
Squeak Makes a Good Python Debugger
Bringing Other Programming Languages Into Smalltalk’s Tools

Fabio Niephaus
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
fniephaus@acm.org

Tim Felgentreff
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
tim.felgentreff@hpi.de

Tobias Pape
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
tobias.pape@hpi.de

Robert Hirschfeld
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
robert.hirschfeld@hpi.de

ABSTRACT
Interactive debuggers are indispensable in many software de-
velopment scenarios. However, they are often hard to extend
and more importantly, their capabilities are limited to an
application programming interface (api) provided by the
runtime executing the corresponding programming language.

We propose an approach that allows to use the live tools
of a Smalltalk environment for other programming languages.
The approach is based on interpreter-level composition, ul-
timately making a full-fledged integrated development envi-
ronment (ide) part of the language execution process. This
allows to directly control interpreters of foreign languages
from Smalltalk. It also enables tool reuse and provides the
ability to rapidly build new tools.

We demonstrate how we have combined Squeak/Smalltalk
and PyPy’s Python implementation. We then reused Squeak’s
debugger, so that it enables edit-and-continue style debugging
of Python applications— which is currently not supported
by Python’s PDB or any Python ide, but which has proven
to be invaluable in many debugging scenarios.

CCS CONCEPTS
• Software and its engineering → Integrated and visual
development environments; Software testing and debugging ;
Virtual machines;

KEYWORDS
Smalltalk, Python, debuggers, IDEs, VMs

ACM Reference format:
Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirsch-
feld. 2017. Squeak Makes a Good Python Debugger. In Proceedings

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
PX/17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4836-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3079368.3079402

of Programming Experience Workshop, Brussels, Belgium, April
03, 2017 (PX/17), 9 pages.
DOI: http://dx.doi.org/10.1145/3079368.3079402

1 BACKGROUND AND MOTIVATION
Programming environments play a central role in software de-
velopment. Developers have come to expect language-specific
amenities from their development environments, ranging from
syntax highlighting, refactoring support, context-specific auto-
completion, to interactive debugging and live code reloading.
Most environments offer at least some of these features. Fur-
thermore, there is a renewed push in current research to allow
developers to use live, run-time data that can be explored
and manipulated to understand and extend software sys-
tems [6, 31], through edit-and-continue style debugging and
coding against live data. However, efforts towards that goal
are often tied to specific domains or programming languages
(or both).

ide systems such as Eclipse or NetBeans try to provide
a framework to build development tools for a variety of pro-
gramming languages. Their architecture is set up to minimize
the dependency on any particular language feature, to sup-
port a range of different languages. This has the advantage
that code can be reused between tools for different languages,
at the cost of not integrating deeply with any language.

Most combinations of ides and runtimes share a common
debugging architecture (see Figure 1a). When the program
under development is running, the tools connect to it through
some runtime api to offer inspection and debugging depend-
ing on the underlying capabilities of the runtime. For exam-
ple, the Java Virtual Machine (jvm) Tools Interface (jvmti)
offers read-only1 inspection capabilities for a running Java
program. It can stop and inspect, force early returns with
a particular return value, or set local variable values in the
top frame. The HotSpot virtual machine (vm) also allows
restarting a frame that is already running and hot code swap-
ping for frames that are not active on the stack. Microsoft’s
Common Language Runtime (clr) has a dedicated Inter-
face (ICorDebug) that allows edit-and-continue active stack

1https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

PX/17, April 03, 2017, Brussels, Belgium Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

(a) Eclipse is separate from the language process. (b) Squeak/Smalltalk is part of the language process.

Figure 1: Architectural comparison of Eclipse and Squeak/Smalltalk.

frames,2 and ICorDebugEval allows the ide to inject and
execute arbitrary code.3

An ide constructed in this way can only reflect on the
execution state through the runtime api. To inspect and
modify objects, representations for them are reproduced in
the context of the ide. Objects and properties that cannot
be transferred through the runtime api, cannot be inspected
or modified.

On the other hand, live programming systems, such as
Squeak/Smalltalk, are well-suited to provide full access to
the runtime state and provide developers with means to adapt
their tools at development time according to their needs. In
such systems, the ide is entirely contained in the running
process, and thus has full reflective access to the state of the
system and can directly inspect and manipulate all objects
therein, as well as provide edit-and-continue style debugging
(see Figure 1b).

However, due to the deep integration with the runtime,
tool implementations in live, always-on programming envi-
ronments like Squeak are very language-specific, and even the
means to write tools do not carry over very well. Thus, even
those tools that have been reproduced for other programming
systems have been written from ground up. Nevertheless, Mir-
rors [7] could be used to decouple the runtime further from
the tools.

We propose an architecture for constructing a multi-language
runtime that attempts to combine the benefits of both ap-
proaches: a common code-base for tool developers and live,
immediate access to the running application for inspecting
and manipulating state.

Our contributions are as follows:

• An architecture to compose multiple languages within
the same live programming environment with reflec-
tive capabilities for full execution control from within
the runtime.

• An implementation of said architecture using PyPy [24]
and RSqueak/VM [5, 14].

• An implementation of a debugger that works for
both, Python and Squeak/Smalltalk.

