
Crossing Abstraction Barriers
When Debugging in Dynamic Languages

Bastian Kruck∗, Tobias Pape†, Tim Felgentreff†, Robert Hirschfeld†
Hasso Plattner Institute
Universtiy of Potsdam

∗{firstname.lastname}@student.hpi.uni-potsdam.de
†{firstname.lastname}@hpi.uni-potsdam.de

ABSTRACT
Programmers use abstractions to reduce implementation effort and
focus on domain-specifics. The resulting application often runs in a
convenient guest runtime that is provided by an increasingly com-
plex ecosystem of libraries, VMs, JIT-compilers, operating sys-
tems, and native machine architectures.

While abstractions are designed to hide complexity, experience
tells us that “All non-trivial abstractions, to some degree, are leaky.”1.
Leaky abstractions are problematic, for example, when the use of
under-documented or unspecified behavior of a library or virtual
machine causes a failure in domain-specific code. Users may need
to understand whether the virtual machine is just under-documented
but working as intended or faulty. At that point, the artificially cre-
ated barrier that protects language users from domain-independent
complexity becomes an obstacle. We call this crossing the abstrac-
tion barrier.

Prior research has investigated how symbolic debuggers can work
across language barriers. However, this resulted in dedicated work-
flows and UIs that differ substantially from traditional symbolic de-
bugging. Users need to remember these rather elaborate workflows,
and the learning effort is often larger than the perceived benefit of
answering the given debugging questions. As a result, the value
of these tools may not be immediately recognized and developers
will only consider learning them after having spent much time with
conventional debugging methods.

We propose an interaction model that generalizes the conven-
tional symbolic debugger so that the known workflow can be kept
and users can opt-in to cross-abstraction debugging when neces-
sary. By replacing the traditional list view on the active call chain
with a tree model and adding perspective selection, we obtain an
unobtrusive, minimal user interface that still offers powerful cross-
language debugging features.

1http://joelonsoftware.com/articles/LeakyAbstractions.html, ac-
cessed September 29, 2016

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SAC’17, April 3-7, 2017, Marrakesh, Morocco
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4486-9/17/04. . . $ 15.00
DOI: http://dx.doi.org/10.1145/3019612.3019734

Figure 1: The 2D Call Stack Model: We added a Domain-
Specificity Dimension to the conventional Level-of-Detail Di-
mension; Transforming the stack-frame List into a Tree

CCS Concepts
•Software and its engineering → Software testing and debug-
ging; Interpreters; Domain specific languages;

Keywords
Inter-Language Debugging; abstraction barriers; Multi-level debug-
ging; Language Workbench; Squeak; IDE; DSL

1. INTRODUCTION
In the past decades, many kinds of abstractions have been em-

ployed in computer science to cope with the challenges that soft-
ware developers face. One such abstraction is a virtual machine:
Virtual machines and interpreters abstract from the underlying na-
tive machine, enabling the programmer to formulate his program in
a run-time environment that is closer to the application domain and
ignore many application-independent challenges. Other common
kinds of abstractions include third party libraries which are abstrac-
tions towards a particular domain, engineering patterns, language
idioms, or simply method calls. All of these abstractions naturally
draw a barrier between the guest system with reduced complexity
that they establish and the outer host system that the abstraction is
built with— we call this the abstraction barrier.

When searching for a bug in a system, programmers pose ques-
tions and use symbolic debuggers to observe the system in action
and answer these questions until they find the defect. In most of
the cases, observing the execution of a single system with the ded-
icated tools suffices to isolate the root cause. In rare cases, it might
be important to peek outside the system boundaries to investigate
what precisely is happening on the other side of the abstraction bar-

1498

http://joelonsoftware.com/articles/LeakyAbstractions.html
http://dx.doi.org/10.1145/3019612.3019734


rier. In conventional symbolic debuggers, programmers commonly
use the call stack to zoom into and out of behavioral details of the
system. In more general words, they cross the abstraction barri-
ers between the currently active method invocations— we call this
cross abstraction debugging.

