
Language-independent Storage Strategies
for Tracing-JIT-based Virtual Machines

Tobias Pape Tim Felgentreff

Robert Hirschfeld
Hasso Plattner Institute,

University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

Anton Gulenko
Technische Universität Berlin,

Germany
anton.gulenko@tu-berlin.de

Carl Friedrich Bolz
King’s College, London,

United Kingdom
cfbolz@gmx.de

Abstract
Storage strategies have been proposed as a run-time optimiza-
tion for the PyPy Python implementation and have shown
promising results for optimizing execution speed and mem-
ory requirements. However, it remained unclear whether the
approach works equally well in other dynamic languages.
Furthermore, while PyPy is based on RPython, a language
to write VMs with reusable components such as a tracing
just-in-time compiler and garbage collection, the strategies
design itself was not generalized to be reusable across lan-
guages implemented using that same toolchain.

In this paper, we present a general design and implemen-
tation for storage strategies and show how they can be re-
used across different RPython-based languages. We evalu-
ate the performance of our implementation for RSqueak, an
RPython-based VM for Squeak/Smalltalk and show that stor-
age strategies may indeed offer performance benefits for cer-
tain workloads in other dynamic programming languages. We
furthermore evaluate the generality of our implementation by
applying it to Topaz, a Ruby VM, and Pycket, a Racket im-
plementation.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—run-time environments, code gen-
eration, incremental compilers, interpreters

Keywords Implementation, collection types, memory opti-
mization, dynamic typing

1. Introduction
Virtual Machines for dynamic programming languages de-
pend on run-time optimizations to achieve appropriate perfor-
mance. One optimization that has been shown to work well
in the PyPy VM for Python is called storage strategies [3].

Storage strategies optimize collection data types by trans-
parently inlining element data instead of holding references
to full objects on the heap. This avoids unnecessary alloca-
tions, which conserves memory and can have major benefits
for the performance of the just-in-time compiled code. Avoid-
ing allocations on the heap is a major optimization of many
JIT compilers, and is usually done by determining that an
object does not escape a compiled loop. In contrast, storage
strategies are applicable to any objects, not only those that do
not escape the loop that is being optimized by the JIT.

Certain conditions have to be met in order to apply storage
strategies successfully. These conditions are hard to detect
in a general way. RPython, the framework that powers the
PyPy Python implementation, provides many optimizations
that are automatically applied to all languages that are build
using RPython, such as garbage collection and a tracing JIT
compiler. However, even with the information available to
the tracing JIT compiler, storage strategies are hard to apply
in a general way, and have so far been implemented for PyPy
only [3], but are not automatically provided to all languages
built with RPython.

Storage strategies have been shown to be beneficial for
the Python programming language [3]. Since Python offers
one generic list data type, optimizing it can have a big im-
pact on program performance. The initial paper on strategies
suggested that storage strategies might be applicable to other
dynamic languages, as well. We set out to test this hypothe-
sis, and to provide a generic framework to use strategies in a
variety of dynamic languages such as Smalltalk, Racket, or
Ruby, which have other kinds of collections in their standard
libraries. In this paper we investigate how we can make the
storage strategy approach generic and gain its performance
benefits in other contexts than the Python programming lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DLS’15, October 27, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3690-1/15/10...$15.00
http://dx.doi.org/10.1145/2816707.2816716

104

guage. Towards that goal, we make the following contribu-
tions:

• We present a generic, language-independent framework
to include the storage strategies optimization which in any
VM implemented using the RPython toolchain.
• We show that storage strategies can be beneficial for

certain workloads in other dynamic languages.
• To determine how reusable our implementation is, we

evaluate the application of storage strategies to three
RPython-based virtual machines: RSqueak, a VM for
Squeak/Smalltalk; Topaz, a Ruby VM; and Pycket, a
Racket implementation.

2. Background: Storage Strategies in PyPy
The PyPy virtual machine is built using RPython, a restricted
subset of Python that is amendable to static analysis and that
can automatically generate a tracing just-in-time compiler.
The most important optimization implemented by RPython’s
tracing JIT is an aggressive escape analysis [6]. When a loop
is detected it is traced, that is, all operations in the loop are
recorded. The recorded operations are then simplified using a
form of partial evaluation [2]. The original trace is traversed
and object allocation are replaced with static objects which
are allocated on the stack. Only when an object is found to
escape the trace it is actually allocated on the heap. This
optimization is safe because the optimizer can prove that
static objects don’t affect the program state after exiting the
loop.

The drawback of static objects is a rather complex deopti-
mization. For each assumption the JIT compiler made during
optimization, a guard is left in the compiled code. An opti-
mized JIT trace must be left when such a guard check fails.
In this case the escape analysis performed as basis for the
static object optimization does not hold anymore. Static ob-
jects allocated in the last loop iteration have to be allocated
on the heap, and their contents have to be copied from the
stack to the newly allocated objects. To do this, the JIT has
to maintain information about the stack layout while execut-
ing an optimized trace; using a stack map, the stack can be
walked in order to create non-static versions of the objects.

