
Connecting Object Constraints with
Context-oriented Programming

Scoping Constraints with Layers and Activating Layers with Constraints

Stefan Lehmann Tim Felgentreff Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

Abstract
Context-oriented Programming extends object-oriented lan-
guages with a mechanism to dynamically adapt behav-
ior. Object Constraint Programming orthogonally extends
object-oriented run-times by integrating constraints, includ-
ing support for constraints over mutable state, object iden-
tity, and the results of message sends. Using these two lan-
guage extensions in conjunctions offers interesting opportu-
nities.

In this paper, we report on new mechanisms involv-
ing layers and constraints that evolved from our experi-
ences with combining Babelsberg/JS, an Object Constraint
Language, and ContextJS, an implementation of Context-
oriented Programming in JavaScript. First, our experience
shows that it is desirable to dynamically adapt declarative
constraints, which offer an orthogonal mechanism to the
definition of imperative behavior, likewise at runtime. In
this work, we show an extension to ContextJS to scope ac-
tivation or refinement of constraints dynamically using lay-
ers. Second, ContextJS already provides different activation
mechanisms for layers, including dynamically or structurally
scoped, or globally through system generated events. Con-
straints provide an activation mechanism based on arbitrary
boolean expressions changing their value, allowing for inter-
esting applications of behavioral adaption based on certain
conditions.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Constraint Layers, Object Constraint Program-
ming, Context-oriented Programming
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1. Introduction
Many mechanisms extend the toolbox of the object-oriented
programmer with features such as pattern matching[6],
multi-dimensional dispatch[12], and more exist. Among
those mechanisms are Context-oriented Programming (COP)[3,
7], which adds dynamic adaption of behavior based on lay-
ers, and Object Constraint Programming (OCP)[4, 5], which
adds constraints over mutable objects and on the results of
message sends. Using these two language extensions in con-
junctions offers interesting opportunities to address short-
comings in each language, and thus make both extensions
useful for a wider variety of problems. In this paper, we
present two such extensions, which we call Layer Activators
and Constraint Layers.

Layer Activators COP layers adapt behavior at runtime
when they are activated. There are various activation mech-
anisms in COP languages, including dynamically scoped[7]
or scoped to object structure[11] and event-based[1, 8] or
implicit activation[14]. While the first two mechanisms offer
explicit control over the activation time of layers, the latter
two are particularly interesting for our discussion because of
their declarative nature.

Event-based activation uses system-generated events to
activate or deactivate a layer during the event loop. Reactive
activation is based on similar principles as Aspect-oriented
Programming: whenever a message is sent that matches a
pointcut, an associated condition is evaluated. If that condi-
tion evaluates to true, a layer is activated for the duration of
the method activation.

A limiting factor of both mechanisms is their granular-
ity. Event-based activation relies on the creating appropriate
events that indicate a change in the system state to activate
layers. In JavaScript, for example, common system gener-
ated events indicate user input or network activity. How-
ever, it is not possible to tell the system to generate an event
whenever an arbitrary condition changes. Similarly, reac-
tive activation focuses on message sends. The conditions for
layer activation are only checked at join-points, and thus the



burden is on the programmer to ensure that their pointcuts
match all message sends that may be relevant.

In the work presented here, any predicate expression can
be continuously monitored, providing a flexible layer acti-
vation mechanism. In essence, any expression that returns
a boolean in the source language can be associated with the
activation state of a layer—the framework takes care to mon-
itor all changes to the system that might change the outcome
of that expression. We call these kinds of constraints Layer
Activators.

Constraint Layers OCP languages are motivated by the
observation that some issues in software development lend
themselves to a declarative specification, while others are
more directly expressed using imperative constructs. The
goal is to provide both paradigms in a cleanly integrated
fashion within an object-oriented language in a way that sup-
ports messages, encapsulation, inheritance, mutable objects,
and object identity in constraints. In OCP, constraints can be
defined, activated, and retracted at runtime. Using a meta-
level protocol, constraints can be activated and retracted at
arbitrary points during the execution. In addition, various
OCP systems offer explicit scoping mechanisms for con-
straints.