Previous solutions for debugging arbitrary kinds of abstractions
don’t integrate with the existing conventional symbolic debugger.
Past research has built debuggers for particular kinds of abstrac-
tions, such as the method call abstraction, distributed systems, do-
main specific languages, or virtual machines. Most of them provide
a user interface dedicated to the mental model they establish [8, 3,
11]. Some describe an API to allow adding abstractions to make the
debugger aware of them [11, 3]. Since these tools provide specific
workflows and UIs that need learning, the initial effort that needs
to be invested is often larger than the perceived benefit of answer-
ing debugging questions. As a result, the value of these tools may
not be immediately recognized and developers will only consider
learning them after having spent some amount of time with con-
ventional debugging methods.

When language users encounter under-documented or unspeci-
fied behavior, they may want to cross the VM abstraction barriers
without having to learn a new tool. Language designers also benefit
from a unified tool that allows them to debug their implementation
code right from their guest language test application. This holds not
only for VM abstractions, but also applies to designers and users of
other kinds of abstractions.

* * *

Given a number of different kinds of abstractions with each hav-
ing an outer host and inner guest system, developers need tools for
debugging and understanding how their programs are represented
in each of them.

Our work is based on the assumption that one can conveniently
represent many kinds of abstractions by structuring the call stack-
frames in a tree through adding virtual stack-frames. We tell apart
the actual stack-frames that are the original stack-frames of the in-
spected stack and the virtual stack-frames that were added to rep-
resent sides of an abstraction that are not part of the inspected ex-
ecution. If a virtual stack-frame is guest of an abstraction that the
inspected stack hosts, we call it abstract; if a virtual stack-frame is
host of an abstraction that the inspected actual stack-frame is guest
of, we call it concrete.

Thus, we make the following contributions in this paper:

• We describe an interaction model that extends the conven-
tional symbolic debugger to allow cross-abstraction debug-
ging without dropping the known workflow.

• We show how our model can be used as uniform user in-
terface to various perspectives by applying our model to the
library, VM and the interpreter abstractions.

• We demonstrate the feasibility of our design with a tool im-
plementation for VM and interpreter abstractions in Squeak/
Smalltalk.

2. AN INTERACTION MODEL FOR
CROSS-ABSTRACTION DEBUGGING

We first introduce the workflow of our interaction model (sub-
section 2.1), continue to describe the implications for the debug-
ger’s user interface (subsection 2.2) and then illustrate them with
examples in sections 2.4 and 2.5.

2.1 Workflow
Our interaction model is a generalization from the conventional

symbolic debugger that consists of a list of active call stack-frames
and a source view that shows the source description of the currently
selected frame. The relevant tasks that users usually perform are

1. Select a stack-frame (conventional)

2. Read method source (conventional)

3. Control execution (conventional)

4. Inspect objects (conventional)

The usual workflow is to select stack-frames and read method
source interchanging to explore the stack of methods that are cur-
rently executed. For this work, we leave controlling the program
execution as well as inspecting the program state untouched.[6, 3]
Nevertheless, a perspective dependent view for object inspection
sounds straightforward to us from an interactive point of view and
our prototype actually implements level-aware stepping so that fil-
tered stack-frames will be skipped.

For our new workflow, we perform two changes in the user inter-
face: We generalize the call stack from a list into a collapsed tree
view that looks almost the same and add a button that will show a
context menu on click. This enables two new tasks additionally to
the conventional workflow:

5. Expand or collapse a stack-frame (new)

6. Change perspective (new)

When users encounter a peculiar behavior of an abstraction that
the inspected stack-frame is a guest of (for example an operating
system call), they might cross the abstraction barrier by expanding
the corresponding stack list item and find the lower level details
for this abstraction as its children (Figure 1, right column). Since
lower level detail can have many concrete meanings depending on
the users current perspective, they can click the perspective-button
and then select one of the provided perspectives. Based on that
selected perspective, the tree view will contain additional virtual
stack-frames that haven’t been in the original stack-frame list. Fur-
thermore, the title of tree nodes as well as the content of the source
view is specialized on the current perspective.