Since RPython’s meta tracing JIT creates traces of VM
operations, not only language level objects can be turned into
static objects, but also VM level objects. Just like other op-
timizations in the RPython toolchain, this leads to cleaner
code; short living objects can substantially increase the ex-
pressiveness of VM code.

Storage Strategies Usually, collections in dynamic lan-
guages are represented by allocating an array and filling it
with pointers that point to the actual elements of the collec-
tion. This is because in a dynamic language, or even any
language with polymorphism, objects of different types can
be added to the same collection. Using an array of pointers
is the generic way to represent such a dynamic collection.

123

456

789

0x...

0x...

0x...

Integer

123

Integer

456

Integer

789

Figure 1. Example for a storage strategy. Left side: generic
collection holding only boxed integer objects. Right size:
Optimized collection, resulting in less object allocations and
memory usage.

However, it also introduces an indirection between the col-
lection and the actual elements. To access any value from
the collection, the VM must first fetch the pointer address
and dereference it, before fetching the actual value. This ad-
ditional memory access is a big overhead compared to a C
array of pure integer values, which can be traversed at full
speed.

Another allocation removal technique called storage strate-
gies, or strategies for short, can optimize dynamic collec-
tions [3]. Storage strategies are implemented on VM level
and are based on the idea that the VM has multiple possible
ways of representing collections internally. Based on the user
program and the operations performed on a collection, the
VM can switch between multiple strategies and choose the
most efficient one. To do so, the collection contains a refer-
ence to the currently used strategy object, and all important
operations performed on the collection are delegated to that
object. Ideally the strategy will not be switched very often,
so the second important idea behind storage strategies is that
user programs often utilize collections in a predictable way.

For example, collections are often used in a homogeneous
way. If the first few elements appended to a Python list are in-
tegers, then it is likely that the user program will keep storing
only integer values in that list. This is enough information
to optimize the list. In this case, the VM could allocate an
array for integer values and store the values directly, without
allocating box objects to represent these integers. Figure 1
illustrates this example by showing two possible representa-
tions for the same collection: the collection on the left side
contains boxed integer objects, while the collection on the
right side contains pure integer values.

In order to optimize the internal representation of a col-
lection, the VM must make assumptions about the usage pat-
tern of that collection. It cannot wait until a collection has
been used for a while before optimizing it, otherwise it might
end up not optimizing short living or small collections. Op-
timizing short living collections can be very important, for
example when they are allocated frequently in a tight loop.

105

123

456

789

0x...

0x...

0x...

Float

10.2

Integer

123

Float

10.2

Integer

789

Figure 2. Deoptimization of an optimized integer collection.
A general storage array has to be created, and Integer objects
have to be allocated

In order to optimize as many collections as possible, the VM
must predict the usage pattern based on the very first opera-
tions performed on a collection.

Making predictions about usage patterns is hard and the
success can vary depending on the situation. Therefore, the
VM should make assumptions based on meaningful heuris-
tics, which can be obtained by examining existing systems
and deriving typical usage patterns. But even with these pre-
conditions there will be cases where the VMs assumptions
turn out to be wrong. In such cases, the VM must uphold
the semantics of the programming language and perform a
deoptimization. Most of the time this means allocating a new,
more general collection and copying all elements from the
old collection into the new one. Figure 2 shows an exam-
ple of this procedure. The storage on the left is optimized
to hold integer values, but the user program wants to add a
float value to the list. The VM has to allocate a new, more
general storage array which is able to hold generic objects. In
this case, the deoptimization could have been avoided if the
VM had implemented a storage strategy to hold both integer
and float values. The deoptimization procedure must be tuned
for highest performance, and should take place as rarely as
possible.

Homogeneous Collections As indicated by the examples
given, the most important optimization target of storage
strategies are homogeneous collections. A collection is ho-
mogeneous when it only contains elements of the same type.
Since the size of the datatype is known, the VM can allocate
an array big enough to hold the data of many such objects
in consecutive memory. The benefit of this optimization is
two-fold: the VM can save the memory for the objects, and
accessing the objects becomes faster due to the omitted indi-
rection between collection and elements.

This optimization is not limited to numeric datatypes like
integers. Even objects with multiple fields can be represented
that way, as illustrated in figure 3. The fields of each objects
just have to be placed sequentially in memory. Accessing any
field in any object can happen without additional memory
access, simply based on constant-time pointer arithmetics.

size

offset

elements

size

offset

elements
 {
 {
Object A

Object B

Figure 3. Inlining storage for composite objects with 3 fields

3. Language Independent Storage Strategies
In this section we present the design of our library for storage
strategies called rstrategies. First we introduce the principles
this library design is based on, then we describe different
parts of the library and how a VM developer can utilize the
library to create specific collection implementations.

In order to be reusable in the context of different program-
ming languages, rstrategies must expose its functionality in
a very flexible way. We use the concept of mixins [4, 5] to
provide the required level of flexibility while allowing the
VM to extend the provided functionality when needed.