2https://msdn.microsoft.com/en-us/library/ms231220.aspx
3https://blogs.msdn.microsoft.com/jmstall/2006/01/04/
partition-of-icordebug/

In Section 2 we introduce our approach. Then, we demon-
strate how this approach can be implemented with an ex-
ample in Section 3. Afterwards, we discuss advantages and
disadvantages of our approach in Section 4. Related work is
then mentioned in Section 5. Finally in Section 6, we conclude
the paper and describe future work.

2 APPROACH
Various interpreted programming languages provide only very
limited debugging support which can be a burden for devel-
opers when trying to understand a misbehavior that occurs
in their application. On the other hand, Smalltalk is not only
a programming language, but also an ide. This means, that
the ide is an actual part of the process running Smalltalk.
This gives developers full control over the running applica-
tions and therefore allows for very comprehensive debugging
tools.

We propose the idea to use a Smalltalk environment as
an ide for other languages and perform the integration on
interpreter-level. This way, our architecture avoids the n-to-
m problems of interfacing multiple languages by mapping all
languages into the language of the live environment. This
can be achieved by composing a Smalltalk interpreter with
another language’s interpreter. Interpreter composition is
especially convenient when both languages are implemented
in the same interpreter framework, such as RPython [1], as
demonstrated in Section 3.

However, this kind of composition raises the problem of
how to run two or more interpreters at the same time. Smalltalk
has a concept of processes which can be scheduled dynami-
cally [16]. As we demonstrate later, it is possible to make the
execution of a non-Smalltalk interpreter part of a Smalltalk-
level process. This way, the Smalltalk scheduler decides when
to continue with the other interpreter loop, which ensures
that the developer can interact with the Smalltalk environ-
ment at the same time.

In such a setup, it is now possible to control interpreters
of a foreign language with tools written in Smalltalk. For
this to work, the vm needs to be extended in such a way
that it exposes a number of interpreter-controlling primitives
which can then be called accordingly from within a Smalltalk
environment. In order to be able to execute a program written
in another language, primitives, for example, need to exist

https://msdn.microsoft.com/en-us/library/ms231220.aspx
https://blogs.msdn.microsoft.com/jmstall/2006/01/04/partition-of-icordebug/
https://blogs.msdn.microsoft.com/jmstall/2006/01/04/partition-of-icordebug/

Squeak Makes a Good Python Debugger PX/17, April 03, 2017, Brussels, Belgium

Figure 2: Architecture of the Smalltalk and Python
composition.

which provide an entry point as well as an end point for
the corresponding interpreter loop. Similarly, primitives for
restarting and stepping in call frames need to be implemented
to enable debugging support.

Squeak already contains various tools originally demon-
strated in Smalltalk-80, including an interactive debugger [15].
Since Squeak’s tools are designed to work as part of a frame-
work, it is straightforward to adopt them, so they can be
used for other languages as well. In addition, new tools, such
as application-specific debugging tools, can quickly be built
in Smalltalk [28].

3 IMPLEMENTATION
We have applied our approach in Section 2, so that we can
use Squeak/Smalltalk as an ide for Python. The resulting
architecture of our implementation is depicted in Figure 2.
On vm-level, there is an interpreter loop for each language
as well as a vm plugin with a set of primitives which allow
Smalltalk to interact with the Python bytecode loop. In the
Smalltalk image, we have introduced different classes in order
to bridge between Python and Smalltalk. For our integration
of Python, less than 1,000 SLOC were needed for the vm in
total, and less than 900 SLOC for the image. In the following,
we explain details of this implementation.

3.1 VM-level Implementation
First, we need to build a vm that is capable of execut-
ing both, Smalltalk and Python code. This can be achieved
by composing a Smalltalk interpreter with a Python inter-
preter. RSqueak/VM [5] is a RPython-based implementa-
tion of Squeak [18], a Smalltalk implementation derived from
Smalltalk-80 and a live programming environment. PyPy [24]
is a Python implementation and the first RPython vm.

By combining the two interpreters, we can create a virtual
machine with support for both programming languages. How-
ever, to use Squeak/Smalltalk as a live development environ-
ment for Python, we need to be able to run both interpreters
concurrently.

Smalltalk implements co-operative multitasking through
processes [16]. We leverage this and integrate the execution
of Python bytecodes with a Smalltalk-level process, leav-
ing the decision when to run the next bytecodes up to the
Smalltalk scheduler. This allows us to interact with the
Squeak/Smalltalk environment as usual while a Python pro-
gram is running, as well as to interrupt this process to inspect
it from Smalltalk.

We create a mixed stack of Python and Smalltalk frames
that is managed like any other Squeak process (cf. Figure 3).
This allows us later to display the full stack in the debugger,
starting with the Smalltalk frames that then invoked Python
code, which is especially helpful to debug the interaction
between the two languages. The core responsibility of the
vm in our approach is to maintain the sender-relationship
2 – 1 and 4 – 3 across interpreter loops.

We switch from Squeak to Python by executing a primitive
1 to enter Python code. This creates a Python frame 2
that executes in the Python interpreter loop. When this
frame returns, the vm will return from the primitive 1 and
transfer control back to its sender.