2.2 User interface implications
Our new workflow requires the following unobtrusive changes in

the debugger’s user interface:

Concrete virtual stack-frames
We generalize the call stack from a list view to a tree view ele-
ment and use the newly gained depth dimension to a add detailed
information in the form of tree nodes that are children of actual
stack-frames (in our prototype: b in Figure 2). We use Concrete Vir-
tual stack-frames to add information about abstractions where their
parent is guest of the abstraction. This conceptually adds domain-
unspecific details, i. e. a column at the right-hand side of Figure 1.
Our example in subsection 2.5 inspects such details for the CogVM
virtual machine for Smalltalk. It shows how generated JIT-Code,
the manual Slang-implementation of primitives2 and its generated
C code are used to display detailed information for the running VM.

2also known as builtins or natives.

1499



Figure 2: Our debugger with a new perspective-selection view
(a), the stack list (b) that was turned into a tree view, and the
source view (c)

Perspective selector
Developers can select a perspective that they are approaching the
system from (in our prototype: a in Figure 2). When selecting a
perspective, the tree view will adapt its contents, the node’s titles
and icons will change and the source view will show the content
that the perspective determines for the selected node.

Abstract virtual stack-frames
We group neighbor stack-frames when a perspective focuses on ab-
stractions that are hosted by the inspected environment. This op-
poses the low-level concrete virtual frames that we use when the
inspected environment is guest of the abstraction. The added tree
nodes form a new domain-specific top level of the tree, i. e. result-
ing in a new column at the left-hand side in Figure 1. At first sight,
a particular member of one group can become the parent node and
serve as a representative (for example, the event trigger call may
represent all the handler nodes). Up next, we add the event name
to the title of the parent node and change the source content to a
description of the state of the applied state/event machine model.
This shows up that the representative may be the technical data
source but that the parent node is semantically a new virtual node
that comes from another model. Our walk-through in subsection 2.4
shows how First-level virtual nodes are used to build a guest-level
debugger for an interpreter that is hosted by the inspected call stack.
In that example, we debug a program written in the guest-level lan-
guage Qoppa which’s virtual machine QoppaS is implemented in
Squeak/Smalltalk.

* * *

The generality of this model allows new perspectives to intro-
duce new kinds of abstractions to the debugger. Such perspectives
can be build by application developers or library and framework
builders when realizing that the conventional debugger can be aug-
mented to ease working with it. As a result, libraries that introduce
new paradigms like aspect oriented programming or context ori-
ented programming can ship together with a generated perspective
for each layer or aspect. This extendability also enables implemen-
tation of existing (multi-level) debugging protocols to use them as
data back-end for our user interface.

2.3 Abstraction barriers between stack-frames
Previous work described a debugger that allowed users to pick

an abstraction-level of interest and alter the stack list, lexical view
and data view to represent contents on that selected level of abstrac-
tion. [6]

The abstraction barrier for a method call abstraction is the se-
mantic step from one stack-frame to the next one [1]. The barrier
may be small, for example, when application level code calls other
application level code; it may be larger when the application calls
into the standard library, or possibly largest when high-level lan-
guage code calls low-level VM primitives. The varying barrier sizes
between the stack-frames of a trace make it hard to navigate the
stack to find frames of interest.

The call stack is often consulted in a debugging session where
the underlying computing model is a stack machine. Developers are
simulating the machine in their head and are looking at its imple-
mentation details. To account for abstraction barriers, we split the
stack list into two dimensions: the first representing a homogeneous
view on the conceptual behavior at the same abstraction levels so
that moving between frames does not require moving over large ab-
stractions barriers. The second one allows moving over large barri-
ers and thus into or out of implementation details.

2.4 Example: browsing high-level virtual stack-
frames, debugger-native stack-frames and
low-level virtual stack-frames

Throughout the development and lifecycle of a language feature,
the logic of an algorithm may be duplicated a number of times when
transforming it into different representations. Some transformations
are manual, others are automatic. For example, compilation into
intermediate code that is portable across architectures or operating
systems (LLVM, JVM, .NET) is such a transformation.