In the context of RPython, any regular class can be
used as a mixin. The programmer must simply include a
import_from_mixin(MixinClass) clause into the body of the
instantiating class. All attributes and methods will then be
copied over from MixinClass to the target class, including all
inherited methods. A mixin is not intended to be used on
its own. It can require other mixins and fields or methods
provided by the instantiating class itself. This way the code
inside a mixin can be written in an abstract way to promote
modularity.

rstrategies supports two types of collections: variable sized
and fixed sized lists. These two abstract types of collections
cover the needs of primitive collections for most program-
ming languages. The reasons behind this design decision are
further explained in section 6.

The rstrategies library provides a hierarchy of mixins that
can be combined into actual collection classes. If required,
parts of the provided functionality can instead be imple-
mented in the VM specific collection classes. Any mixin
class can also be extended in the VM specific code before be-
ing used. There is one main mixin hierarchy that provides the
largest part of the functionality. At the top of this hierarchy
is the class AbstractStrategy.
AbstractStrategy defines the interface implemented in its

specific subclasses, in addition to a few internal methods.
The following methods are used to interact with the various
storage strategy implementations:

store(index, item) Stores the given item at the given index
in the collection. The strategy will check internally if it

106

can store the value of item in an optimized way. If this
check fails, the strategy will be automatically switched to
a more general strategy that is able to hold both the current
elements and the new item. The switching mechanism is
explained in section 3.2. Optionally, the value of index is
checked and an error is raised if it is out of bounds of the
collections size. The value of index must be within the
bounds of the collection, even if the collection is variable
sized.

fetch(index) Returns the item stored at the given index in the
collection. Depending on the underlying strategy, it might
be necessary to box the value on the fly to represent it on
the VM level. Because of this, the results of two identical
calls to fetch might have different object identities, while
still ayways containing equal values. The distinction be-
tween object identity and value equality is important. The
same goes for a call to fetch after switching the underly-
ing storage strategy: the results must contain equal values,
but there are no guarantees about the object identity.

size() Returns the number of elements stored in the collec-
tion. In case of a variable sized collection, the result of this
can change after an intermediate call to insert or delete.

insert(index, items) Inserts the given list of items at the
given index in the collection. This increases the size of
the collection by the number of inserted items and should
therefore only be used in the context of variable sized
collections.

delete(start, end) Deletes the items at indices start (inclu-
sive) to end (exclusive) from the collection. All indices
must be within the bounds of the collection. This de-
creases the size of the collection by end − start.

3.1 Strategy Optimizations
The interface of AbstractStrategy is designed in a way that
any of its subclasses can be used both in a fixed sized or
variable sized context. A collection becomes fixed sized by
simply never invoking any of the insert or delete methods.
RPython’s optimizer will then determine that underlying
storage arrays are never changed in size and accordingly
optimize allocations and accesses of such collections.

The subclasses of AbstractStrategy represent different
storage strategies, as described in section 2. Table 1 gives
an overview over the supported strategies, which are further
explained in the following paragraphs.

The first one is EmptyStrategy, which represents a col-
lection with zero elements. The size of a collection using
EmptyStrategy is always zero, the fetch operation always
raises an error, and the store operation always switches the
strategy to a different one. The EmptyStrategy can be used
together with variable sized lists, like Pythons primitive list
type. In such a context, the EmptyStrategy would be the start-
ing point for every empty list. Then, depending on the first
inserted element, the storage strategy would be switched ap-

Table 1. Summary of the strategies supported by rstrategies.

Empty Size always zero
SingleValue Every element is the same value
Generic Can hold any element
WeakGeneric Holds on weakly to its elements
SingleType Stores unboxed values of a single type
Tagging Stores unboxed values of a single type

plus one special tag value

propriately. When all elements of a list are removed, the strat-
egy can be optimized to the EmptyStrategy once again, in case
it is reused with a different type of element.

Another useful strategy mixin is SingleValueStrategy.
This strategy can only store a single value and therefore
does not require to allocate an entire storage array. Again,
this strategy can save a lot of memory when used frequently.
The SingleValueStrategy must allocate memory only for a
single value: the size of the list. As soon as a different value
is stored in this strategy, it must be deoptimized to a more
general strategy. This is useful for programming languages
with fixed sized primitive collections that are always instanti-
ated filled with a default element. For example, a Java Array
is initially always filled with null values, and a Smalltalk
object is initially always filled with nil values. Here, the
SingleValueStrategy can be used as initial strategy, before
being deoptimized to a more general strategy.
GenericStrategy is the strategy that is able to handle any

element. It corresponds to a simple, non-optimized list and
is the fallback strategy when any other strategy has to be
deoptimized. Depending on the context, there can be cases
where a GenericStrategy is again optimized to another strat-
egy. For example, if the last element is removed from a vari-
able sized list using a GenericStrategy, it switches the strat-
egy to EmptyStrategy. This way, it will again switch to another
optimized strategy next time an element is added. Similar sce-
narios can be constructed when using a fixed sized list, but in
that case additional information must be maintained about the
elements. For example, keeping track of the number of null
values would allow optimizing a generic fixed-sized array to
SingleValueStrategy. The associated overhead of maintaining
this information would most likely surpass the optimization
benefits.
SingleTypeStrategy is able to store elements of a single

type in an optimized storage array, as described in section
2. Certain conditions must be met in order to use this strat-
egy. Namely, the identity of the element objects must be
determined only through their value, and element objects
must be immutable. These strict conditions are usually only
met by primitive types like integer, float datatypes, or value
classes, if supported. Therefore, the SingleTypeStrategy can
be used to implement optimized storage for collections of
primitive datatypes. The VM has to provide routines for box-
ing and unboxing the elements of this strategy. These rou-