While the Python interpreter is running, we maintain a
counter of how many Python bytecodes have been executed
to decide when to transfer control back to Squeak in order
to give other processes a chance to run (e.g., so that the
UI process can handle user input). Since Python frames are
not visible to Squeak and thus the Squeak scheduler cannot
switch directly back to Python frames at a later time, we
create an entry point for the scheduler by putting a Squeak
frame on the top of the stack. When the Python interpreter
loop switches back to Squeak, the top Python frame 3
creates an artificial suspended Squeak “resume” frame 4 .
When the Squeak scheduler resumes this artificial frame later,
it immediately returns control back to the top Python frame
3 .

Since interpreters maintain some execution state directly
on the stack, we use Stacklets,4 which are provided by the
RPython standard library. Stacklets allow us to implement
minimal coroutines for regions of the C stack to switch be-
tween the two interpreter loops. Since this is a feature of
the RPython framework and not of any specific language
implementation, the same principle can also be applied to
any other interpreter written in RPython.

Similar to other Smalltalk vms, RSqueak/VM can be ex-
tended with plugins. Not only have we added vm primitives
that can be called from within the Smalltalk environment to
control the PyPy interpreter loop. Since RPython is a subset
of Python which compiles to C, we were able to build the
entire composition in a single PythonPlugin, without having

4A lightweight threading mechanism in the spirit of tasklets.

PX/17, April 03, 2017, Brussels, Belgium Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

Figure 3: Mixed-stack Smalltalk and Python execu-
tion.

to modify PyPy’s source. The code of the plugin for exam-
ple also registers a PeriodicAsyncAction which causes the
PyPy bytecode loop to yield to Smalltalk whenever Python’s
“check interval” is reached. After translating this new virtual
machine, we can open a Squeak/Smalltalk image and make
it aware that the vm also supports the Python programming
language.

3.2 Bridging between Squeak and PyPy
We start by providing a class PythonObject. This class is
special, because the vm will automatically expose objects
of the Python object space as instances of this new class.
In addition, all primitives of the PythonPlugin are able to
automatically convert primitive data types between Python
and Smalltalk. Python strings are therefore for example con-
verted to Smalltalk ByteStrings and vice-versa. Now that
the vm can inject any kind of Python object into an im-
age, we need be able to interact with these objects. For this
reason, we have added appropriate primitives to the virtual
machine. The most important primitive is the pythonEval
primitive which can evaluate Python expressions and execute
Python code. Similar to Python’s compile builtin, it expects
Python source code, a corresponding filename, as well as a
string which describes the mode and can either be “eval” or
“exec”. When a Python expression is evaluated, the primitive
returns the result. Otherwise, it will execute the Python code
and return nil, or fail if for example a syntax error occurred.
To clearly separate methods that call primitives from meth-
ods that can be called on PythonObjects, we add a new class
called Python. To its metaclass, we add for example a method
named primEval:filename:mode: which can be used to call
the pythonEval primitive. As an example, we could call the
following to get a new Python object instance:

Python
primEval: ’object()’

filename: ’<string>’
mode: ’eval’

We have also modified the method lookup for these kinds
of wrapped Python objects. First, the lookup is done on
the Smalltalk side, checking for a method defined on the
PythonObject class. If it fails, the lookup continues on Python
side. This allows us to implement and override methods that
are necessary for the tool support in Squeak/Smalltalk while
also preserving the original Python behavior. As an example,
the following method is used to facilitate that PythonObjects
can understand the message class:

PythonObject>>class
^ self __class__

Sending __class__ to self will retrieve the value of the
corresponding attribute of the Python object. If a selec-
tor name resolves to a Python callable instead of resolv-
ing to an attribute, it is called directly. This allows to call
Python methods and to pass arguments in. For example,
sending append: ’some text’ to a Python list object will
call append(’some text’) on the actual object. Multiple ar-
guments can be passed using Squeak/Smalltalk’s keyword
syntax. For example, index: ’a’startingAt: 2 will call
index(’a’, 2) on the Python object— the message name is
only considered up to the first colon, so we can make up read-
able keywords. It is also possible to evaluate code in a specific
context by using Python’s eval() builtin with appropriate
globals and locals.

We are aware of some limitations of this approach includ-
ing possible method name collisions, there is no semantic
equivalent for Python’s bound methods and a few other con-
structs, and Python objects cannot be accessed as dict-like
objects at the moment. Nonetheless, it is possible to start
adopting and building tools with this in Squeak/Smalltalk
which are able to control and modify a Python program at
runtime.

3.3 Adapting Squeak’s Debugger
To implement a Smalltalk-style debugger for Python, we first
start with a subclass of Squeak’s Debugger.

We want this new PythonDebugger to display Python
frames on top of the Smalltalk contexts that have triggered
the execution of Python code. The Smalltalk debugger is nor-
mally opened on thisContext which is the current method
context. The list of all contexts displayed by the debugger is
generated by traversing MethodContext objects starting with
thisContext and following the reference to its sender.

Since Python code is being executed in a Smalltalk pro-
cess, we need to override the entry point to debug processes
and modify the context on which the debugger is opened.
We add Python frames on top of thisContext, as can be
seen in Figure 4 . We have implemented a primitive that
returns the top frame of the current execution context in
Python. Then, we iterate over all parent frames and gen-
erate objects from a new class PythonContext which is a
subclass of MethodContext. These objects are only used to

Squeak Makes a Good Python Debugger PX/17, April 03, 2017, Brussels, Belgium

Figure 4: Proxying Python frames for the Smalltalk
Debugger.

hold a reference to the corresponding Python frame. This
connection between the two stacks is similar to the imple-
mentation of MethodContexts in the Cog vm [20], where
Smalltalk context objects are connected to their C stack
frame counter part. Each PythonContext is linked to its par-
ent similar to how MethodContexts reference their sender.
The sender of the bottommost PythonContext is then set
to thisContext and finally the debugger is opened on the
topmost PythonContext.