Especially in languages that have multiple VM implementations,
libraries cannot always assume that a particular primitive is imple-
mented on all VMs. In cases where such primitives can be simu-
lated from within the language, there is fallback (sometimes called
polyfill) code to deal with the absence of VM support. (Examples
for such languages include Squeak and JavaScript.)

As example for a highly run-time flexible application, we imple-
mented a recursive-evaluating interpreter QoppaS in Squeak/Smalltalk.
Its interpreted language is a Scheme dialect, called Qoppa3. In the
next subsections, we go through a couple of exploratory tasks with
it to illustrate the user experience of working with a debugger that
implements such an interaction model.

Select a debugging perspective to specialize the debug-
ger on the current use-case
It is use-case-specific what to show in the frametitle, displayed
content, and how to create virtual stack-frames. These properties
vary with not only the debugged application and unit, but also with
the question developers currently try to answer. When users select
the QoppaS perspective (Figure 3), the debugger shows the Qop-
paS stack-frames that were created by introspecting the Smalltalk
frames and adding abstract virtual frames as tree parents of the ex-
isting Smalltalk frames.

Expand a stack-frame to inspect its implementation de-
tails
When we expand the tree node to get further details on the eval-
uation of a Qoppa Instruction, we see the native Smalltalk stack-
frames as we know them from the conventional debugger. Select-
ing it here reveals the code that raised the exception (Figure 4).
Looking through the recursive calls of lookup:in: reveals that
the variable is indeed not declared in any of the scopes.

3described in http://mainisusuallyafunction.blogspot.de/2012/04/scheme-
without-special-forms.html, accessed on December 2, 2016

1500



Figure 3: Switching to the QoppaS perspective adds high-level
nodes that group evaluations of a qoppa instruction together.
We see the Qoppa stack.

Figure 4: Implementation details of the QoppaS VM show
where the exeption was thrown.

Expand a Smalltalk stack-frame and select the Cogit-
child to show the output of the Cogit JIT compiler
Since the lookup:in: method is called recursively and often, the
method was JIT compiled so that the bug may be caused by error-
neous JIT-Compiler behavior. When selecting the .cogit child, the
source view at the bottom is split to show the Smalltalk-bytecode
at the left an the compiled machine instructions on the right so that
users can understand the machine code better by mapping the two
onto each other (Figure 5). The JIT-Compiler did not inline the
signalUnboundVariable so that the hypothesis on a broken in-
ternal state through faulty inlining was invalidated.

Looking at the high-level code again, we find that the variable
was just a typo on the QoppaS language level: acd should have
been spelled acc (Figure 6). Integrating the language levels helped
us to go back and forth on the language levels of abstraction. So the
bug finally was found to not be a VM bug, but a mistake from the
language consumer instead.

Multi-level debugging is not strictly necessary in this scenario.
The actual error can be spotted without crossing abstraction barri-
ers. However, in case the typo is harder to spot or the bug is more
complex, it can be desirable to verify the absence of faulty behav-
ior on lower-level abstractions to rule out too many possible causes.
Multi-level debugging is not intended as a replacement for rigorous
development.

2.5 Example: browsing a Smalltalk primitive
In another scenario, we wonder how the <= comparison primi-

tive is implemented in the VM. When running the Qoppa code (if

Figure 5: Left: the bytecode of lookup:in:. Right: Matching
the generated machine code and confirm that operate:on:in:
is being called.

Figure 6: Browsing High-level code, we find the mistake on the
user application level: acd should be named acc

(<= ’n 1), we see an error that the QoppaS wrapper class should
implement adaptToNumber:andSend: to enable such comparison
with a string. We see that the Smalltalk method <= tried to call it,
but wonder how the Smalltalk fallback method <= was called in-
stead of the primitive implementation.

