
Call-target-specific Method Arguments

Fabio Niephaus Matthias Springer Tim Felgentreff Tobias Pape Robert Hirschfeld
Software Architecture Group, Hasso Plattner Institute, University of Potsdam

{fabio.niephaus, matthias.springer}@student.hpi.uni-potsdam.de
{tim.felgentreff, tobias.pape, hirschfeld}@hpi.uni-potsdam.de

Abstract
Most efficient implementations of dynamically-typed programming
languages use polymorphic inline caches to determine the target of
polymorphic method calls, making method lookups more efficient.
In some programming languages, parameters specified in method
signatures can differ from arguments passed at call sites. However,
arguments are typically specific to call sites, so they have to be
converted within target methods. We propose call-target-specific
method arguments for dynamically-typed languages, effectively
making argument handling part of polymorphic inline cache entries.
We implemented this concept in JRuby using the Truffle frame-
work in order to make keyword arguments more efficient. Micro-
benchmarks confirm that our implementation makes keyword argu-
ment passing in JRuby more than twice as fast.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.3.4 [Programming Lan-
guages]: Processors—code generation, optimization

Keywords PIC, Method Arguments, Named Arguments, JRuby

1. Introduction
Dynamically-typed object-oriented programming languages typi-
cally use polymorphic inline caches [6] during method dispatch to
find the corresponding target method quickly: a small number of
class types is stored along with method pointers at every call site. In
some programming languages, however, different call targets that
are cached by the same call site can require different arguments:
Ruby keyword arguments will serve as a running example in this
paper and are introduced in Section 2.

The main contribution of this paper are call-target-specific
method arguments: instead of converting arguments into a call-
site-specific format and sharing them among all call targets, our
approach aims to make method arguments call-target-specific.
Based on the polymorphic type of the receiver, the call site directly
converts the arguments to the method-specific format. Call-target-
specific method arguments were designed for dynamically-typed
programming languages; a different idea has been proposed and
implemented for statically-typed programming languages and is
presented briefly in Section 5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICOOOLPS ’15, July 06, 2015, Prague, Czech Republic.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3657-4/15/07. . . $15.00.
http://dx.doi.org/10.1145/2843915.2843919

2. Example: Ruby Keyword Arguments
Keyword arguments (named arguments) in Ruby will serve as a
running example in the remainder of this paper, but other con-
structs [12] such as variable-sized argument lists with a rest argu-
ment are amenable to our approach. The usage of keyword argu-
ments is wide-spread in Ruby: for instance, libraries like ActiveRe-
cord typically pass options arguments as keyword arguments [3].
They are also useful for designing domain-specific languages [5].
Ruby 2.0 introduced a more compact syntax for keyword arguments
(Listing 1), in addition to the old syntax.

1 def A.foo(a:, b:)
2 a + b
3 end
4

5 def B.foo(b:, a:)
6 a + b
7 end
8

9 def C.foo(a:, **kwargs)
10 a + kwargs[:b]
11 end
12

13 object.foo(a: 1, b: 2)
14 object.foo({a: 1, b: 2})

Listing 1: Example usage of keyword arguments in Ruby.

Keyword arguments are named arguments. The order in which
they are passed in a method call does not matter. Excess keyword
arguments are available as a dictionary (“hash” in Ruby) in the target
method’s body (**kwargs in line 9) or cause an argument error if
no such rest keyword parameter is defined in the method’s signature.

Whenever keyword arguments are passed at a call site, both
MRI1 and JRuby store all keyword arguments in a dictionary and
use that dictionary as the last argument. Whenever a keyword
argument is present in a method’s signature, the method checks if
the last argument is a dictionary, extracts the corresponding keyword
argument from the dictionary and stores it in a temporary variable.

When executing line 13, Ruby first creates a dictionary contain-
ing all keyword arguments (“representation that is compatible with
all call targets”) and then extracts keyword arguments mentioned in
the method signature again (“method-specific representation”).

3. Call-target-specific Arguments
In this section, we explain how our solution is different from existing
programming language implementations on a more abstract level.
A language implementation typically performs the following steps
when calling a method.

1 MRI (Matz’s Ruby Interpreter) is the Ruby reference implementation.

1. Convert arguments into a (generic) representation which is com-
patible with all call targets (e.g. create a dictionary containing all
keyword arguments).

2. Push arguments on stack.

3. Look target method up (possibly using PIC).

4. Dispatch to target method.

5. Convert arguments to method-specific representation (e.g. extract
keyword arguments mentioned in the method signature from the
dictionary).