By overriding the method the debugger calls to retrieve
Smalltalk code, we can make the debugger display Python
code whenever it encounters a PythonContext. In this case,
the method uses the referenced Python frame to look up
the corresponding Python source file. This is possible, be-
cause the Python frame contains the current line number
(frame.f_lineno), the filename of the Python code (frame.f_code.co_filename),
as well as the first line in the code (frame.f_code.co_firstlineno).
With this information, a helper method can read the right
file and parse out the corresponding Python code which is
then displayed in the code editor of the debugger. To fur-
ther improve usability, we automatically adjust indentation,
because in Python, indentation is part of the syntax.

Moreover, we have overridden the method in PythonContext
that normally returns a list of temporary Smalltalk variables,
so that it returns “self pyFrame f_locals keys”, namely
all keys that are part of the frame’s local namespace. This
causes the debugger to display the Python locals in the bot-
tom right list.

In total, only six method overrides in PythonDebugger
were necessary to provide basic support for Python.

Lastly, we need to instruct the Smalltalk environment
to use the new debugger. This can be done by making a
new PythonToolSet the default, which Squeak/Smalltalk will
then use to look up which tool to open when an exception
occurs.

After a user interrupt, the PythonDebugger may look like
shown in Figure 5. The Python application running is a
HelloWorld “Flask”-based web server. We can now explore the
current control flow starting from the DoIt Smalltalk frame
which started the application, up to the topmost Python

User Interrupt

self.finish_request(request, client_address) (line 318 in lib-python/2.7/SocketServer.py)
self.process_request(request, client_address) (line 290 in lib-python/2.7/SocketServer.py)
self._handle_request_noblock() (line 233 in lib-python/2.7/SocketServer.py)
HTTPServer.serve_forever(self) (line 511 in werkzeug/serving.py)
srv.serve_forever() (line 673 in werkzeug/serving.py)
inner() (line 708 in werkzeug/serving.py)
run_simple(host, port, self, **options) (line 841 in flask/app.py)
app.run() (line 2 in exec_source.py>)
Python class>>resumeFrame
UndefinedObject>>DoIt

TallyWhereFull StackThroughOverIntoRestartProceed

def _handle_request_noblock(self):

 """Handle one request, without blocking.

 I assume that select.select has returned that the socket is

 readable before this function was called, so there should be

 no risk of blocking in get_request().

 """

 try:

 request, client_address = self.get_request()

 except socket.error:

 return

 if self.verify_request(request, client_address):

 try:

 self.process_request(request, client_address)

 except:

 self.handle_error(request, client_address)

 self.shutdown_request(request)

 else:

 self.shutdown_request(request)

self
all inst vars
superclass
methodDict
format
instanceVariables

<- Select receiver’s field stack top
all temp vars
self
request
client_address

a <socket._socketobject

object at

0x000000010e948cd0>

Figure 5: Interrupting a Python application.

frame including the latest line being executed at the time of
the user interrupt. The list includes frames with the Python
expression that started the server, Flask’s main entry point,
request handling in Werkzeug (one of Flask’s dependencies),
as well as the “SocketServer” module which is part of the
Python standard library. This immediately gives developers
a lot of information to understand the running application.
For example, Flask is considered to be a lightweight web
framework. Developers can now interactively experience what
that means, and discover that Flask uses a library called
“Werkzeug” which in turn uses “SocketServer” in order to
serve requests and in which files and lines the corresponding
functions can be found.

When Python code is being executed which throws a
Python-level exception, the virtual machine informs the im-
age accordingly, so that the image can arrange to open
the PythonDebugger. A simple example in which a naively-
implemented average function is called with an empty list is
depicted in Figure 6. This implementation cannot handle the
case of an empty list, therefore a ZeroDivision exception
is thrown. The PythonDebugger’s title contains the error de-
scription and the topmost frame is presented to the developer
with the corresponding error line. It is possible to inspect the
iterable parameter in order to realize that its size is zero.
The user can now insert a check to ensure a division by zero
cannot happen again and then save the code. The method
that usually hot-swaps Smalltalk methods after saving is over-
ridden, so that the new version of the Python code is written
to disk into its source file first. Then the vm compiles the
new code, replaces the Python code object of the selected
Python frame with the newly produced one, and resets the
frame. The next time the Python interpreter continues, it

PX/17, April 03, 2017, Brussels, Belgium Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

ZeroDivisionError: integer division by zero

def average(iterable): (line 2 in example.py)
average(list()) (line 1 in eval_source.py)
Python class>>openDebuggerWithPythonFrames:
Python class>>resumeFrame
Python class>>eval:filename:mode:

TallyWhereFull StackThroughOverIntoRestartProceed

def average(iterable):

 return sum(iterable) / len(iterable)

self
all inst vars
superclass
methodDict
format

<- Select receiver’s field thisContext
stack top
all temp vars
iterable

#()

Figure 6: Debugging a Python exception.

will restart the frame and then the misbehavior is eliminated.
This can be done by clicking the “Proceed” button which will
let the Smalltalk-level Python process continue.