Looking at the frame titles, we see the tiny Squeak symbol that
we can lookup in the perspective selector as the Squeak Primitive
level (symbol in Figure 7, selector in Figure 6). The number al-
ready hints us that this method is annotated to be the primitive 5
(<=). In Smalltalk, the method body of such a method describes the
fallback code that gets executed when the primitive fails or is not
implemented. So let’s expand the node to see which one is the case.

We find two new virtual nodes, both are calling the primitive
primitiveLessOrEqual, so the 5 maps to the correct primitive
(Figure 7, top center). Selecting the C stack-frame shows us the
generated C code that is used to compile the primitives. Using

Figure 7: We select the Low-level Nodes to inspect the fallback
code, Slang and its generated C code (from left to right).

1501



Figure 8: Extensions to our system are done by subclassing
from the DebuggerLevel class.

the step buttons in here will not function for now. The code calls
primitiveFail method if an argument is not an integer (Fig-
ure 7, C, lines 5-10). So lessOrEqual comparison to strings is im-
plemented to jump to the fallback code. To see if that behavior is
intended by the implementors, we go to the high-level description
of that primitive (Figure 7, Slang, line 10). It looks clearly intended.
So we can rely on this behavior as a language feature and just im-
plement this method without having to be afraid of relying on a
bug.

3. IMPLEMENTATION
We evolved our prototype from earlier work on building and

debugging interpreters. Our extended design applies the Mediator-
Wrapper-Pattern to allow the debugger to selectively enrich stack-
frames with additional information.

Our debugger works on an enriched stack of a halted Squeak pro-
cess (also called green thread in other systems). The basic Squeak
debugger reflectively accesses all frames in a halted process di-
rectly. Our extension inserts virtual context nodes into the stack.
The first kind of these nodes combines groups of Smalltalk stack-
frames into high-level behavior. (This can be used in a similar fash-
ion to stack filters in other environments). A second kind of virtual
context nodes are shown as children of Smalltalk stack-frames –
these represent behavior of the execution models that the inspected
stack is running on such as bytecodes, virtual machine C sources,
or just-in-time compiled assembler.

The enriched stack thus turns a simple linked list of frames into a
tree, with high-level virtual nodes to combine multiple actual stack-
frames and low-level virtual nodes to offer a closer look at the un-
derlying virtual machine execution for Smalltalk stack-frames.

The system is extensible by subclassing from DebuggerLevel
class. All subclasses are used to determine the concrete stack for
the debugger. Subclasses represent the mediator in our architecture,
and, for each actual Smalltalk frame, they may return additional
VirtualContextNode instances as children, a different frame ti-
tle or icons to provide visual guidance. Figure 8 shows the cur-
rently provided mediators. It includes classes to filter based on var-
ious packages, whether or not a method includes a primitive call,
or which source code repository a method was loaded from.

As the examples have shown, a path from any first-level node
to a leaf of the tree always contains exactly one call stack node
and all the others are virtual nodes. During our implementations
we observed the trees to only form by grouping neighbor method
activations with a new virtual parent (High-level virtual nodes) and
by adding VM-external details to a particular activation (Low-level
virtual nodes).

High-level virtual nodes
As we’ve argued in prior work, the language developer’s current
perspective on the system they are debugging varies with respect
to the abstractions they want to regard as black boxes and which
they want to debug into. Our current implementations of high-level
virtual nodes help in this regard by allowing developers to hide
frames based on a variety of factors:

• Per-package hiding helps focus on those frames that are in-
side the currently developed projects, ignoring frames from,
for example, the Squeak standard library.

• When a guest language like Qoppa is interpreted on top of
Squeak, frames that implement the Guest language primi-
tives can be hidden to focus on the execution model like a
guest-level debugger would.

• Frames can be grouped by source revision, which can be use-
ful when bisecting a bug that is present in some revisions but
not others.

• Event-nodes can be used to help debug event-based systems
by grouping frames triggered from the same events.

Low-level virtual nodes
Our new focus in this work was the addition of virtual nodes below
the actual Smalltalk frames. We use two Squeak virtual machines,
the Cog Spur VM written in Slang and C [9] that uses domain gen-
eral abstractions and a method JIT, and the RSqueak/VM written in
object-oriented RPython that uses domain specific abstractions and
a tracing JIT.

