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Abstract

Maintaining consistency between data throughout a system using
scattered, imperative code fragments is challenging. Some mecha-
nisms address this challenge by making data dependencies explicit.
Among these mechanisms are reactive collections, which define
data dependencies for collections of objects, and object queries,
which allow developers to query their program for a subset of ob-
jects.

However, on their own, both of these mechanisms are limited.
Reactive collections require an initial collection to apply reactive
operations to and object queries do not update its result as the
system changes.

Using these two mechanisms in conjunction allows each to
mitigate the disadvantage of the other. To do so, object queries need
to respond to state changes of the system.

In this paper, we propose a combination of both mechanisms,
called reactive object queries. Reactive object queries allow the de-
veloper to declaratively select all objects in a program that match
a particular predicate, creating a view. Additionally, views can be
composed of other views using reactive operations. All views are
automatically updated when the program state changes. To better
integrate with existing imperative systems, we provide fine-grained
events signaling view updates. We implemented the proposed con-
cepts in JavaScript.

Our initial experience with example applications shows that the
combined concept eases the integration of reactive mechanisms
with object-oriented environments by avoiding scattered update
code.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Data-flow languages; Object-oriented languages; D.3.3
[Language Constructs and Features]: Data types and structures

Keywords Events, Reactive Collections, Reactive Programming,
Object Queries, Object-oriented Programming

1. Introduction

Manually defining and maintaining relations between collections of
objects consistently throughout the system can be tedios and error-

prone. Reactive collections [8] address this problem by making
functional dependencies among data structures explicit. User can
define desired dependencies using traditional collection operations
such as map and filter. The reactive framework keeps track
of dependencies and automatically updates dependent collections
when the initial one changes. This allows the programmer to focus
on what dependencies should hold rather than how to keep the
system consistent under all possible conditions.

While reactive collections allow to define transformations in a
declarative manner, initial collections are often updated in an im-
perative and explicit fashion. Object queries [13] solve this problem
by integrating explicit queries into programming languages. Thus,
this mechanism makes the whole program space queryable. Users
can define sets of objects by describing desired attributes speci-
fied in SQL-like queries. To support this feature, the framework
needs to keep track of all objects in the program, for example by us-
ing means of aspect-oriented programming [5]. While this concept
provides high expressiveness through declarative queries, many im-
plementations of object queries suffer from the view maintenance
problem, that is the automatic update of materialized views [2]. De-
spite certain advances in the field [14], manual updates are still the
norm. The result is missing data consistency, which is the key issue
solved by reactive collections.

Both concepts, reactive collections and object queries, mutually
excel at each other’s problem area. Object queries allow to declara-
tively define basic collections for further transformations and reac-
tive collections provide mechanisms to solve the view maintenance
problem. In this paper, we propose a combination of both concepts
to benefit from each concept while mitigating their respective dis-
advantages. The resulting combined concept allows to model any
set of objects, called views, and their dependencies in a declaractive
manner.

Despite their advantages, the mentioned concepts usually imply
a relational programming style [11]. As a result, integrating these
concept with stateful, imperative environments is still challenging.
To further aid the integration with imperative environments, the
framework has to consider the common characteristics of impera-
tive systems, among which are statefulness and side effect-afflicted
behavior. In order to support the modification of objects in an im-
perative way, we provide fine-grained events on the modification of
views. The combination of these approches allows the developer to
manipulate views on modifications of the current system state and
to modify the system state based on view updates using events.

In summary, we provide the following contributions:

• A design that implicitly handles updates to collections of ob-
jects using an integration of reactive collections with object
queries
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• The introduction of fine-grained events representing modifica-
tions of collections to aid the integration of reactive collections
with imperative environments

• A prototypical implementation of the proposed concepts in
JavaScript

In the remainder of this paper, Section 2 presents the key con-
cepts of our integration of object queries with reactive collections.
An implementation of these concepts is explained in Section 3.
Section 4 shows how to modify an existing object-oriented appli-
cation using the proposed concepts. Related concepts are presented
in Section 5. Future work and our conclusions are described in Sec-
tion 6 and Section 7, respectively.

2. Reactive Object Queries

In this section we describe the concept of reactive object queries, an
integration of reactive collections and object queries. Additionally,
we describe how to integrate the concept more tightly into an
object-oriented environment using fine-grained events.