107

tines form the bridge between the machine level and VM
level representations of the element values. For example, as-
sume an IntegerStrategy has been implemented based on
SingleTypeStrategy. Now a boxed integer object is added to a
collection with such a strategy. This object has to be unboxed
in order to store its value into a machine level array of inte-
gers. When fetching a value from this strategy, the according
boxed integer object has to be created again.

The TaggingStrategy is an extension of SingleTypeStrategy.
In addition to optimized storage of a single element type, it
uses one specific tag value in the value range of unboxed ele-
ments to represent some special boxed value. This is useful
when fixed sized collections have a default value for their con-
tents. For example, a fresh Java Array is filled with the default
value null. When this array is filled with Integer instances,
there will often be some slots in the array which still have
the value null. Now if we were using the SingleTypeStrategy,
we would already have to deoptimize to GenericStrategy in
order to represent both null and Integer values in the same
collection. With the help of the TaggingStrategy, we can avoid
this early deoptimization by representing the null slots with
special integer values, for example the maximum possible
integer value.

There are two drawbacks to this strategy. First, it adds the
overhead of comparing fetched elements with the tag value.
This is the penalty for representing two different types in the
same optimized storage. Second, the TaggingStrategy can not
store the tag value itself. Therefore, the tag value should be
chosen to occur very rarely in real situations. This can be
hard for integer values, since even the maximum possible
integer can very well be produced by the user program. For
float values, the IEEE 754 Standard [7] allows for multiple
representations of the NaN value, one of which can be used as
tag value.
WeakGenericStrategy is a version of GenericStrategy that

holds on weakly to its elements. This means that an element
of a list using a WeakGenericStrategy can be garbage collected,
if the list contains the last reference to this element. Many
programming languages require support for weak collections
or objects on VM level. Since this strategy serves a very
special purpose, collections should never switch from or to
this strategy. Instead, a collection should be instantiated with
this strategy and keep it throughout its lifetime.

The described strategies can further be combined by the
VM. For example, a Smalltalk object can consist of two
parts: a fixed sized part containing instance variables, and
an optional variable sized part, which is Smalltalks notion of
arrays. Even though the two parts form a single object, they
can have different requirements regarding storage strategies.
In this case, the VM can use two instances of different
strategies to represent a single object.

The VM can even implement strategies that contain ob-
jects with more than one data field. For example, a language
might have a primitive type representing a point, consisting

of two number fields. A collection of such point objects could
be optimized by storing all the point numbers in one consecu-
tive array. This can be implemented using SingleTypeStrategy
and storing instances of RPython’s tuple type into it. In this
example, the VM would have to provide routines to convert
between the tuple of raw data, and an actual point object.

3.2 Switching Strategies
An important part of rstrategies is the mechanism that allows
a collection to switch between different storage strategies.
The generic way to switch from one strategy to another
requires two steps:

1. Allocate a new storage strategy of an appropriate type and
with an appropriate size.

2. Invoke fetch on the old strategy instance and store on
the new strategy instance for every element in the old
instance.

While the first step can not be avoided, the second step
can be largely optimized in many cases. For example, when
switching from a SingleValueStrategy to a GenericStrategy,
every fetch operation will yield the same result. Therefore,
an optimized switching routine can be implemented, which
allocates a GenericStrategy and fills its storage array with a
fixed value, using a routine similar to memset of the C standard
library.

4. Evaluation
In this section we evaluate the rstrategies library in two gen-
eral directions: runtime performance and applicability to dif-
ferent programming languages. We evaluate the runtime per-
formance by comparing the results of benchmarks executed
with and without storage strategies. We show the generality
of the library by demonstrating two programming languages
of very different nature that have been successfully adapted
to using rstrategies.

4.1 Performance
In this section we present the results of experiments measur-
ing the execution time of benchmarks to evaluate the perfor-
mance benefits of storage strategies. The experiments have
been conducted on a 64-bit Windows 8.1 machine with 8 GB
of RAM and an Intel Core i7-2620M CPU with two physical
and four virtual cores, clocked at 3.40 GHz during single-
core execution. During the experiments, no other user appli-
cations were running and the experiment process was given
increased priority in order to minimize influences from oper-
ating system processes. We used the RSqueak VM at commit
7a0ce39abc12, PyPy at commit 35fdf446e439 and a Squeak
4.5 image to take the measurements.