One use-case for virtual machine developers is browsing the gen-
erated JIT code. Squeak already allows switching between showing
a method’s source and showing the generated bytecode. We have
added the bytecode virtual nodes and added a virtual node with
the generated assembler from the JIT (if available for the method).
For the Cog VM, the VM sources provide a simulation package
which we use to generate annotated assembler specifically for a
given method. Figure 9 shows the entire code that was required to
implement this. For the RSqueak/VM, we use RPython reflective
API to ask for annotated RPython intermediate representation if
it is available. Experienced developers can compare the generated
code and look for inefficiencies or errors. However, as part of future
work we are planning to provide a visual mapping from bytecodes
to assembler and to integrate a simulation of the assembler execu-
tion so that intermediate results can be stepped in parallel.

An additional use-case that is more specific to Squeak is debug-
ging into primitives. Most primitive behavior in Squeak is written
in Slang (a subset of Smalltalk) that can be converted to C and com-
piled to create the primitive functions in the VM. Many primitives,
however, also have so-called fallback code in the Squeak image.
This is ordinary Smalltalk code without limitations. The intention
of this code is to run when a given primitive was not compiled in
the executing VM, or when some cases were too difficult to express
in the Slang subset. This means that there may be two completely
separate implementations of the same primitive behavior (in Slang
and in Smalltalk). Furthermore, the C code derived from the Slang
code can be prone to bugs from the automatic type inference and
compilation. And as stated above, the JIT may have bugs or ineffi-
ciencies when compiling the Smalltalk fallback code4.
4For example, a bug was discovered in the JIT for integer division
that does not occur when running without JIT.
https://github.com/OpenSmalltalk/opensmalltalk-vm/issues/6#
issue-161101277, accessed June 29, 2016

1502

https://github.com/OpenSmalltalk/opensmalltalk-vm/issues/6#issue-161101277
https://github.com/OpenSmalltalk/opensmalltalk-vm/issues/6#issue-161101277


Figure 9: Adding low-level virtual nodes for JIT compiled code. For each Smalltalk activation frame, we return one
VirtualContextNode child with its content set to the annotated JIT code we generated using the JIT simulation class
StackToRegisterMappingCogit.

Our prototype allows developers to decide which code to use and
compare the results. The fallback and Slang code can be executed
through the debugger, the C code corresponds to just running the
primitive in the VM. The JIT code can be simulated at the moment
by running through the fallback code a few times to make sure it
is jitted in the VM. This is brittle, however, and in future work we
are planning to run the C code by compiling a shared library and
running it through FFI and to run the JIT code by sending it to a
CPU simulator like Bochs. This will also allow live development
of these representations to find correct forms and then work back-
wards from the desired C or assembler to change the Slang-to-C
compiler or the JIT. Similarly, the execution control of external call
stacks is desirable for further understanding. For stepping through
primitives, we would need to be able to step through the VM the
debugger itself is running in or use a VM-level implementation of
that primitive to simulate it.

4. DISCUSSION
The presented interaction model extends the existing interaction

with symbolic debuggers, is uniformly applicable to different per-
spectives, and is feasible to implement.

The interaction model itself extends the idea of symbolic debug-
ging by introducing optional, extended context. Large parts of the
interaction remain the same as with standard symbolic debugging.
The conventional model of a plain stack list is preserved as the
default debugging perspective. From the point of view of our inter-
action models, this corresponds to the case where no stack-frames
have been filtered and no virtual stack tree nodes are visible. As
the new perspective selector view can be provided for example as
context menu, our extended capabilities can disappear completely
if necessary. This fits our requirement for an unobtrusive extension
to the conventional symbolic debugger. When advanced perspec-
tives are desired or stack-frames should be hidden, our interaction
model can provide this functionality in a uniform way, providing
the multi-level debugging capability described earlier. Since the in-
teraction model only depends on the idea of debugging execution
using a list of stack-frames as its data source, we consider it gen-

erally applicable to other symbolic debuggers that also use stack-
frames.