Babelsberg[4] is a design for Object Constraint Program-
ming languages, and this work is based on its JavaScript
implementation, Babelsberg/JS[5]. Babelsberg defines three
types of scopes for constraints: always, which defines and
activates a constraint for the entire rest of the execution;
once, which activates a constraint, solves it, and then im-
mediately retracts it; and assert–during, which activates a
constraint for the duration of a code block.

An issue with these scoping mechanisms is that they ef-
fectively allow the activation of constraints with global ef-
fects at any point in time. It is not possible to add restric-
tions on when constraints can be activated, making reason-
ing about a program difficult. Because constraints are, by
their nature, multi-directional, any method may add a con-
straint involving its arguments and thus calling any method
may affect the objects created by its caller.

To alleviate this problem and provide control over when
constraints are active, we use COP to provide a convenient
scoping mechanism to add, modify, or remove constraints
using layers. We call such layers that adapt declarative con-
straints in addition to behavior Constraint Layers. Such a
layer can add and remove constraints from the system, which
are then continuously monitored and enforced throughout
the execution.

***
The work presented here was done as a result of our ex-

perience in developing a browser-based clone of the game
Wii Play/Tanks!, which provided opportunities to use both
constraints and layers, but also exposed shortcomings of
these language extensions in our use-case (Section 2). Since
our target platform is the browser, our approach extends the

Figure 1. WePlayTanks with Babelsberg and ContextJS

Babelsberg/JS and ContextJS[11] implementations of OCP
and COP in JavaScript (Sections 3 and 4), but we also dis-
cuss how our approach relates to other COP implementa-
tions (Section 5). While we have found our mechanisms to
be useful in developing our game clone, we also report on
open questions and future work in that direction (Section 6).

2. Motivation and Goals
We set out to create a clone of the game Wii Play/Tanks!1

that runs in the browser. The game is top-down, with the
players controlling toy-tanks that shoot rubber bullets at each
other. The tanks can move about the field and turn their
turrets independently. The field contains obstacles such as
walls and holes in the ground which the tanks cannot cross,
but bullets can ricochet off walls and fly over holes. As an
extension to the original, we added power-ups which give
the tanks’ bullets additional behavior such as flying faster or
ricocheting more often.

The finished game is shown in Figure 1. From our ex-
perience with both COP and OCP, we realized there are
multiple opportunities to use constraints and layer-based be-
havioral adaption. Power-ups change the behavior of bullets,
and, during development, alternative drawing modes are de-
sirable for introspection and editing. These can be conve-
niently encapsulated using layers. Additionally, there are UI
elements that have constraints on them, such as the target
following the mouse, or that a tank cannot drive into a wall
or over a hole. We encapsulated these using constraints.

2.1 Desired Form of Layer Activation
Consider the use of layers for non-permanent power-ups,
which are collected and activated in the game and should
be deactivated after some time. Activating the layers imper-

1 c©2007 by Nintendo R©, http://www.nintendo.com/sites/

software_wiiplay.jsp, accessed March 30, 2015
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atively is straightforward: when the player drives the tank
over the power-up, the corresponding layer becomes active.
The case for deactivating the constraint, however, is not as
clear.

To later deactivate the constraint, we could create a time-
out which fires later to deactivate the layer [13]. This, how-
ever, makes the implementation to accumulate the times for
multiple power-ups more difficult, as each timeout would
have to check if the layer should indeed be deactivated or
if more power-ups of the same type have extended the time-
out. Alternatively, we could use a variable that remembers
the last time the player found a power-up, and find a con-
venient place in the game loop to insert a check if the layer
should be deactivated, with the drawback that we mingle dif-
ferent concerns into our game loop. Instead, we would like to
re-use the existing game loop time and decide if a layer is ac-
tive based on the time difference between the last collected
power-up and the current game time. Intuitively, we might
have a declarative definition of when the layer should be ac-
tive, given a variable lastCollectionT ime which holds the
last time the player collected a power-up:

lastCollectionT ime+ timeOut ≤ gameT ime

Given this definition, we can control both activation and
deactivation of the layer. When the player drives over the
power-up, we set lastCollectionT ime to gameT ime,
which, for a non-zero timeOut, implicitly activates the
layer. As time progresses, the inequality will become false
and implicitly, the layer is deactivated.