2.1 Querying Objects

Central to the concept of reactive object queries is the select
method. The select method takes a class and a boolean expression
as parameters and returns a view object, consisting of every instance
of the class that matches the expression. To illustrate this, Figure 1a
depicts a program space populated by multiple circle and square
objects with different properties. The user queries all circles of a
certain size to generate a corresponding view.

The view object is analogous to views in conventional relational
databases in that it automatically updates whenever the underlying
system state changes. For example, consider that the size of a circle
object changes in a way that it now matches the aforementioned
query as shown in Figure 1b. As a result, the view is adjusted to
include the modified circle in order to keep consistency with the
program space.

2.2 View Transformations

Using views in conjunction with reactive operations on collections
offers the possibility to specify transformations on views that are
independent of the imperative control flow. As an example, one
could apply a filter to further refine the view shown in Figure 1a.
The derived view would automatically adapt with its base view
to system state modifications. The map operation could be used
to generate a square of equal size for each queried circle. This
operation creates new objects which are populated back into the
object space. Thus, they can be queried as well. All derived sets
respond to changes in the object space the same way base views
do. As shown in Figure 1b, changing the size of the circle adds
it to the base view. The devired filtered view reacts to this change
by including the circle as well. As a consequence, a new square is
created based on the circle.

2.3 Fine-Grained Events

View transformations impose a functional style of programing in
that they create new objects based on changes in the program. How-
ever, in imperative environments new objects need to be integrated
into the system appropriately, for example by introducing relations
to already existing objects. Currently, there in no possibility to in-
voke imperative behavior out of view transformations. To allow
such side effects, we provide fine-grained events that emit on mod-
ifications to a view. In particular, we introduce two types of events:
an enter event, and an exit event. A view emits an enter event
everytime a new object is added to it. This object is passed as an ar-
gument to every registered callback. Analogous to the enter event,

each view emits an exit event whenever an object is removed from
the view. If multiple objects are added to or removed from a view
at once, for example because the view was just constructed, or the
prediate changes, we emit one event per object added or removed.

To sum up, we provide a concept of object queries that allows
developers to create views for objects of interest based on arbitrary
expressions. Our framework automatically updates views whenever
relevant program state is modified. Further views can be derived
from base views using transformation operations. To better inte-
grate with object-oriented environments, we provide fine-grained
events on each modification of a view. Listing 1 shows the methods

currently supported by our prototypical implementation as JSDoc1-
like interface.

1 Classes
2 Class: View
3 Methods
4 filter(filterIterator(Obect) -> Boolean) -> View
5 map(mapIterator(Object) - Object) -> View
6 enter(callback(Object)) -> View
7 exit(callback(Object)) -> View
8 now() -> Array
9 size() -> Number

10

11 Global
12 select(Class, predicate(Object) -> Boolean) -> View

Listing 1: API currently supported by our prototype.

3. Implementation

We provide a prototypical implementation2 of the proposed con-
cepts in JavaScript. Because enter or exit event callbacks could in-
volve arbitrary behavior, we have to actively update views on sys-
tem changes. Early prototypes showed that reevaluating all queries
whenever an object is created or mutated were not performant

enough3. So, we only track instances of specified classes. To further
reduce the number of checks to do, we only keep track of modifi-
cations of objects relevant to our queries. Therefore, we perform an
abstract interpretation for each query to limit the number of proper-
ties and variables to be observed. By intercepting only the accesses
to relevant properties and variables, we reduce the runtime over-
head of object queries and still produce correct results. To update
derived views we make use of a tree structure of views. Changes to
views emit enter or exit events respectively. Implementation details
are provided in the following.

3.1 Object Tracking

In order to continuously update query results, we need to keep
track of the construction and modification of objects. To reduce
performance overhead we do not keep track of every object by
default. Instead, the user explicitly specifies which classes should

be tracked. We use functional mixins provided by Flight4 to de-
fine tracked classes. For example, withLogging.call(Entity)
would instruct our framework to track all instances of the class
Entity. The withLogging mixin installs an after advice on the
objects initialize function. The advice adds the object to a base
set of tracked objects.