To evaluate the runtime performance of rstrategies, all
experiments were conducted twice. First, all specialized stor-
age strategies have been disabled via a command line switch.
In this setup, the ListStrategy is used by every object or

108

collection created during the benchmarks. In the second
setup, specialized storage strategies were enabled. In the
case of the RSqueak VM, these strategies are AllNilStrategy
(a subclass of the abstract SingleValueStrategy that just de-
fines the single value to be the RSqueak VM’s nil object),
SmallIntegerOrNilStrategy (a subclass of the TaggingStrategy
which uses RSqueak small integers and tags nil as spe-
cial value) and FloatOrNilStrategy (which does the same for
floats). We compare the runtime performance of these two
experimental setups to evaluate the impact of the specialized
storage strategies.

The following list gives short explanations of the seven
benchmarks executed during the experiments. These are all
common benchmarks based on The Computer Language
Benchmarks Game1.

AStar The AStar path searching algorithm is used to find a
solution through two predefined mazes. This benchmark
creates a big graph of interconnected objects and gener-
ates lots of non-recursive messages. Two different mazes
are solved, called AStar1 and AStar2; the second maze is
larger.

BinaryTree Balanced binary trees of a given depth are con-
structed and then walked, summing up the elements of
all leaf-nodes. This benchmark generates many recursive
messages.

Blowfish The symmetric-key block cipher Blowfish is used
to encrypt and decrypt fixed challenge data. This bench-
mark is heavy on basic number arithmetic, very few ob-
jects are created.

DeltaBlue DeltaBlue is a constraint solver benchmark. Dif-
ferent constraints are created for a number of variables,
then the solver finds optimal solutions for the given con-
straints. This benchmark is heavy on message sends and
conditional logic.

NBody The NBody algorithm creates a number of objects
with an assigned movement vector and mass, then per-
forms a round-based simulation of their movement and
interactions using Newton’s laws of motion. This bench-
mark balances basic arithmetics and message sends.

Richards The Richards benchmarks simulates the task
scheduler of an operating system kernel. Multiple classes
of tasks can be created with different priorities, then the
tasks are scheduled until every task has finished. The main
workload of this benchmark consists of message sends
and conditional logic.

SplayTree This benchmark creates a splay tree of a fixed
size and then performs a number of tree modifications by
removing the greatest key node in the tree. This bench-
mark creates and modifies a big interconnected graph of
objects.

1 http://benchmarksgame.alioth.debian.org/

Table 2. Excluded and analysed measurements for the differ-
ent benchmarks.

Benchmark Excluded
Measurements

Analysed
Measurements

AStar1 14 36
AStar2 14 36
BinaryTree 3 47
BlowfishDecryption 13 37
BlowfishEncryption 16 34
DeltaBlue 8 42
NBody 3 47
Richards 10 40
SplayTree 12 38

For all experiments, entire benchmark suite is executed
within the same VM instance. This creates a more realistic
setup, since a real-world application is likely to be long-
running and to perform multiple different tasks.

4.1.1 Results
The execution time of the benchmarks was measured by
recording timestamps at the beginning and end of every
benchmark. Every benchmark was executed 50 times to
achieve a satisfactory significance level. From the 50 mea-
surements taken for every benchmark, the first n are excluded
from the analysis to eliminate the impact of the JIT warmup
time. The number n is determined manually for every bench-
mark, since the time it takes to reach steady performance
differs from one benchmark to another. Table 2 lists the num-
ber of excluded measurements for every benchmark.

The remaining measurements have been summarized by
means of confidence intervals using a 5% significance level.
The confidence intervals comparing the two VMs have been
computed following the procedure proposed by Kalibera and
Jones [8]. The confidence intervals summarizing the results
of the individual VMs show the standard error of the pop-
ulation, assuming normal distribution. Table 3 summarizes
the results, each line represents one of the benchmarks. The
table is divided in three columns, each summarizing different
results for the respective benchmark. The first column shows
the results for the RSqueak VM without storage strategies,
i.e. with the rstrategies library disabled. The second column
shows the results for the RSqueak VM with storage strate-
gies enabled. The numbers in the first two columns are given
in milliseconds. The third column shows the relative perfor-
mance change from the first to the second section. A positive
number indicates increased performance, meaning that the
benchmark was executed in less time.

The AStar1 and SplayTree benchmarks showed consider-
able increase in performance, while Blowfish and NBody
showed a minor decrease. The other three benchmarks
showed minor increases between 1% and 7%. Since the
means and standard errors shown in the first two columns dif-
fer quite substantially, it would not be meaningful to construct

109

http://benchmarksgame.alioth.debian.org/

Table 3. Performance measurements for different benchmarks. From left to right: RSqueak VM without specialized storage
strategies, RSqueak VM with specialized storage strategies, relative performance change between the first two. Measurements
given as 95 % confidence intervals.