3.4 Instrumenting more Squeak tools
Similar to the PythonDebugger, we have adopted other tools
that come with Squeak/Smalltalk. It only took little ef-
fort to adopt Squeak’s interactive Inspector and Explorer
tools. Only one method needed to be overridden to provide
a PythonWorkspace which supports Smalltalk-style doIts,
printIts, inspectIts, and exploreIts for Python. More-
over, we have basic Python support in the SystemBrowser
which allows us to create Python classes, and add Python
methods. Finally, it now is possible to rapidly build custom
tools for Python development, such as a tool that allows to
observe the execution of Python bytecodes which would allow
debugging on Python bytecode level. With for example the
Vivide framework [28], one could also build data-flow-based
applications which can consist of Python and Smalltalk code.

4 DISCUSSION
This work is aimed at providing the best of two previously
separate worlds: the framework approach to cross-language
ide and debugger development provided by environments
such as Eclipse or NetBeans, and the live and immediate
debugging nature of systems such as Squeak/Smalltalk. On
top of that, to be considered useful, we seek for an approach
that impedes performance of the integrated languages as little
as possible.

4.1 Tool Frameworks and Live
Development

As shown, our Python debugger is implemented as a refine-
ment of the default Squeak debugger. Through the inter-
language interface (cf. Section 3.2), this debugger can adapt

the Python runtime state to the expectations of the Squeak
tools. The implementation of the debugger was straightfor-
ward as described in Section 3.3. The amount of adaptation
necessary on both, the vm and the tools side, was compar-
atively low. Hence, we think that other languages can eas-
ily provide their own adapters to interface with the Squeak
debugger, allowing for a variety similar to that of Eclipse,
NetBeans, or other ides.

Due to this easiness, we also wrote initial adapters for
Squeak’s code browser, its workspace (a tool to evaluate
short code snippets), and provided an adapter method for the
PythonObject class to work with Squeak’s object inspector.
We are thus able— in a rudimentary fashion— to write and
evaluate Python code and to interactively explore Python
objects in the live system.

Our experience in writing those tools was every bit as
enjoyable for us as writing Smalltalk tools is—the interactive
environment allowed us to adapt the tools as we went along,
implementing features in the moment we wanted them. These
advantages, inherent to live development environments in the
style of Squeak/Smalltalk [28], are thus made available to
Python developers, allowing them to adapt tools at runtime,
without having to restart the ide or re-execute a running
program to iterate over it. The number of live programming
tools for Python is still quite low, but Jupyter notebooks [22]
have already demonstrated that the growing interest in live
programming [29] has reached the Python community.

Since the tools work on the Python objects directly, there
was no need for proxy objects besides PythonContext, and
these were only necessary because Python frames are not ex-
posed in the Python language itself. Also, it is currently neces-
sary to use Smalltalk to adjust the Smalltalk tools themselves,
which might change when it is possible to call Smalltalk from
Python. Notwithstanding, the interaction and library reuse

Squeak Makes a Good Python Debugger PX/17, April 03, 2017, Brussels, Belgium

goes beyond tools and also works in the other direction, so
Python code can be used for Smalltalk projects.

4.2 Performance of Combined Languages
The RPython toolchain makes it simple to combine multiple
interpreters, but there is a performance impact in doing so.
There are two reasons, one inherent to RPython, the other
due to our approach.

The first reason is a current limitation of the RPython
framework: a very potent call stack optimization (called vir-
tualizables) that avoids allocation of stack frame objects can
only be applied to at most one interpreter. In our case, this
means that while RSqueak/VM runs at full speed, there is
an overhead to each PyPy method call. Although we have
not yet put a focus on performance, a ballpark measurement
of the Richards Benchmark,5 shows that our implementation
performs comparable to CPython.

The second reason is that our approach — for the time
being— relies on the cooperative scheduling mechanism of
Squeak/Smalltalk processes to concurrently execute code in
different interpreter loops. Currently, each interpreter main-
tains counters to decide when to give the other processes a
chance to run. At minimum, the user interface (ui) process of
Squeak will get a chance to handle user input, but there may
also be other processes running concurrently at the same or
higher priority that get scheduled instead. This means that
even when there is no user input and no other concurrent
computation, there is the overhead of maintaining the coun-
ters — at the moment at each bytecode dispatch in PyPy.
This overhead can be reduced if we switch to counters only
for loops and method calls. As another mitigation strategy,
we are considering to allow convenient deactivation of the ui
process and only start it when a Python error needs to be
handled or when the Python process is interrupted by the
user with a signal. This might be desirable for a deployment
scenario in any case.