We have provided two walk-throughs with our prototype that il-
lustrate the work-flow and the uniform user interface for different
kinds of abstractions. In particular, the walk-throughs highlight the
possibility of debugging abstraction client code while selectively
showing or hiding abstraction host code and vice versa. Further-
more, they illustrate how to inspect different transformation arti-
facts of the same source. However, the walk-throughs also revealed
aspects of the interaction model that are dependent to the specific
debugging use case. For example, nodes of a Squeak/Smalltalk
primitive (its simulation, JIT assembly, C-generating code and the
generated C code) did not exhibit inherent levels of abstraction. Es-
tablishing a tree order for them required tuning on a per-use-case
basis. Nonetheless, the debugger can be extended to change this
behavior and adapt it to a particular use-case. For example when
debugging the JIT compiler, the simulation code may be displayed
first to remember a primitive’s intended semantics, followed by the
JIT implementation node to reason about it, and finally the Slang
implementation to compare with another implementation. While
the application to primitive implementation may not be applica-
ble to a lot of other stack-based languages, similar abstractions can
be found in other stack-based interpreters and virtual machines and
this concept can be applied likewise. The application of our interac-
tion model to non-stack-based computation models remains future
work, however. Similarly, its use for programming concepts such
as AOP or COP requires further investigation.

The interaction model is feasible to be implemented as demon-
strated with our prototype in Squeak/Smalltalk. It implements the
described interaction model using standard UI elements including
the level-implementations for the described walk-throughs. While
the prototype does not share the actual user interface of the Squeak
debugger, its standard interactions remain nevertheless. The per-
spective selector is visible by default, but implementations that only
show it on demand are certainly possible. Our prototype can be
hence described as an extended Squeak debugger. The implemen-
tation is open to extensions itself. A new level may be added to the
system by sub-classing from DebuggerLevel so that libraries and

1503



frameworks could potentially bring their own levels. Library devel-
opers could hence build their knowledge about their library’s kind
of abstractions into the debugger and ship library specific exten-
sions to the debugger together with their library itself. More data
points and experience with this extension API are however neces-
sary to report about its feasibility and limitations. Nevertheless, our
implementation suggests that a similar architecture can be chosen
in other languages. We see no reasons that would inhibit the exten-
sion of other stack-based symbolic debuggers.

5. RELATED WORK
TIDE [11] helps building domain specific languages and a de-

bugger for them. It describes a language-generic API for extending
the debugger that could be used in our system. While TIDE is built
for building and debugging DSLs, our system additionally allows
the inspection of arbitrary kinds of abstractions, such as libraries or
transformation artifacts (C, JIT-Code).

The Moldable Debugger [3] introduces a new workflow for multi-
level debugging and motivates its need with various use cases. It
offers an new user interface for debugging that requires developers
to learn and get used to it. Our system can unobtrusively be built
into modern times’ IDEs without learning needed until users need
further details. We assume that unfolding the abstraction levels to
see node-related sub-nodes is quickly discoverable.

The Maxine VM inspector [8] facilitates the debugging of stack-
frames of different nature, notably stack-frames from baseline-JIT-
compiled code, optimizing-JIT-compiled code, and (native) C. The
focus for the inspector is to foster the understanding of the different
implementation levels of the VM. It does not intend to support ap-
plication developers or library developers. Also, due to the nature
of the Maxine VM, the inspector is a standalone tool that does not
integrate with any existing debuggers. Moreover, the inspector is
not intended as a full-fledged debugger; while it supports stepping
through code, changes to data and behavior are not supported.

6. FUTURE WORK AND CONCLUSIONS
When debugging a language runtime, it is often required to have

dedicated tools depending on used technology, abstractions and
system knowledge. The system we have presented builds on top
of a general purpose Smalltalk debugger instead. It introduces ex-
tension points to allow runtime and language implementers to add
perspectives for the abstraction and translation levels of the system
into one shared place.