2.2 Desired Form of Constraint Scoping
In our game, consider that the turret of the tank should follow
the mouse cursor controlled by the player. The constraint can
be expressed in Babelsberg/JS as:

Listing 1.
1 always: {
2 player.turretDirection.equals(input.mouse.sub(player.position))
3 }

Constraints in Babelsberg/JS are ordinary JavaScript ex-
pressions that are introduced using the keywords always or
once, the constraint being that the expression evaluates to
true. Line 2 is the boolean expression that will be converted
by the framework to be solved. This code is valid, although
uncommon JavaScript, using always: as a code label. If this
code is executed, the label is skipped and the expression sim-
ply run, no constraints will be created. In Babelsberg/JS, a
translation mechanism interprets the expression while keep-
ing track of the dependencies between encountered variables
and fields[4]. Besides allowing for a more convenient syn-
tax, the source code transformation creates a context object
that contains all variables that are directly referenced by the
function[5]. The framework requires this context object in

order to interpret and transform the constraint expression.
The transformed code for Listing 1 is:

Listing 2.
1 bbb.always(
2 {solver: new DBPlanner(),
3 ctx: { player: player, input: input }},
4 function() {
5 return player.turretDirection.equals(
6 input.mouse.sub(player.position)
7 );
8 }
9 );

As long as a constraint is active, the system keeps track
of the objects that relate to it and, if the constraint becomes
invalidated through modifications to those objects, triggers
the solver to find a solution that satisfies them. This con-
straint will ensure that the turret direction will always be
towards the mouse cursor. However, in the game we only
want this to be the case as long as we are actually playing,
not if the game is paused or we are editing the playing field.
Yet, deactivating a constraint is currently only possible us-
ing meta-level access to constraints, and may be considered
the equivalent of a goto in OCP. Instead, we need a scoping
mechanism with which we can group, activate, and deacti-
vate constraints.

Using layers in combination with our Activators, we can
declare that play related constraints such as the one above
should only be active if the current game state is playing,
and have the activation mechanism take care of adding and
removing them at appropriate times.

3. Layer Activators
Games frequently involve dynamic changes of the system’s
behavior depending on various conditions. Certain function-
ality can be restricted to a specific game mode, e.g. veloc-
ities are only rendered in debug mode. We want to specify
the relation between the behavior adaption and the condi-
tion explicitly. To do so, we introduce the concept of Layer
Activators.

Activators activate a given layer as long as the associated
constraint expression is fulfilled, as illustrated by Figure 2.
In this figure, a change in the system state changes the result
of predicate p to true. The system automatically activates
the layer and execution continues in the system state that is
augmented by the layer. When an execution step changes the
result of the predicate, we deactivate the layer again. Note
that the activation and deactivation is immediate. There is no
time where any part of the program could observe a state
where the condition is satisfied, but the layer is not active.

In order to implement this, we extend the existing Ba-
belsberg library. Babelsberg is built to use multiple solvers,
and let them cooperate to solve constraints. We can view the



Figure 2. System state trajectory augmented by an activator
constraint

condition to activate a layer as a constraint of the form —

booleanExpression? = isActive(Layer)

The questionmark means that the solver is not allowed to
change the condition, and thus must change the activation
state of the layer when the condition changes. Accordingly,
we implement a special ReactiveSolver, which re-uses
the Babelsberg framework for interpreting the condition ex-
pression, but has special knowledge to solve constraints in-
volving the active state of a ContextJS layer. Whenever a
variable that participates in the boolean expression changes,
the framework asks our solver to solve the constraint. To do
so, our custom solver checks whether the evaluation result of
the condition coincides with the layer activation status and if
not, activates or deactivates the layer as necessary.