5 RELATED WORK
Related work can be found both, in the domain of debuggers
as well as interpreter composition.

5.1 Debugging and Debuggers
The Smalltalk debugger [15] and debuggers like it have capa-
bilities such as object- and stack-inspection, edit-and-continue,
restart, resume, etc. (see above), and can be extended with
new concepts, for example with test-driven fault naviga-
tion [21]. However, more prevalent debuggers present different
sets of capabilities. Gdb [27] and descendant or similar de-
buggers (llvm, Xcode, etc.) typically present a very low-level
debugging experience. While providing rich intercession (for
example breaking, hardware breakpoints, interrupt handling)
or inspection, these are very close to the machine/processor
and not necessarily to the program. Especially debugging lan-
guages that are not very C- or assembler-like requires a lot
of effort for effective inspection. Edit-and-continue in gdb is
5https://www.cl.cam.ac.uk/~mr10/Bench.html

only supported in a severely limited fashion under the idea of
altering execution [27, chapter 17]. Similarly geared towards
the machine, the Microsoft Visual Studio Debugger [19], sup-
ports a comparable set of capabilities, paired with a more
user-friendly edit-and-continue mechanism.

On the other hand, debuggers for higher-lever or dynamic
languages like Python or Ruby provide more direct inspec-
tion— often used in a read-only post-mortem fashion— but
also limited stop-and-resume and seldom edit-and-continue.
For JavaScript, certain tools, such as Chrome DevTools, pro-
vide more capable stop-and-resume and a limited edit-and-
continue. However, they are hardly extendable or scriptable.

Ongoing research based on the Truffle framework investi-
gates how to leverage a language implementation framework
to provide fast, unified debugging facilities to different lan-
guage implementations [25, 30].

5.2 Interpreter Composition and
Embedded Languages

The composition of programming languages and— in exten-
sion— their implementations has been investigated since the
late 1960s [10]. IBM VisualAge for Java [9] demonstrated the
use of a Smalltalk environment for both, tools and execution
of another language, in a commercial context.

More recent research targets advanced just-in-time (jit)
compiler frameworks, such as RPython with Unipycation [2]
(composition of Python/PyPy and Prolog/Pyrolog) or Truffle
with Sulong (able to compose Ruby/JRuby and similar with
C/LLVM) [17], among others [3]. A composition of Ruby with
Smalltalk that executes mixed stacks as Smalltalk processes
is also implemented in MagLev, the Ruby implementation
on the GemStone/S Smalltalk vm [26]. Our composition
approach bears most resemblance with Unipycation.

From a different point of view, interpreter composition
is similar to language embedding, however, research that
targets the latter is typically concerned with the language as
being written than with the runtime environment as being
executed. Examples include Eco [11], a syntax-directed-style
editor for language composition, as well as domain-specific
language (dsl) tool environments such as Helvetia [23] or
language workbenches [12]. Our approach, however, is focused
on debugging, both with respect to composition and tooling;
more extensive tooling and editing capabilities are still under
investigation.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented an approach to using a Smalltalk
environment for debugging other programming languages.
We applied this approach to the RSqueak/VM and PyPy, so
that Squeak/Smalltalk can be used for Python debugging
and direct interaction between the virtual execution environ-
ments. Squeak/Smalltalk can therefore control the Python
interpreter, which enables edit-and-continue style debugging
of Python programs. We demonstrated that only little effort
is required to adapt Squeak’s debugger to alter and control

https://www.cl.cam.ac.uk/~mr10/Bench.html

PX/17, April 03, 2017, Brussels, Belgium Fabio Niephaus, Tim Felgentreff, Tobias Pape, and Robert Hirschfeld

the execution of Python code. Such features are not available
in most other Python implementations, including the refer-
ence CPython implementation. Moreover, we adapted the
inspection tools in Squeak/Smalltalk to be able to inspect
and explore Python objects. We can now build new tools for
Python in Squeak/Smalltalk more rapidly.

However, a debugger alone does not make an ide. Our
initial results with the debugger are promising and demand
expansion to other tools as well as languages. We plan to
adapt Squeak tools, such as the system browser, to Python
in such a way that Squeak can act as an ide for Python
applications, but benefiting from the dynamicity of Squeak’s
environment. Moreover, it will be interesting to see how well
much larger Python applications can be debugged and de-
veloped using these tools. It is currently possible to interact
with Python objects from Squeak/Smalltalk but not vice
versa, which would be also useful. For example, a Squeak/
Smalltalk image could act as a persistable object space or
even database similar to GemStone [8]. Moreover, it might
be possible to expose the ToolBuilder API in Python which
would allow to build new tools using Python. The changes
required on the Python side are however still uncertain. To
extend our approach to other languages, we have already
started integrating Topaz [13]/Ruby and plan to integrate
other interpreters based on RPython, such as Pyrolog [2]/
Prolog or Pycket [4]/Racket.

Lastly, we plan to evaluate our approach more thoroughly,
on the one hand— regarding the programming experience—
with user studies, on the other hand — regarding perfor-
mance— with meaningful benchmarks.

ACKNOWLEDGMENTS
We would like to thank Carl Friedrich Bolz, Armin Rigo, and
the PyPy team for their help integrating the PyPy interpreter
into RSqueak/VM. We gratefully acknowledge the financial
support of HPI’s Research School6 and the Hasso Plattner
Design Thinking Research Program.7

REFERENCES
[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D.