1 JSDoc http://usejsdoc.org/ accessed on January 12th 2016
2 Reactive Object Queries prototype https://github.com/onsetsu/
active-collection-prototype accessed on January 3th 2016
3 Early prototype https://github.com/onsetsu/livsel accessed on
January 15th 2016
4 FlightJS, Twitter https://flightjs.github.io/ accessed on January
5th 2016
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(a) (b)

Figure 1: Using reactive object queries, developers can query a subset of objects matching a particular predicate. The resulting view is always
consistent to the current object space. By applying collection operations on views, developers can derive further views. Objects created by
such transformations are populated back into the object space (a). As changes are introduced to the system state, the views act accordingly,
reflecting the changed state by propagating modifications through the network of views (b).

3.2 Predicate Definition and Detection

Users can define an object query using the select method by pro-
viding a class as a base set and a Boolean expression. First, all
objects of the base set that match the expression are immediately
added to the result. In order to keep track on relevant changes of
the objects, we intercept assignments to all variables referenced by
the expression. To do so, the expression is interpreted for each ob-
ject using the Lively Kernel [7] JavaScript interpreter[12]. The in-
terpreter is customized using means of context-oriented program-
ming [4, 6] to intercept the access to each property. Each property
accessed during interpretation is wrapped with a transparent prop-
erty accessor. Whenever a new value is assigned to a wrapped prop-
erty or a new object is created, we check the expression result and
add the corresponding object to or remove it from the result accord-
ingly. Assignments of complex values necessitate reinterpretation.
Each newly created object is automatically interpreted the same
way.

Note, that the used interpreter relies on explicit access to the lo-
cal scope of the expression. However, JavaScript does not support
access to the local scope by default. So, we destilled and adapted
the source code transformation from Babelsberg/JS [3], in order to
capture the local scope of the expressions. We apply the transfor-
mation when a file is loaded to the page using a modified version

of require.js5.

3.3 Maintaining Derived Views

Calling collection protocol methods such as map or filter on
query results creates further collections that need to be kept con-
sistent to their base set. Therefore, each set maintains a list of sets
that are derived from it, ultimately creating a tree structure. When-
ever a set changes, it emits the enter or exit event respectively.
We make use of these events to update child sets accordingly. To
exemplify this, removing an object from a set emits an exit event.
For example, a child set derived using filter receives this event
and also removes the object if present.

5 RequireJS http://requirejs.org/ accessed on January 6th 2016

4. Example

To illustrate the interplay of mechanisms, we discuss an example
scenario involving an object-oriented environment.

4.1 Application Scenario

We apply a modification to the Bloob soft-body physics and game

engine6. A game in the engine is organized as multiple maps which
are edited one at a time. Each map contains multiple layers which
in turn contain multiple Entities. When dealing with larger maps,
it is hard to keep track of all objects of interest using the built-in
debugging tools. So, we want to add a simple debugging facility,
called entity finder, to the engine. Figure 2 shows a screenshot of

the resulting entity finder utility7. The entity finder should provide
the user with an input field and a dropdown list of all Entities whose
name matches the input. Clicking on a list item should instruct
the camera to focus on the respective Entity. The engine already
provides a dropdown menu implemented as a thin wrapper around

DOM elements8. We want to reuse this UI element.

4.2 Involving Reactive Object Queries

Listing 2 shows the complete code to create this example. First, we
create the desired UI element using the Dropdown utility as shown
in line 1 to 4. Then, we need to provide the menu with all objects
of interest. Because Entities are scattered across multiple layers
within a map in the engine, manually querying all objects of in-
terest requires an implementation using nested loops. Additionally,
accessing all Entities requires knowledge about internal data struc-
tures of the engine. Instead, we query the program for all objects
of interest using the select method as shown in line 6 to 10. We
provide the class of instances we are interested in, Entity in this
case, as the first parameter. The second parameter is a Boolean ex-

6 Bloob https://github.com/onsetsu/bloob accessed on January 3th
2016
7 Reactive Object Queries example http://onsetsu.github.io/
active-collection-prototype/bloob.html accessed on January 3th
2016
8 Document Object Model specifications http://www.w3.org/DOM/ ac-
cessed on January 10th 2016
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pression that filters out all Entities whose name does not match
the input string. The select method returns a view that consists of
all Entities matching the expression. This view automatically up-
dates whenever the input string changes, a new Entity is created, an
Entity is removed, the name of an Entity is modified, and also when
the implementation of the methods includes or input changes.
Finally, we need to create list items for each matching Entity and
attach them to the list. To do so, we derive a view from the Entity
view using the map method. As depicted in line 13 to 18, the de-
rived view creates a new link element for each Entity in the base
view. Additionally, we register a callback to the click event in order
to focus the camera on the respective Entity. The existing dropdown
list is implemented statefully. So, we need to attach and remove list
items explicitly. We use the fine-grained events provided by our ap-
proach to gradually modify the list. When a list item is added to the
derived view, we attach it to the entity finder as shown in line 20
to 22. Analogously, we remove a list item from the DOM when the
list item is removed from the view in line 23 to 25.

