levels are interleaved, they only pro-
vide minimal filtering facilities. We add the following mechanisms:
Map stack frames to their corresponding level. In our case, we use
colored bullet points to enable programmers identify a level of in-
terest based on the trace that they see.
Filter stack frames. A list of levels serves as key to that mapping
and a user can select one or more to filter the stack frames such that
only those of some particular levels are retained. This allows him
order to inspect the behavior on this level only.
Step inside levels. Stepping should proceed the program until re-
turning to a listed stack frame. Others frames are executed but not
inspected as they are not of interest right now.
Unfold foreign levels. Developers should see when there are
frames filtered away between two frames and be able to partially
unfold this very fold only within the same level. This enables track-
ing down an error to lower levels.

1 http://squeak.org/, https://github.com/hpi-swa/vivide

2.2 Specialized Representation for Each Level

A multi-level debugger should represent program state specialized
on different levels to be able to represent the programmers mental
model for each level. We identified these two specializations:
Specialize stack list representation of stack frames. The stack trace
is usually presented as a list and the method activations need to
have a characteristic representation there. It is usual to show the
name of the called method and its class. In log files, it is common
sense to annotate entries with the source file and the line number.
In frameworks and recursive programming, we observe the same
code location appearing many times in the call chain. Thus, these
representations should be enhanced to add distinction, e.g. by in-
cluding arguments of a call.
Specialize inspection views of a stack frame. Projectional editors
allow to view different representations of the same static code, e.g.
a table or a diagram for a state machine. Often, it is possible to cre-
ate a higher-level representation of raw code so that we can reason
about it at the level at which the concept is usually represented.

2.3 Extensibility to Add Levels

Group frames to a level. A multi-level debugger should allow cre-
ating and modifying levels to grow with the system. When intro-
ducing a new level, the extension needs to determine if a given
stack frame is contained in it (See 2.1), and needs to provide rep-
resentations for the contained stack frames (See 2.2).

3. State of Implementation
Figure 2 shows the prototype of our debugger next to a traditional
one. We have built a debugger that contains a level-selection-view
(b3) in addition to the known stack-frame view (a1, b1) and a
source code view (a2, b2).

3.1 Technical Background

We created our system in Squeak Smalltalk1 with the data explora-
tion framework VIVIDE. We implemented an interpreter of a
Scheme dialect without special forms (called Qoppa2) with help of
the Ohm/S parser framework, aiming to specialize a debugger on
inter-language debugging. The facilities that help to debug within
the host-language resulted from our own needs during the develop-
ment.

2 http://mainisusuallyafunction.blogspot.de/2012/04/scheme-
without-special-forms.html, https://github.com/hpi-swa/Ohm-S

Figure 2. Our debugger adds a level-selection step (b3) to the debugging process in addition to the stack frame list (a1, b1) and the
source code view (a2, b2). Value:- and eval:in:-stack frames are characterized with help of call parameters (b1).

92

3.2 Debugging Walkthrough

Given a developer has built a Qoppa interpreter and found a bug:
(/ 4 3 2) evaluates to the number 8/3 instead of 2/3. He runs
(/ (halt 4) 3 2) to stop the execution at the argument 4 so that
he can track down the bug’s origin.

At first glance, he can see what frames belong to QoppaS by
mapping the frame color to the level and that the correct program
is being parsed by Ohm/S. (Figure 3, Step 1) The title, color, and
representation of a frame is determined on a per-level base. The
developer clicks on QoppaS to hide unrelated stack frames (Step
2). To inspect the execution of the / primitive, he clicks oper-
ate:on:in: frame of it, steps over the evaluation of the other ar-
guments without stopping within the filtered collect:-call and
steps into the implementation of the primitive. (Figure 4, Step 3)
There he can find that the primitive runs a right-reduction on the
arguments instead of the expected left-reduction. (Step 4)

4. Related Work
Pavletic and Raza described an extension API for a hierarchical de-
bugger that allows debugging of statically compiled DSLs [7].
While they do not describe the interactions with it, we approach it
from the user experience side instead. Additionally, in contrast to
compiling language workbenches statically, we focus on tools for
dynamically interpreted languages instead.