Benchmark
Without
Strategies

With
Strategies

Performance
Change

AStar1 80.64 ms ±1.92 55.81 ms ±2.61 +46.93 % ±6.58
AStar2 351.17 ms ±8.15 288.81 ms ±2.68 +21.21 % ±2.25
BinaryTree 187.47 ms ±1.00 174.94 ms ±1.77 +7.26 % ±1.01
BlowfishDecryption 422.16 ms ±2.05 429.16 ms ±2.49 −1.62 % ±0.64
BlowfishEncryption 423.85 ms ±2.00 427.15 ms ±2.47 −0.76 % ±0.63
DeltaBlue 99.86 ms ±2.24 98.31 ms ±2.16 +1.57 % ±2.62
NBody 271.38 ms ±2.15 274.09 ms ±2.16 −0.98 % ±0.94
Richards 165.97 ms ±2.80 162.95 ms ±4.14 +2.11 % ±2.29
SplayTree 781.16 ms ±2.25 469.92 ms ±2.89 +66.28 % ±0.97

a single confidence interval from all benchmarks. Instead, we
observe that storage strategies provide high performance ben-
efits for certain problems, while the potential performance
penalty remains very low. The average half-width of the con-
fidence intervals is 1.99%, which is reasonably low for a
significance level of 5%.

The two benchmarks that benefit most, AStar and Splay-
Tree, both create large graphs of objects. Therefore, it is
not surprising that they benefit a lot from an allocation re-
moval optimization. The benchmarks with slight performance
losses, Blowfish and NBody, are the two benchmarks with the
highest focus on arithmetical operations. Since there are not
many object allocations happening here, we can measure the
overhead of storage strategies as a slight performance drop.

These results seem to indicate that the benefits of storage
strategies very much depend on the workload—Squeak, al-
though it is a very object-oriented environment, has relatively
few objects that include only the primitive types for which
we have strategies. Although the benefits for some algorithms
do look good, a Squeak VM also has to run the entire devel-
opment environment, including rendering to the screen and
communicating over the network. The algorithms used there
depend more on arithmetic performance and rarely use many
homogeneous objects, diminishing the benefits of strategies.
During development use, we thus have experienced little per-
formance benefits of strategies.

4.2 Generality
An important goal of the rstrategies library was to be inde-
pendence of the language executed by the VM. Neither the
programming language nor indeed the class or family of pro-
gramming languages should matter, and our work should be
applicable to a range of dynamic language VMs. In order
to evaluate this, we introduced rstrategies into three differ-
ent RPython based VMs. As presented, in the RSqueak VM,
nearly every object uses storage strategies. In the Topaz Ruby
VM, we added strategies to the generic array datatype that is
provided by the VM. Finally, in Pycket [1], we added strate-

gies to the vector datatype. While it is not possible to prove
that our design works for arbitrary programming languages,
we believe that the three selected examples cover an inter-
esting range of languages. Squeak and Ruby are both object-
oriented and imperative languages; while Ruby is a script-
ing language, Squeak is image-based language and loads an
entire live programming environment before executing the
first bytecode. Racket (implemented by Pycket) belongs to
the Lisp/Scheme programming language family. It is a multi-
paradigm language including object-oriented features, but the
syntax, control flow, and main data structures are typical for
a functional programming language.

We were able to integrate strategies in these RPython
based VMs in largely the same way. To extend this evaluation,
we use the two VMs RSqueak and Topaz to demonstrate how
rstrategies works in the context of different programming
languages. Our strategies library includes a logging facility
which can output a diagram of all strategy related operations
such as the creation of collections or switching between
different strategies. We used this to create transition graphs
for RSqueak and Topaz while executing different benchmark
suites. For RSqueak we reused the benchmark suite from
the previous section, for Topaz we used a benchmark suite
consisting of the 5 benchmarks BinaryTrees, Dhrystone,
Mandelbrot, Revcomp, and Richards. We have not selected
two equal benchmark suites since we are not conducting a
performance comparison between the two VMs.

Figure 5 show the resulting transition diagram for the
RSqueak VM. Objects created at image loading time are
directly instantiated with the best-fitting strategy, while ob-
jects created later always start off with the AllNilStrategy
or the WeakListStrategy. The WeakListStrategy is a
special case: weak objects never transition to any other strat-
egy after creation. Other objects transition to one of the
specialized strategies, in the current implementation either
SmallIntegerOrNilStrategy or FloatOrNilStrategy,
or directly to the generic ListStrategy. The percentage
of objects remaining in any of the specialized strategies is a

110

Figure 4. Strategy transitions of the RSqueak VM executing benchmarks

Figure 5. Strategy transitions of the Topaz VM executing
benchmarks

good indicator for how well the storage strategies perform.
In the case of RSqueak, approximately 25 % of all objects
never leave the AllNilStrategy. These objects are mainly
MethodContext objects which are created automatically upon
message sends. 97 % and 90 % of all objects arriving at the
SmallIntegerOrNilStrategy or FloatOrNilStrategy,
respectively, actually stay in these specialized strategies.
These numbers indicate a high success rate of the heuris-
tics behind choosing the storage strategies. The node at the
bottom labeled Other summarizes a few rarely used strate-
gies which are special to RSqueak.