Using this special solver embedded in Babelsberg/JS, a
Layer Activator may look as follows:

1 always: { solver: new ReactiveSolver()
2 my.condition == aLayer.isActive()
3 }

This uses the standard Babelsberg/JS mechanism for con-
straint solving: the predicate my.condition == aLayer.isActive()
is interpreted to determine its dependencies, and the objects
that affect the outcome of the predicate are wrapped to mon-
itor changes to them [5]. When the outcome of the predicate
is false, the ReactiveSolver is called to change the participat-
ing objects to make it true—in this case, the solver knows
that to do so means to adjust the activation state of aLayer to
match the other side of the equality.

In practice, we found that syntactic sugar is useful for
these kinds of constraints. The right-hand side of the con-
straint will always be an equation to the result of calling
isActive on a layer. To make this clearer, we adopted a
more convenient syntax. Using this syntax, we can use one
of our power-up layers (Section 2.1) as follows:

Listing 3.

1 var powerUpLayer = new Layer().refineObject(tank, {
2 getBulletRicochets: function() {
3 return cop.proceed() + 1;
4 }
5 });
6 powerUpLayer.timeout = 6000;
7

8 activator(function() {
9 return timer.time > player.powerUpCollectionTime +

10 powerUpLayer.timeout;
11 }).activates(powerUpLayer);

Lines 1–6 define a layer for a particular power-up. Lines 8–
11 define a Layer Activator. It references the global timer
and the player, and declares that when the predicate evalu-
ates to true, the powerUpLayer should be active.

Since the Layer Activators are built around a shared con-
straint solving mechanism, the semantics for competing or
contradictory activators arise out of the theory of constraint
solving for contradictory or competing constraints. If two
Activators contradict each other, solving will fail with an ex-
ception at the time the second Activator is defined—with the
effect that the second Activator is not enabled.

4. Constraint Layers
Constraint Programming (CP) typically revolves around de-
scribing a global system state, which is why always and
once constraints are often sufficient. In contrast, Object-
oriented Programming (OOP) revolves modularization of
system state and dynamic adaption. Babelsberg provides
means to globally enable or disable constraints using the
meta-level methods enable and disable, defined on the
Constraint. As a limited scoping mechanism, constraints
can be activated for the dynamic extent of a code block. This
mechanism, however, is control flow-specific. Instead, we
want to re-use the declarative form of activating layers for
constraints.

As we integrate constraints and Object-oriented (OO)
concepts, the requirements of an OO environment start to
apply to constraints as well. Constraints should be able to
adapt dynamically as behavior does. So, analogous to partial
classes and their behavior in behavioral layers, we introduce
scoped constraints in Constraint Layers.

One can associate layers with constraints as one would do
with partial behavior. Similar to partial behavior definitions,
scoped constraints take effect as soon as the associated layer
becomes active. Deactivating the layer again causes the con-
straints to be disabled. That way, the constraint is enabled as
long as the associated layer is active.

To exemplify the concept of scoped constraints, suppose
the following functionality of our game in the editor mode:
as long as the game is in editor mode, the players cursor
should always correspond to the Tile under the mouse.
To cleanly separate the editor mode from the rest of the
game, the editor mode is represented by a dedicated layer,



the EditorLayer. This layer cross-cuts all relevant mod-
ules to implement the editor mode including the constraint
described above. Listing 4 shows the definition of this con-
straint:

Listing 4.
1 EditorLayer.addConstraint(
2 {solver: new DBPlanner()},
3 function() {
4 return cursor.tileIndex.equals(
5 map.positionToCoordinates(input.position)
6 );
7 }
8 );

Line 1 adds a constraint to the EditorLayer using a
addConstraint method, which we have defined. This
method takes a configuration object (Line 2), which in this
case specifies that the predicate, if activated as a constraint,
should be solved using the DeltaBlue planning solver. As
second argument we pass the predicate function, which tests
that the tileIndex field of the cursor is equal to the mouse
position when converted to tile-based coordinates. When the
EditorLayer is activated, this predicate is transformed into a
constraint and solved for. - Using the addConstraint func-
tion, multiple constraints can be added to a layer. Thus, lay-
ers can group multiple constraints to atomically en-/disable
multiple constraints related to the same context.