Chis et. Al. described the idea of a customizable debugger and
inspector in-depth [2, 3]. They applied their Moldable framework
to a bytecode interpreter and identified step-by-step execution as a
feasible implementation. We built on their rather technical analysis
and envisioned interactions that would help building an interpreter
from scratch.

The merging and filtering of runtime information is already ap-
plied in log file analysis. Online log file analysis services like pa-
pertrailapp.com allow the user to merge log files and filter particu-
lar entries to find correlations. Our system employs the same infor-
mation-merge-and-filter concept to a systems runtime.

IDEs and frameworks provide means to remove library code
from call stacks and to change the list representation of a stack
frame (e.g. Visual Studio, Eclipse or Rails). Those mechanisms are
designed for setting them once. However, they lack the dynamic
task-based switching. Our system is more flexible to answer to the
users varying needs.

5. Next Steps
The possibility to debug an interpreted language with an inter-
preter-level debugger suggests the question: Is it necessary to im-
plement a debugger for an interpreted language at all? To investi-
gate that, we will bundle the debugger together with the Ohm/S
parser generator as an interpreted-language workbench, so inter-
preter developers get a guest-language debugger right from the be-
ginning. Furthermore, we will build a debugger primitive in our in-
terpreter to show that also interpreted languages can run interpret-
ers using our base-level debugger.

We will investigate further in interpreters of languages with an
execution model that differs from sequential execution and mes-
sage passing, e.g. Prolog, APL, and State Machines. While static
compilation is the focus of current DSL research, implementing an
execution model that differs heavily from the host language is chal-
lenging with state-of-the-art DSL tools. In that case, building an
interpreter with proper debugging support might be preferred over
using a language workbench.

6. Summary
In this paper, we demonstrated the needs and benefits of a multi-
level debugger. Our work-in-progress implementation promises a
high value of call-stack-filtering as well as context-dependent rep-
resentation in many software development environments. We will
continue to work towards the use cases, requirements and imple-
mentation of an interpreted language workbench.

References
[1] Charles, P. et al. 2009. Accelerating the creation of customized,

language-Specific IDEs in Eclipse. ACM Sigplan Notices. 44, 10
(2009), 191.

[2] Chiş, A. et al. 2015. Practical domain-specific debuggers using the
Moldable Debugger framework. Computer Languages, Systems and
Structures. 44, (Dec. 2015), 89–113.

[3] Chiş, A. et al. 2015. The moldable inspector. 2015 ACM - Onward!
2015 (New York, New York, USA, Oct. 2015), 44–60.

[4] Erdweg, S. et al. 2012. Language Composition Untangled. LDTA ’12.
(2012).

[5] Freudenberg, B. et al. 2014. SqueakJS A Modern and Practical
Smalltalk that Runs in Any Browser. DLS ’14. (2014), 57–66.

[6] Pavletic, D. et al. 2014. Extensible Debuggers for Extensible
Languages. Softwaretechnik-Trends. 33, 2 (2014), 51–52.

[7] Pavletic, D. and Raza, S.A. 2015. Multi-Level Debugging for
Extensible Languages. Workshop Software-Reengineering und -
Evolution. 17 (2015), 21–23.

[8] Renggli, L. et al. 2010. Embedding Languages Without Breaking
Tools. ECOOP. (2010), 380–404.

[9] Wu, H. et al. 2004. Debugging Domain-Specific Languages In
Eclipse. Eclipse Technology Exchange Poster. (2004), 1–5.

Figure 3. The developer sees which frames belong together and
to what level (1) and hides frames by selecting a level (2)

Figure 4. The developer steps without leaving the level and finds
the logic error

93