6. Execute method body.

Figure 1 shows polymorphic inline caches for call sites A and B
with call-site-specific method arguments (a) and call-target-specific
method arguments (b). In the former case, the exact same generic
arguments are passed to all target methods for a specific call site. In
the latter case, different arguments can be passed to target methods.

call site call target

a
a
a
b
b

A

B

(a) Without call-target-specific ar-
guments

call site call target

a1
a2
a3
b1
b2

A

B

(b) With call-target-specific argu-
ments

Figure 1: Polymorphic inline cache for method dispatch.

Although every call site along with its arguments is represented
by a single statement in the source code (e.g. Listing 1, line 13), the
execution environment might decide to pass different arguments for
every polymorphic target type.

Polymorphic inline caches avoid unnecessary method lookups by
caching call target methods for receiver types. Call-target-specific
method arguments make argument handling more efficient by avoid-
ing generic argument representations.

4. Implementation
In this section, we present our proof-of-concept implementation
in JRuby. JRuby is an implementation of the Ruby programming
language in Java and uses Truffle, an AST interpreter framework
for AST node rewriting and partial evaluation (inlining) [10, 11].
Truffle runs on top of the Graal virtual machine [9], a modified
HotSpot virtual machine, that provides runtime feedback to Truffle
and can compile and install new optimized code on the fly.

4.1 JRuby Keyword Arguments
Figure 2 shows JRuby’s implementation of polymorphic inline
caches (type decision chains) for a call site. Initially, for the
CallDispatchHeadNode no target method is cached so far, so
it has a reference to an UnresolvedDispatchNode object. Upon
successful method lookup, this reference is replaced by a refer-
ence to a CachedDispatchNode object, representing an entry in
the polymorphic inline cache. That object has a reference to the
next cache entry, which is initially an UncachedDispatchNode
object but can be replaced by another cache entry, forming a linked
list of cache entries. This list of cache entries is replaced by an
UncachedDispatchNode object once the length of the list exceeds
a threshold value, falling back to regular method lookup.

The original JRuby implementation stores the array of AST
nodes for method arguments in RubyCallNode, which is specific
to a certain call site. Our optimization stores method arguments

in DispatchNode which is specific to a certain call target. Upon
creation of PIC entries, our implementation analyzes the target
method and stores AST nodes in the array of arguments in such
a way that the ith argument in the method signature corresponds
to the ith argument in the array, making it easy to load arguments
within the target method without having to extract arguments from
a dictionary.

Example Consider the case that line 13 in Listing 1 is executed
multiple times, but object alternates between instances of A, B, and
C. Our implementation generates three different argument arrays
that are specific to one of the three foo methods2.

• A.foo: [1, 2]

• B.foo: [2, 1]

• C.foo: [1, {:b => 2}]

Pitfalls and Implementation Details In Ruby, keyword argu-
ments can be passed explicitly as named arguments (Listing 1,
line 13) and implicitly using an already existing dictionary object
(Listing 2, line 14). The latter case cannot be optimized by expand-
ing dictionaries. Therefore, the original implementation should stay
in place for this case.

Target methods must be able to distinguish whether the argu-
ments of the current invocation are optimized (expanded) or not. We
use a special marker object (Figure 3) at the end of the arguments ar-
ray to denote that a call is optimized and keyword arguments can be
read from the array directly without looking them up in a dictionary.

Since we might rearrange AST nodes in the arguments array,
the evaluation order of arguments might have changed. We solve
this problem by evaluating arguments in their original order, storing
their values into newly-created temporary variables, and passing
AST nodes reading the temporary variables, possibly in a different
order.

4.2 Benchmarks
We ran benchmarks (see Appendix) on our optimized JRuby imple-
mentation with Truffle on an ordinary HotSpot VM (no Graal). The
benchmarks were run on a MacBook Pro with an i7-2720QM CPU
and 16 GB RAM. The benchmarking code and our implementation,
along with an install script, is also available for download3.

For every benchmark, we compare two implementations: the
original, unoptimized implementation of JRuby (call-site-specific);
and the optimized call-target-specific implementation. In the latter
case, a separate AST subtree is stored with every PIC entry4 (an
AST subtree generating the array of arguments passed to the target
method is stored for every PIC entry).

We benchmarked calling a method on object obj with 10 key-
word arguments (Figure 4). In (a) and (d), obj is always the same
object, whereas in (b) and (c), obj alternates between two objects,
whose methods have a different signature. In (a) and (b), the tar-
get methods take 10 keyword arguments, whereas in (d), the target
methods takes 5 keyword arguments and a rest keyword dictionary.
In (c), one of the target methods takes 10 keyword arguments.

Reading a keyword argument from the rest keyword argument
hash is slow. That is why (a) is fastest benchmark and (d) is the
slowest benchmark.