Matsakis. 2007. RPython: A Step Towards Reconciling Dynam-
ically and Statically Typed OO Languages. In Proceedings of
the 2007 Symposium on Dynamic Languages (DLS ’07). ACM,
New York, NY, USA, 53–64. DOI:https://doi.org/10.1145/1297081.
1297091

[2] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2013.
Unipycation: A Case Study in Cross-language Tracing. In Pro-
ceedings of the 7th ACM Workshop on Virtual Machines and
Intermediate Languages (VMIL ’13). ACM, New York, NY, USA,
31–40. DOI:https://doi.org/10.1145/2542142.2542146

[3] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. 2015.
Approaches to interpreter composition. Computer Languages,
Systems & Structures 44, Part C (2015), 199–217. DOI:https:
//doi.org/10.1016/j.cl.2015.03.001 arXiv:1409.0757

[4] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily
Kirilichev, Tobias Pape, Jeremy G Siek, and Sam Tobin-
Hochstadt. 2015. Pycket: A Tracing JIT for a Functional Lan-
guage. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2015), Vol. 50.

6https://hpi.de/en/research/research-school.html
7https://hpi.de/en/dtrp/

ACM, New York, NY, USA, 22–34. DOI:https://doi.org/10.1145/
2784731.2784740

[5] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas D.
Matsakis, Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and Toon
Verwaest. 2008. Back to the Future in One Week — Implementing
a Smalltalk VM in PyPy. In Self-Sustaining Systems. Lecture
Notes in Computer Science, Vol. 5146. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 123–139. DOI:https://doi.org/10.1007/
978-3-540-89275-5_7

[6] Gilad Bracha. 2012. Debug mode is the only mode. https:
//gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html.
(2012). Talk at the 2012 meeting of the IFPI TC2 Working
Group on Language Design.

[7] Gilad Bracha and David Ungar. 2004. Mirrors: design principles
for meta-level facilities of object-oriented programming languages.
In ACM SIGPLAN Notices, Vol. 39. ACM, 331–344.

[8] Paul Butterworth, Allen Otis, and Jacob Stein. 1991. The Gem-
Stone Object Database Management System. Commun. ACM 34,
10 (Oct. 1991), 64–77. DOI:https://doi.org/10.1145/125223.125254

[9] L. A. Chamberland, S. F. Lymer, and A. G. Ryman. 1998. IBM
VisualAge for Java. IBM Syst. J. 37, 3 (July 1998), 386–408.
DOI:https://doi.org/10.1147/sj.373.0386

[10] Thomas E. Cheatham, Jr. 1969. Motivation for Extensible
Languages. SIGPLAN Not. 4, 8 (Aug. 1969), 45–49. DOI:
https://doi.org/10.1145/1115858.1115869

[11] Lukas Diekmann and Laurence Tratt. 2014. Eco: A Language
Composition Editor. In Software Language Engineering: 7th
International Conference, SLE 2014, Västerås, Sweden, Sep-
tember 15-16, 2014. Proceedings, Benoît Combemale, David J.
Pearce, Olivier Barais, and Jurgen J. Vinju (Eds.). Springer Inter-
national Publishing, Cham, 82–101. DOI:https://doi.org/10.1007/
978-3-319-11245-9_5

[12] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte
Boersma, Remi Bosman, William R. Cook, Albert Gerritsen, An-
gelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P. Konat, Pe-
dro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler,
Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido H. Wachsmuth, and Jimi van der
Woning. 2013. The State of the Art in Language Workbenches.
In Software Language Engineering: 6th International Con-
ference, SLE 2013, Indianapolis, IN, USA, October 26-28,
2013. Proceedings, Martin Erwig, Richard F. Paige, and Eric
Van Wyk (Eds.). Number 8225 in Lecture Notes in Computer
Science. Springer International Publishing, Cham, 197–217. DOI:
https://doi.org/10.1007/978-3-319-02654-1_11

[13] Tim Felgentreff. 2013. Topaz Ruby. http://lanyrd.com/2013/
wrocloverb/sccygw/, https://github.com/topazproject/topaz. (March
2013). Invited Talk at the 2013 edition of Wroclove.rb.

[14] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirsch-
feld. 2016. How to Build a High-Performance VM for Squeak/S-
malltalk in Your Spare Time: An Experience Report of Us-
ing the RPython Toolchain. In Proceedings of the 11th Edi-
tion of the International Workshop on Smalltalk Technologies
(IWST’16). ACM, New York, NY, USA, Article 21, 10 pages.
DOI:https://doi.org/10.1145/2991041.2991062

[15] Adele Goldberg. 1984. Smalltalk-80: The Interactive Program-
ming Environment. Addison-Wesley Longman, Boston, MA, USA.
The Red Book.

[16] Adele Goldberg and David Robson. 1983. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley Longman,
Boston, MA, USA. The Blue Book.