Figure 5 shows an example transition graph for the Topaz
VM. It has fewer nodes than the RSqueak diagram because in
Topaz, strategies have only been added to the array datatype,
not to every single object. The IntStrategy has a near
100 % success rate, which we assume is due to the nature
of the benchmarks executed while capturing this data. The
EmptyStrategy also has a rather high success rate, while

the FloatStrategy only works one out of three times. Com-
pared to the RSqueak VM, these numbers look less conclu-
sive and more artificial. The main reason is the different na-
ture of the two VMs: RSqueak loads an entire graphical pro-
gramming environment, which means the VM executes some
unrelated code even while running these benchmarks. Topaz,
on the other hand, evaluates pure Ruby scripts, which results
in a more deterministic and uncluttered execution.

5. Related Work
The Graal/Truffle project is a VM building framework similar
to RPython in its main design goal. An interpreter written in a
statically typed programming language is used as the source
artifact to automatically produce an efficient VM including
a JIT. Graal [9] is an experimental extension to the HotSpot
VM which exposes VM internal mechanisms to the executed
program via a Java API. Namely, HotSpot’s method based JIT
compiler can be controlled from the client program. Truffle
[11] is a generic, self-optimizing AST interpreter that makes
use of the interface provided by Graal. In order to implement
a VM using Graal/Truffle, the program code must be parsed
into a syntax tree and passed to Truffle for execution. Truffle
will dynamically modify the AST using techniques like
partial evaluation and inlining to create compilation units
for heavily used code paths, which are then converted to
machine code by the Graal JIT. This approach effectively
uses a method JIT compiler, but is similar to RPython’s
metatracing JIT.

The main difference between RPython and Graal/Truffle,
aside from the underlying infrastructure, lies in the flexibil-
ity for the VM programmer. Graal/Truffle requires the VM
implementor to use an AST, while the RPython toolchain ac-
cepts arbitrary Python programs as long as they satisfy the
type inference.

111

The project JRuby+Truffle2 is a Ruby VM written in Java
which uses the Graal/Truffle infrastructure. JRuby+Truffle
includes storage strategy optimizations [10], but not in form
of a reusable library like rstrategies.

A common VM optimization is to use pointer tagging to
store some immediate values, such as integers, floats, or char-
acters directly but tagged. This reduces the number of bytes
available for the immediate values, but often provides signif-
icant performance benefits, as specialized CPU instructions
can be used to perform arithmetic. However, compared to
storage strategies, this increases the complexity of the inter-
preter, as each pointer has to be checked for tags, and only a
very limited set of tagged types can be provided.

6. Discussion
The collection types supported by rstrategies are fixed sized
and variable sized lists. Of course there are may more col-
lection types and algorithms used in modern programs. The
collection framework in the Java standard library features 8
interfaces and 10 implementation classes. A modern Squeak
image3 has as many as 79 subclasses of Collection, because
it includes collections with very special purposes. However,
rstrategies is a library for optimizing collections on VM level,
which means it is only meaningful to support collections that
occur as primitive types in multiple programming languages.
Even though Java supports collections like ArrayList, TreeSet
and HashMap, the only primitive generic collection type is the
Array. The same holds for Smalltalk and many other program-
ming languages. And even though Smalltalk (as well as many
other programming languages) have type-specific versions
of collections for some primitive types (e.g. ByteArray and
WordArray), these put the burden on the user of the program-
ming language to choose the right VM-level representation.

It would be possible to take the approach of storage strate-
gies even further and let a VM transparently optimize col-
lection types from the standard library of the programming
language. For example, since the interface and semantics of
Javas ArrayList are well defined, the VM could try to han-
dle instances of ArrayList by itself, without actually execut-
ing the Java bytecode in the methods of the ArrayList class.
This might lead to improved performance when accessing el-
ements of ArrayList, but this approach has several drawbacks.
One important function of a standard library is to reduce the
complexity of the VM. Moving parts of the library into the
VM would only further increase its complexity. Another pur-
pose of having a separate standard library is that it is able to
evolve independently of the VM. It is very hard to exactly
mirror the code of the standard library and the suggested ap-
proach would require releasing a new VM version after every
substantial change to the standard library.

Therefore we chose to only optimize primitive collection
types with rstrategies. The rest of this section lists and dis-

2 http://www.chrisseaton.com/rubytruffle/
3 http://www.squeak.org/

Table 4. Primitive collection types in dynamic languages
Language Fixed List Variable List Dictionary

JavaScript Array Object
PHP array array
Python tuple, bytearray list dict
Racket vector, cons, box hash
Ruby array hash
Smalltalk Array

cusses several collection types not supported by rstrategies,
although they do occur as primitive types in several modern
programming languages.

6.1 Non-List Collections
We examined the primitive datatypes in various dynamic
programming languages. Table 4 summarizes the results by
listing the primitive datatypes of each language and mapping
them to abstract collection types which are explained in the
following.

We distinguish three general kinds of collections: fixed
lists, variable lists and dictionaries. Fixed and variable lists
correspond to the collection types supported by rstrategies,
using the mixin hierarchy described in section 3.1. Hence,
all collection types listed in these two columns could be
implemented and optimized using rstrategies.