5. Related Work
We discuss work related to our layer activation mechanism.
To our knowledge, there is no previous work that combines
COP and Constraint Programming.

JCop [1] and EventCJ [8] separate the control of layer
activation and the execution of context-dependent behavior
using two language constructs, event declarations and layer
transition rules. An event declaration specifies a named
event, when the event is triggered, and to which objects
the event is sent. A layer transition rule specifies the acti-
vation and deactivation of layers in a declarative manner.
EventCJ events rely on a subset of AspectJ[10] pointcuts.
However, the pointcut has to be specified explicitly. In con-
trast, our Layer Activators allow to specify an arbitrary con-
dition and, thereby, abstract from concrete point of execution
to activate the layer. A benefit of EventCJ is that it provides
instance-specific layer activation, while our work activates
layers globally.

PyContext[14] introduces implicit layer activation, to ad-
dress the issue that, similar to our observations, layers are
often activated depending on a condition. If this condition
changes frequently, the condition and activation may be scat-
tered across the code. Each PyContext layer may define the
active method and, if this method evaluates to true, the
layer is active. Whenever a layered method is called, Py-
Context first determines which layers are active using those

methods. In contrast, our work determines the composition
when the condition changes. Depending on the frequency,
one or the other implementation may incur more overhead.

ServalCJ[9] attempts to unify different layer activation
methods by introducing two concepts: contexts specify the
duration of a layer activation and subscribers specify which
computations are affected by the layer activation. The uni-
fied model allows to represent both dynamically scoped and
reactive event-based activation mechanisms.

6. Discussion and Conclusion
We have presented a novel COP layer activation mechanism
related to reactive and event-based layer activation tech-
niques, and a novel use of layers as a scoping and control
mechanism for constraints in OCP languages. These mecha-
nisms resulted from our experience in creating an interactive
game using both constraints and layers.

This work is practical, and open issues remain regard-
ing semantics that were not relevant for our use-case. Ad-
dressing these issues will require further experience with our
mechanisms.

First, it is currently not clear what happens when two
conflicting Layer Activators refer to the same layer. The
layer may active if one or more of the activator constraints
evaluate to true, or only if all associated activator constraints
evaluate to true. Alternatively, we may detect a conflict when
trying to define an Activator for a layer that already has one.
As a final option, we could ask the system to solve for all
Activator expressions to be equal, when multiple expressions
are defined.2

Second, how do Layer Activators and control flow-based
activations of a layer interact? If a layer that is associated
with an activator constraint is activated manually, we may
raise an error or just fail silently if the activator expression
is not true (the latter option being the practical expression
of an assumed artificially small time between the imperative
activation and the time when the Activator deactivates the
layer). Alternatively, we may propagate the layer activation
and prompt the framework to solve for the Activator expres-
sion to be true.2

Third, consider a Layer Activator that is part of a Con-
straint Layer, and both are active. What happens if the Con-
straint Layer is deactivated, and thus the Layer Activator as
well. We see two options: 1) disabling the Activator deacti-
vates the layer regardless of the current value of the Activa-
tor expression, or 2) disabling the Activator leaves its layer
active.

Despite these open questions, our practical implementa-
tion of these mechanisms enabled us to construct a usable

2 The semantics of the first two issues are clear when using the layer activa-
tion semantics of ContextJ[2]. In this implementation, multiple activations
cause the behavioral variations to be applied multiple times. Thus, activat-
ing a layer twice through manual activation or multiple Layer Activators
simply applies the behavior adaption twice.



game. We were able to use our mechanisms to make use of
OCP constraints and COP layers in a way which improved
the clarity and conciseness of our code, and believe that fur-
ther work in this direction may benefit other application do-
mains.
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