2 For better readability, we use Ruby syntax. Since the arguments array is
part of the AST, all objects should be AST nodes (fixnum literal nodes,
symbol literal nodes and hash literal nodes). Marker nodes are omitted.
3 https://github.com/HPI-SWA-Lab/TargetSpecific-ICOOOLPS.
4 This is different from Truffle AST node rewriting because multiple AST
subtrees can be stored for a call site at the same time.

https://github.com/HPI-SWA-Lab/TargetSpecific-ICOOOLPS

RubyCallNode

RubyNode[] CallDispatch
HeadNode

DispatchNode

Unresolved
DispatchNode

Uncached
DispatchNode

CachedDispatch
Node

first

next

arguments

(a) Call-site-specific

RubyCallNode

RubyNode[]

CallDispatch
HeadNode

DispatchNode

Unresolved
DispatchNode

Uncached
DispatchNode

CachedDispatch
Node

first

next

arguments

(b) Call-target-specific

Figure 2: Polymorphic inline caching and argument AST nodes in JRuby with Truffle.

header positional
arguments

keyword
arguments

rest keyword
dictionary

order corresponds to order in method signature

(marker)

Figure 3: Ruby arguments array during method dispatch in JRuby.

Figure 4: Benchmark comparing call-site-specific and call-target-
specific method invocation.

5. Related Work
Named parameters are supported in a wide range of programming
languages. For example, Scala supports named arguments which
can be optional (“implicit”). Since Scala is a statically-typed pro-
gramming language, the polymorphic receiver type and, therefore,
the target method’s signature is known, because methods overridden
in subclasses must have the same arguments as the base method.
During method application, a collection consisting of all positional
arguments followed by a fixed permutation of all named arguments
defined in the signature is passed [7]. Scala evaluates arguments in
their original order, stores them in temporary variables, and passes
these variables in a permutated order, just as our implementation
does. For every optional argument, there is a default method (au-
tomatically generated in the receiver’s class) returning the value
of the optional argument. When a method is called with optional
arguments missing, the compiler generates code that first calls the
corresponding default methods and then passes their return values
together with the provided arguments. This is an elegant approach
to make argument handling efficient, however, it cannot be applied
in dynamically-typed programming languages, because the receiver
type of a method call is unknown before dispatching the method

call; therefore, the execution environment cannot know if a default
argument is missing before looking up the receiver type.

MagLev is an implementation of the Ruby programming lan-
guage on top of the GemStone/S virtual machine (Smalltalk). For
every Ruby method, MagLev generates a set of bridge methods spe-
cific to a certain number of arguments and splat arguments. When
calling a Ruby method, MagLev calls the corresponding bridge
method which might provide default arguments and prepare a splat
argument array, and calls the actual implementation. For example,
if foo(a = 1, *args) is called via foo(1, 2, 3), MagLev calls
the bridge method foo#3__ specific to three arguments which wraps
the last two arguments in an array and calls the actual implemen-
tation [8]. If we extend this idea to keyword arguments, MagLev
could also create bridge methods specific to keyword argument la-
bels: whenever a method call with keyword arguments is compiled,
MagLev could add a corresponding bridge method to all classes hav-
ing a method with that name; e.g. compiling foo(1, b: 2, a: 1)
could generate bridge methods foo#1__a_b (one positional argu-
ment, keyword arguments a and b5). This would avoid creating
and expanding dictionaries when using keyword arguments, but it
could also increase the number of methods significantly: in contrast
to making arguments call-target-specific, this approach would add
call-site-specific wrapper methods.

Gil and Lenza propose an extension of the Java programming
language to support keyword arguments and optional arguments [4].
Their implementation generates auxiliary methods for all valid
calling patterns, which is similar to MagLev’s concept of bridge
methods. Auxiliary methods provide missing arguments and call the
actual implementation with the full set of arguments.

In programming languages supporting multiple dispatch, the call
target depends on all arguments (usually argument types) instead
of just the receiver argument [1]. Multiple dispatch is used to
provide entirely different method implementations for different
argument types. Call-target-specific method arguments are, however,
an optimization under the hood, and aim at making argument
handling more efficient, instead of providing different semantics
for different argument types.

6. Conclusion
We presented call-target-specific method arguments, making method
arguments part of polymorphic inline cache entries. Our idea can
be used to adapt call sites to do argument conversions a single
time whenever a new entry is added to a polymorphic inline cache.

5 Keyword arguments are sorted lexicographically.

When a method call is then executed and the receiver’s type was
found in the cache, the callee can directly start executing the method
body without having to do argument conversions like finding named
arguments inside a dictionary.