There are several debugging tools that introduce a new debug-
ging language [2, 4, 7, 10]. Others constrain the development, e. g.
by requiring the code to be UML-generated so that the debugger
can map runtime and diagram [5]. Some of those systems also de-
scribe the need for higher-level abstractions on top of the imple-
mented program. Nonetheless, they still require application devel-
opers to formulate such mapping themselves. With our system, the
debugging perspective may be automatically generated or shipped
with a library – although the cost of possibly being less special-
ized on the developers actual design model. For debugging complex
systems, the effort required to provide specific mappings for such
systems may pay back (such as our specific mappings for gath-
ering assembler and C code for Squeak primitives). However, for
developers of many smaller code bases we think that even the basic
heuristics that our system brings as default can ease their process
without learning nor programming the debugger themselves.

While our previous work [6] focused on the concept of building a
recursive-evaluating interpreter and how to debug a guest language
together with its implementation, we now show that the basic model

can be extended to contain details on levels below the inspected
VM. Previously described virtual nodes represented higher-level
behavior and show the Smalltalk stack-frames as implementation
details. Now, virtual stack nodes may also represent behavior on
a lower level of abstraction and with that closer to the machine’s
actual execution model.

There are several directions for future work. We are planning to
extend the prototype to allow more fine-grained stepping through
and inspecting of low-level frames. In particular, intermediate re-
sults may be useful to compare execution behavior of different lev-
els of abstraction for e. g. primitive behavior. Furthermore, we want
to allow developers to choose which of the functionally equivalent
transformation results should be executed when running a program.
When executing all copies for all primitives, the debugger could
automatically compare their results and stop when they differ. We
believe this could be a powerful tool to develop and experimentally
verify transformations.

Our prototype is already useful for understanding the connection
between various transformations and to investigate bugs that may
occur when these transformations are incorrect.

7. REFERENCES
[1] H. Abelson and G. Sussman. Structure and Interpretation of

Computer Programs. MIT Press, Cambridge, Mass., USA,
1985.

[2] P. C. Bates and J. C. Wileden. High-level debugging of
distributed systems: The behavioral abstraction approach.
Journal of Systems and Software, 3(4):255–264, 1983.

[3] A. Chiş, T. Gîrba, and O. Nierstrasz. The moldable
debugger: A framework for developing domain-specific
debuggers. In International Conference on Software
Language Engineering, pages 102–121. Springer, 2014.

[4] M. Ducassé. Coca: An automated debugger for c. In
Proceedings of the 21st international conference on Software
engineering, pages 504–513. ACM, 1999.

[5] L. Geiger and A. Zündorf. Graph based debugging with
fujaba. Electr. Notes Theor. Comput. Sci., 72(2):112, 2002.

[6] B. Kruck, S. Lehmann, C. Kessler, J. Reschke, T. Felgentreff,
J. Lincke, and R. Hirschfeld. Multi-level debugging for
interpreter developers. In Companion Proceedings of the
15th International Conference on Modularity,
MODULARITY Companion 2016, pages 91–93, New York,
NY, USA, 2016. ACM.

[7] D. Liang and K. Xu. Debugging object-oriented programs
with behavior views. In Proceedings of the sixth
international symposium on Automated analysis-driven
debugging, pages 133–142. ACM, 2005.

[8] B. Mathiske. The maxine virtual machine and inspector. In
Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and
applications, pages 739–740. ACM, 2008.

[9] E. Miranda. The cog smalltalk virtual machine. In VMIL’11:
Proceedings of the 5th workshop on Virtual machines and
intermediate languages for emerging modularization
mechanisms, 2011.

[10] R. A. Olsson, R. H. Crawford, and W. W. Ho. A dataflow
approach to event-based debugging. Software: Practice and
Experience, 21(2):209–229, 1991.

[11] M. Van den Brand, B. Cornelissen, P. A. Olivier, and J. J.
Vinju. Tide: A generic debugging framework—tool
demonstration—. Electronic Notes in Theoretical Computer
Science, 141(4):161–165, 2005.

1504