[17] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. Dynamically Composing Lan-
guages in a Modular Way: Supporting C Extensions for Dynamic
Languages. In Proceedings of the 14th International Confer-
ence on Modularity. ACM, New York, NY, USA, 1–13. DOI:
https://doi.org/10.1145/2724525.2728790

[18] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. 1997. Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself. SIGPLAN Not. 32, 10 (Oct. 1997),
318–326. DOI:https://doi.org/10.1145/263700.263754

[19] Microsoft. 2017. Debugging in Visual Studio. (Jan.
2017). https://msdn.microsoft.com/en-us/library/sc65sadd(d=
default,l=en-us,v=vs.140).aspx

[20] Eliot Miranda. 2011. The Cog Smalltalk Virtual Machine: Writing
a JIT in a High-level Dynamic Language. In 5th Workshop on
Virtual Machines and Intermediate Languages (VMIL).

https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/2542142.2542146
https://doi.org/10.1016/j.cl.2015.03.001
https://doi.org/10.1016/j.cl.2015.03.001
http://arxiv.org/abs/1409.0757
https://hpi.de/en/research/research-school.html
https://hpi.de/en/dtrp/
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1007/978-3-540-89275-5_7
https://doi.org/10.1007/978-3-540-89275-5_7
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://gbracha.blogspot.com/2012/11/debug-mode-is-only-mode.html
https://doi.org/10.1145/125223.125254
https://doi.org/10.1147/sj.373.0386
https://doi.org/10.1145/1115858.1115869
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1007/978-3-319-02654-1_11
http://lanyrd.com/2013/wrocloverb/sccygw/
http://lanyrd.com/2013/wrocloverb/sccygw/
https://github.com/topazproject/topaz
https://doi.org/10.1145/2991041.2991062
https://doi.org/10.1145/2724525.2728790
https://doi.org/10.1145/263700.263754
https://msdn.microsoft.com/en-us/library/sc65sadd(d=default,l=en-us,v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/sc65sadd(d=default,l=en-us,v=vs.140).aspx

Squeak Makes a Good Python Debugger PX/17, April 03, 2017, Brussels, Belgium

[21] Michael Perscheid, Michael Haupt, Robert Hirschfeld, and Hide-
hiko Masuhara. 2012. Test-driven fault navigation for debugging
reproducible failures. Information and Media Technologies 7, 4
(2012), 1377–1400. DOI:https://doi.org/10.11185/imt.7.1377

[22] M Ragan-Kelley, F Perez, B Granger, T Kluyver, P Ivanov, J
Frederic, and M Bussonier. 2014. The Jupyter/IPython architec-
ture: a unified view of computational research, from interactive
exploration to communication and publication.. In AGU Fall
Meeting Abstracts, Vol. 1. 07.

[23] Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. 2010. Em-
bedding Languages without Breaking Tools. In ECOOP
2010 – Object-Oriented Programming: 24th European Confer-
ence, Maribor, Slovenia, June 21-25, 2010. Proceedings, Theo
D’Hondt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
380–404. DOI:https://doi.org/10.1007/978-3-642-14107-2_19

[24] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to
virtual machine construction. In Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems,
languages, and applications (OOPSLA ’06). ACM, New York,
NY, USA, 944–953. DOI:https://doi.org/10.1145/1176617.1176753

[25] Chris Seaton, Michael L. Van De Vanter, and Michael Haupt.
2014. Debugging at Full Speed. In Proceedings of the Workshop
on Dynamic Languages and Applications (Dyla’14). ACM, New
York, NY, USA, Article 2, 13 pages. DOI:https://doi.org/10.1145/
2617548.2617550

[26] Matthias Springer. 2016. Inter-language Collaboration in
an Object-oriented Virtual Machine. arXiv preprint (2016).
arXiv:1606.03644

[27] Richard M. Stallman, Roland Pesch, and Stan Shebs. 2011. De-
bugging with GDB: The GNU Source-Level Debugger, V 7.3.1
(10th ed.). GNU Press, Boston, MA, USA.

[28] Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. 2012.
The VIVIDE programming environment: connecting run-time
information with programmers’ system knowledge. In Proceed-
ings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward! 2012). ACM, New York, NY, USA, 117–126. DOI:
https://doi.org/10.1145/2384592.2384604

[29] Steven L Tanimoto. 2013. A perspective on the evolution of live
programming. In Live Programming (LIVE), 2013 1st Interna-
tional Workshop on. IEEE, 31–34.

[30] Michael L. Van De Vanter. 2015. Building Debuggers and Other
Tools: We Can "Have It All". In Proceedings of the 10th Work-
shop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (ICOOOLPS ’15).
ACM, New York, NY, USA, Article 2, 3 pages. DOI:https:
//doi.org/10.1145/2843915.2843917

[31] Bret Victor. 2012. Stop drawing dead fish. (May 2012). http:
//san-francisco.siggraph.org/stop-drawing-dead-fish/ Talk to the
San Fransicso ACM SIGGRAPH.

https://doi.org/10.11185/imt.7.1377
https://doi.org/10.1007/978-3-642-14107-2_19
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1145/2617548.2617550
https://doi.org/10.1145/2617548.2617550
http://arxiv.org/abs/1606.03644
https://doi.org/10.1145/2384592.2384604
https://doi.org/10.1145/2843915.2843917
https://doi.org/10.1145/2843915.2843917
http://san-francisco.siggraph.org/stop-drawing-dead-fish/
http://san-francisco.siggraph.org/stop-drawing-dead-fish/

	Abstract
	1 Background and Motivation
	2 Approach
	3 Implementation
	3.1 VM-level Implementation
	3.2 Bridging between Squeak and PyPy
	3.3 Adapting Squeak's Debugger
	3.4 Instrumenting more Squeak tools

	4 Discussion
	4.1 Tool Frameworks and Live Development
	4.2 Performance of Combined Languages

	5 Related Work
	5.1 Debugging and Debuggers
	5.2 Interpreter Composition and Embedded Languages

	6 Conclusions and Future Work
	Acknowledgments
	References