Future work might investigate how call-target-specific method
arguments can be applied to other programming languages. For
example, Python supports named arguments which are similar to
Ruby’s keyword arguments. However, it is unclear to what degree
efficient implementations such as PyPy [2] will benefit from this
optimization, since their tracing JIT compiler might already be able
to improve the usage of named arguments. PyPy analyzes passed
arguments and initializes local variables in stack frames by going
through all named arguments (name-value pairs); this iteration step
could be omitted at subsequent method calls when using call-target-
specific method arguments.

Acknowledgments
We would like to thank Chris Seaton for his support with our JRuby
implementation.

References
[1] S. Bansal. Multiple polymorphic arguments in single dispatch object

oriented languages. In S. Ranka, A. Banerjee, K. Biswas, S. Dua,
P. Mishra, R. Moona, S.-H. Poon, and C.-L. Wang, editors, Contem-
porary Computing, volume 95 of Communications in Computer and
Information Science, pages 260–271. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-14824-8.

[2] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, ICOOOLPS ’09, pages 18–25,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-541-3.

[3] L. Carlson and L. Richardson. Ruby Cookbook, 2nd Edition. O’Reilly
Media, Inc., 2015. ISBN 978-1-4493-7371-9.

[4] J. Y. Gil and K. Lenza. Keyword- and default- parameters in java.
Journal of Object Technology, 11(1):1:1–17, Apr. 2012. ISSN 1660-
1769.

[5] S. Günther and T. Cleenewerck. Design principles for internal domain-
specific languages: A pattern catalog illustrated by ruby. In Proceedings
of the 17th Conference on Pattern Languages of Programs, PLOP ’10,
pages 3:1–3:35, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0107-7.

[6] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Proceed-
ings of the European Conference on Object-Oriented Programming,
ECOOP ’91, pages 21–38, London, UK, UK, 1991. Springer-Verlag.
ISBN 3-540-54262-0.

[7] L. Rytz and M. Odersky. Named and default arguments for poly-
morphic object-oriented languages: A discussion on the design im-
plemented in the scala language. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages 2090–2095, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-639-7.

[8] M. Springer. Inter-language collaboration in an object-oriented virtual
machine, 2013. Bachelor’s thesis, Hasso Plattner Institute.

[9] C. Wimmer and T. Würthinger. Truffle: A self-optimizing runtime
system. In Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH ’12,
pages 13–14, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1563-0.

[10] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wim-
mer. Self-optimizing ast interpreters. In Proceedings of the 8th Sympo-
sium on Dynamic Languages, DLS ’12, pages 73–82, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1564-7.

[11] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One vm to rule them all. In
Proceedings of the 2013 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming & Software, Onward!
2013, pages 187–204, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2472-4.

[12] U. Zdun. Patterns of argument passing. In Proceedings of the
4th Nordic Conference of Pattern Language of Programs (Viking-
PLoP2005), pages 1–25, 2005.

A. Appendix

1 class A
2 def foo_a(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, ←↩

i:9, j:10)
3 a + b + c + d + e + f + g + h + i + j
4 end
5

6 def foo_b(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, ←↩
i:9, j:10)

7 a + b + c + d + e + f + g + h + i + j
8 end
9

10 def foo_c(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, ←↩
i:9, j:10)

11 a + b + c + d + e + f + g + h + i + j
12 end
13 end
14

15 class B
16 def foo_b(j:11, i:12, h:13, g:14, f:15, e:16, d:17, ←↩

c:18, b:19, a:20)
17 a + b + c + d + e + f + g + h + i + j
18 end
19

20 def foo_c(j:11, i:12, h:13, g:14, f:15, **kwargs)
21 kwargs[:a] + kwargs[:b] + kwargs[:c] + kwargs[:d] + ←↩

kwargs[:e] + f + g + h + i + j
22 end
23

24 def foo_d(j:11, i:12, h:13, g:14, f:15, **kwargs)
25 kwargs[:a] + kwargs[:b] + kwargs[:c] + kwargs[:d] + ←↩

kwargs[:e] + f + g + h + i + j
26 end
27 end
28

29 # Benchmark (a): one target A
30 obj.foo_a(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, ←↩

j:10)
31

32 # Benchmark (b): two targets A, B alternating
33 obj.foo_b(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, ←↩

j:10)
34

35 # Benchmark (c): two targets A, B alternating
36 obj.foo_c(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, ←↩

j:10)
37

38 # Benchmark (d): one target B
39 obj.foo_d(a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, ←↩

j:10)

Listing 2: Simplified benchmarking code.

	Introduction
	Example: Ruby Keyword Arguments
	Call-target-specific Arguments
	Implementation
	JRuby Keyword Arguments
	Benchmarks

	Related Work
	Conclusion
	Appendix