The presented implementation provides two major advantages
over an imperative one. First, reactive object queries allow devel-
opers to specify views of interesting objects by their properties in
a declarative manner. In contrast, an imperative implementation re-
quires the developer to specify how to construct such a view explic-
itly. Second, the responsibility of creating and maintaining views is
shifted into the framework. This results in clean, compact code, and
avoids scattered code fragments to imperatively maintain multiple
views.

1 var entityFinder = new Dropdown(
2 ’#entityFinder’,
3 ’Blob’);
4 entityFinder.show();
5

6 var matchingEntities = select(
7 Entity, function(entity) {
8 return entity.name.includes(entityFinder.input());
9 }

10 );
11

12 matchingEntities.map(function(entity) {
13 var item = document.createElement(’a’);
14 item.innerHTML = entity.name;
15 item.on(’click’, function() {
16 env.camera.track(entity.body, layer);
17 });
18 return item;
19 })
20 .enter(function(item) {
21 entityFinder.div.append(item);
22 })
23 .exit(function(item) {
24 item.remove();
25 });

Listing 2: Query for all Entitieswhose name contains the input
string. Then show them as list items.

5. Related Work

Automatically deriving and transforming data has been investigated
in research for a long time. We relate to approaches involving
reactive lists, incrementalization or object queries as well as other
data-centered applications.

5.1 Reactive Data Structures

Glazed Lists9 is a Java library that allows to setup functional de-
pendencies between data structures compatible to the Java List

9 Glazed Lists http://www.glazedlists.com accessed on January 4th
2016

interface. The provided custom data structures can be transformed
using operations such as filter or sort to create dependent lists.
Additionally, the library allows to edit lists in provided GUI views
in Swing or SWT applications. Like in most current approaches,
dependent lists are only updated, if the input list is modified [11].
Changes to any other variables referenced in the operators do not
trigger an update of the dependent lists. In contrast, our approach
reacts to the changes to any variables that could affect the query
results.

Flapjax [9] is a language for reactive web applications built
on top of JavaScript. Flapjax provides explicit event streams as
an abstraction for the communication with external web services.
Streams can be transformed similar to the aforementioned reactive
collections. The result are reactive UI elements that are updated
with the data received from web services. Flapjax proposes reac-
tivity through event streams instead of plain collections. Similar to
Glazed Lists, reactivity is limited to the data processed using event
streams.

Maier and Odersky [8] propose reactive collections. Reac-
tive collections are created and updated automatically using data-
dependency mechanisms from other lists. For example, each time
the input list changes, a dependent list created with map updates
accordingly. This is done by continuously listen to changes to sig-
nals which are specialized time-varying values. Most transforma-
tion methods have two versions, for example map and sigMap.
While map only updates the output list when the input list changes,
the sigMap method also updates the output list when any refer-
enced signal changes. However, dependency tracking is limited to
changes to signals referenced in the operators. So, dependent lists
do not update automatically if ordinary variables change. Not sup-
porting ordinary variables complicates the integration with existing
object-oriented environments. In contrast to Maiers work, we do
not introduce a seperation between reactive and ordinary variables.
Instead our systems reacts to any changes to variables referenced
in the select predicate that could potentionally affect the query
result. As a result, our prototype can be used to extend existing
object-oriented environments without modifications. However, we
do not yet apply this behavior to our collection protocol. Here, sim-
ilar to the non-prefixed operations, we only react on modifications
of the input list.