Dictionary is a primitive collection type that is quite im-
portant for many languages. Storage strategies can be ex-
tended to include support for dictionaries. This has been done
for the Python interpreter PyPy [3] and in the JRuby+Truffle
project [10]. We have not yet implemented dictionaries as
part of rstrategies yet, but intend to do so as part of our future
work on this library.

Note that Python has several additional primitive types
for special use cases: buffer, xrange, set, frozenset, iterator,
generator. This variety of primitive collection types is special
to Python and all these types can be mapped to the Fixed List
or Variable List types by adding additional algorithms to the
store and fetch routines. Therefore we chose not to support
special datatypes like these.

6.2 Non-Contiguous Lists
Functional programming languages often feature a primitive
datatype for linked lists. Lisp for example has the built in
type conswhich represents one link of a linked list, formed by
two fields: the value (named car) and the pointer to the next
link (named cdr). While these labels have historical reasons
originating in the 1950s, the linked list is still a central
data structure in modern Lisp programs. Since accessing
arbitrary elements of a linked list requires walking the entire
list up to that element, optimizing linked lists would be
very beneficial. For example, all elements of the list could
be placed in consecutive memory, allowing constant access
to any element. However, such optimizations bring about
further complications and are a separate (although related)

112

http://www.chrisseaton.com/rubytruffle/
http://www.squeak.org/

research topic to storage strategies. Therefore, we consider
optimizations of linked lists out of scope for rstrategies.

7. Conclusion
We have presented a generic implementation of storage strate-
gies that can be used by different virtual machines imple-
mented using the RPython toolchain. We have shown that
storage strategies can be applied to different dynamic lan-
guages and that they provide benefits for some workloads,
while inducing only small overhead for others.

Since we have not experienced significant performance
gains while using RSqueak VM for development, but only
in select benchmarks, we can not conclusively recommend
storage strategies for every dynamic language workload.
We have left a command line switch to deactivate storage
strategies in place for now, so that users can deactivate
them depending on the workload. In addition, our results
indicate that the added implementation complexity may not
be worth the performance benefit if storage strategies have to
be implemented separately for any VM implementation. Thus
we feel that storage strategies should be a generic feature
provided by VM toolchains such as RPython or Truffle, so
that the tradeoff between performance and code complexity
is not an issue.

Acknowledgments
We acknowledge the support of HPI’s Research School and
the Hasso Plattner Design Thinking Research Program. Carl
Friedrich Bolz is supported by the EPSRC Cooler grant
EP/K01790X/1.

References
[1] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Krilichev, T. Pape,

J. Siek, and S. Tobin-Hochstadt. Pycket: A tracing JIT for a
functional language. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming,

ICFP ’15, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3669-7. to appear.

[2] C. F. Bolz, A. Cuni, M. Fijłakowski, M. Leuschel, S. Pedroni,
and A. Rigo. Allocation removal by partial evaluation in
a tracing jit. In Proceedings of the 20th ACM SIGPLAN
workshop on Partial evaluation and program manipulation,
pages 43–52. ACM, 2011.

[3] C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for
collections in dynamically typed languages. In Proceedings
of the 2013 ACM SIGPLAN international conference on Ob-
ject oriented programming systems languages & applications,
pages 167–182. ACM, 2013.

[4] G. Bracha and W. Cook. Mixin-based inheritance. ACM
SIGPLAN Notices, 25(10):303–311, 1990.

[5] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
171–183. ACM, 1998.

[6] B. Goldberg and Y. G. Park. Higher order escape analysis: opti-
mizing stack allocation in functional program implementations.
In ESOP’90, pages 152–160. Springer, 1990.

[7] IEEE. Ieee 754: Standard for binary floating-point arithmetic,
Aug. 2014. URL http://grouper.ieee.org/groups/
754.

[8] T. Kalibera and R. Jones. Rigorous benchmarking in reason-
able time. In ACM SIGPLAN Notices, volume 48(11), pages
63–74. ACM, 2013.

[9] Oracle. OpenJDK: Graal project, Aug. 2014. URL http:
//openjdk.java.net/projects/graal/.

[10] C. Seaton. Optimising small data structures in jruby+truffle,
Aug. 2014. URL http://www.chrisseaton.com/
rubytruffle/small-data-structures/.

[11] C. Wimmer and T. Würthinger. Truffle: a self-optimizing run-
time system. In Proceedings of the 3rd annual conference on
Systems, programming, and applications: software for human-
ity, pages 13–14. ACM, 2012.

113

http://grouper.ieee.org/groups/754
http://grouper.ieee.org/groups/754
http://openjdk.java.net/projects/graal/
http://openjdk.java.net/projects/graal/
http://www.chrisseaton.com/rubytruffle/small-data-structures/
http://www.chrisseaton.com/rubytruffle/small-data-structures/

	Introduction
	Background: Storage Strategies in PyPy
	Language Independent Storage Strategies
	Strategy Optimizations
	Switching Strategies

	Evaluation
	Performance
	Results

	Generality

	Related Work
	Discussion
	Non-List Collections
	Non-Contiguous Lists

	Conclusion