5.2 Object Queries

The Java Query Language (JQL) [13, 14] allows queries over indi-
vidual collections or the global set of all instanciated objects. So,
views can be generated by simple, declarative query statements.
However, the proposed work focusses on efficiency rather than re-
activity. JQL caches queries and their results for repeated similar
queries on data that has changed since the last query. As a re-
sult, JQL query results do not automatically update when the sys-
tem changes but represent one-shot operations. In contrast, our ap-
proach maintains a persistent view on the program space.

Rothamel and Liu [10] present an efficient implementation to
incrementalize query results. Despite using object queries, the sys-
tem is more related to adaptive programming than reactive pro-
gramming in that it allows to obtain efficient programs from ex-
isting non-incremental ones. In contrast, we expose reactivity to
users by integrating object queries with reactive collections.

Entity Component System [1] is an architectural pattern com-
monly used in the context of game engine development. Every ob-
ject in the scene of a game is represented as an entity. Entities are
data holders for a set of components. Components are data objects
representing a single aspect of an entity. Systems can query the
game for entities that pocess certain aspects, respectively compo-
nents. Each rendering cycle during the execution of the game, the
systems perform global actions based on the queried entities. For
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Figure 2: Screenshot of our entity finder extension (upper left corner) to the basic game view (center). The automatically updated dropdown
menu is always consistent with the queried subset of Entites.

example, a simple physics system could query entities that have a
position and a velocity component and apply a time-based physics
simulation to each matching entity. Entity Component Systems of-
fer a a simple data-driven design. Systems use queries to dynami-
cally create a view on objects of interest. However, the used query
mechanism imposes two major restrictions. First, views are only
updated at fixed points in time, usually once per frame. Second,
query conditions are limited to the presence and absence of com-
ponents to increase performance. In contrast, our system updates
queries continuously and supports arbitrary conditions.

6. Future Work

We propose to implement additional reactive operators involving
multiple views as input or output. Moreover, we want to clarify op-
erator semantics, integrate with other reactive concepts, and create
dedicated debugging support.

Clear Operator Semantics for Stateful Environments Providing
fine-grained events to react on modifications of views improves
the integration of reactive collections with stateful environments.
However, the overall problem, bridging the gap between reactive
programming and stateful environments, is not solved completely.
As an example, consider a map operator referencing a variable
other than the list item. How should the system behave when
this variable is modified? While recalculation is a valid option in
context of immutable state, the semantics for mutable objects is
not clear. One possiblity would be to change the properties of the
mapped object. To do so, we could trace which properties of the
base object lead to the values of which attributes of the resulting
object and establish data dependencies between these properties.

Integration with other Concepts According to Salvaneschi [11]
one main limitation of reactive collections is their limited domain.
To increase the usability of this paradigm, an integration with other
reactive concepts could be beneficial. Consider the conversion of
views from and to observables or the usage of signals as time-
varying return values for methods like reduce or size. In an
object-oriented environment the adaptation of behavior based on
views creates interesting possibilities. For example, one could in-

terpret the containment in a view as an explicit context and dynami-
cally activate a context-oriented programming layer for each object
in a view [4].

Dedicated Debugging Tools Using reactive object queries leads
to clean, declarative code. Yet, similar to other reactive concepts,
queries are orthogonal to the control flow. The result is complex
runtime behavior that is hard to debug. A dedicated debugging tool
should be able to answer the following questions. Which views
contain a specific object? How does a view relate to other views?
Which views are potentially affected by a statement?

7. Conclusion

Manually maintaining collections of objects consistently through-
out the system can be tedios and error-prone, especially in object-
oriented environments. Reactive collections are a concept to define
data dependencies between collections, however, initial collections
have to be updated manually. Object queries allow developers to
query their program for a subset of objects, but do not update as
the system changes. Using both mechanisms in conjunction allows
each to mitigate the disadvantage of the other.

In this paper, we have proposed the concept of reactive object
queries. Those queries allow to declaratively select all objects in a
program that match a particular predicate. The resulting views are
analogous to views in relational databases in that they automati-
cally update whenever the underlying program state changes. One
can derive further views from these base views by applying reactive
collection operation to them. As with base views, derived views au-
tomatically update in presence of changes. To better integrate into
existing stateful systems, we provide fine-grained events on modi-
fications of views.

We presented a prototypical implementation of the proposed
concepts in JavaScript. Additionally, we described their usage with
an explanatory example scenario.

Despite the presented future work, we think that reactive object
queries already are useful in context of integrating reactivity with
stateful systems.
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