
Applying Data-driven Tool Development to
Context-oriented Languages

Marcel Taeumel, Tim Felgentreff, and Robert Hirschfeld
Hasso Plattner Institute

University of Potsdam, Germany
{first.last}@hpi.uni-potsdam.de

ABSTRACT
There are numerous implementations of context-oriented pro-
gramming on host languages that come with graphical pro-
gramming environments. However, comprehensive tool sup-
port is often missing because building and integrating graph-
ical tools is still laborious; many programmers cannot afford
to be both tool user and tool builder. We present a novel,
data-driven approach on programming tools to alleviate this
problem. We implemented a framework in Squeak/Smalltalk
and show how programmers can use it to create and adapt
integrated tools for ContextS2.

1. INTRODUCTION
Building graphical programing tools is a challenging en-

deavor. Even simple tools require much code to be writ-
ten because frameworks such as Eclipse/RCP1 or Qt/UI2

impose verbose patterns. Especially the code required for
graphical, interactive widgets overshadows a tool’s purpose,
which is often primarily about accessing domain-specific data.
Consequently, two different roles emerge: the role of a tool
builder and the role of a user. This is problematic when de-
ficiencies are discovered during tool usage; adaptation will
be impeded if programmers are not versatile enough to take
on both roles. We argue that this affects the practicability
of new programming language extensions such as context-
oriented programming (cop). For cop implementations,
there is usually only basic tool support such as new code
browsers. Programmers who want to use cop effectively in
their projects do arguably not bother adapting tools but
primarily writing cop code.

There is not only one strategy to design and implement
cop for a programming language along with tool support.
Indeed, for many languages where cop is available, at least
two different implementations exist [1]. Chances are that
even basic tools, once created with an effort, cannot be

1Eclipse Rich Client Platform, http://eclipse.org
2Qt User Interfaces, http://qt-project.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’14, July 28 - August 01, Uppsala, Sweden
Copyright is held by the owner/authors(s). Publication rights licensed to
ACM. ACM 978-1-4503-2861-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2637066.2637067

reused across different cop implementations. Even for shared
host languages, the extension’s meta-model may differ and
hence existing tools have to be adapted. For an example,
ContextS uses classes [9] to represent layers, and its suc-
cessor ContextS2 uses symbols (see Appendix A). Here,
the programmer who implements cop is not necessarily a
tool builder, but only a user of similar cop tools. To pro-
vide basic tool support for the new implementation, the pro-
grammer has to learn the tool framework and become a tool
builder, which may involve a steep learning curve.

When, eventually, one or more tools for a specific cop
implementation exist, integration with the underlying pro-
gramming environment and its other tools is important. cop
is a complementary extension for object-oriented languages
and thus cop tools should be complementary, too. For ex-
ample, having a code browser that shows layers and par-
tial methods often does not affect other tools such as the
debugger or the test runner. Without proper tool support,
programmers have to fall-back on tools that are not adapted
for cop. In such scenarios, the language extension can make
rather simple tasks such as debugging more time-consuming
and error-prone.

Thus, we see a need for better tool building support, es-
pecially for diverse language extensions such as cop. We
address the following research question:

How can we support programmers to build inte-
grated graphical programming tools for language
extensions such as cop?

In this paper, we present a novel, data-driven perspective
on graphical programming tools and a corresponding frame-
work in Squeak/Smalltalk3 that supports an iterative tool
building process with low effort, that is, few lines of code
and immediate feedback. We apply our framework to create
integrated tools for ContextS2, a cop implementation for
Squeak/Smalltalk. Our framework also works with non-cop
applications; our data-driven approach is, arguably, appli-
cable to other object-oriented language environments.

In the following Section 2, we describe the challenges that
arise when building and integrating tools for cop. In Sec-
tion 3, we present our approach and the resulting tools for
ContextS2. Finally, we conclude in Section 4.

2. GOALS AND CHALLENGES
Programming tools support exploration and modification

of software artifacts such as classes, tests, traces, or domain-
specific objects. In traditional Smalltalk environments, such
3http://www.squeak.org

http://eclipse.org
http://qt-project.org
http://www.squeak.org

tools include class browsers, test runners, debuggers, and
object inspectors. Exploration means continuously posing
and answering questions about code structure and run-time
behavior. For example, “Which code has class C?”or“Which
state has object O?”. Modification means altering particular
data, that is, source code or run-time state.

Many cop implementations reuse constructs of the host
language such as classes and methods. Therefore, tools to
manipulate these artifacts can easily be reused to create cop
applications. However, challenges arise when new kinds of
questions require adapted exploration tools with additional
views into the system. Such additional relationships between
artifacts are often not supported out of the box. For cop,
tools have to understand the concept of layers to relate them
to other artifacts, even if layers are classes themselves. De-
buggers, for example, can look very different, even cryptic,
if they reveal details about cop-specific method dispatch in
the call stack.

2.1 Questions for Exploration Tools
We think that questions about the static code structure,

which should be answered with cop tools, include:

Q1 Which layers refine class C (or method M)?
Q2 Which classes (or methods) are refined by layer L?
Q3 In which methods can layer L be activated?
Q4 In which methods can layer L be deactivated?

In addition, the concrete run-time behavior as influenced
by layers should be observable in cop tools. We think that
tools should answer the following questions, too:

Q5 Which layers are currently active in process P?
Q6 What is the current interface for object O considering

active layers?

2.2 Building Exploration Tools
In an object-oriented and class-based programming lan-

guage, building exploration tools basically means to cre-
ate adapters that connect interfaces of software artifacts
with interfaces of graphical widgets. Tools being interface
adapters accomplish the following tasks: 1) choose and setup
widgets, 2) choose and access artifacts, 3) react to artifact
changes, 4) react to user input through widgets.

Tool architectures range from monolithic to composite de-
signs, often influenced by a tool framework. Monolithic
tools, on the one end, may coalesce all features in very few
classes, which decreases cohesion per class and impedes code
comprehension. For example, Squeak 4.5 employs only five
classes to implement code browser, debugger, and object in-
spector with about 4500 lines of Smalltalk code.4 Composite
designs, on the other end, may specify custom classes even
for single artifacts, which increases coupling per class and
impedes code comprehension, too. For example, the Omni-
Browser [4] framework wraps concrete artifacts in abstract
nodes and the Glamour [6] framework wraps concrete wid-
gets in abstract presentations.

Tools are built iteratively and adaptations should take
place whenever deficiencies are discovered. That is, however,
of low interest for the tool user if the corresponding source
code cannot be localized and modified with low effort. Run-
time components, especially the graphical ones, often have
4The reader can complement an understanding of
Smalltalk’s expressiveness by studying comparative discus-
sions such as http://c2.com/cgi/wiki?JavaVsSmalltalk

no direct connection to the underlying, data-specific code.
One approach to mitigate the problem of complex tool de-
signs is to support declarative initialization scripts. Glam-
our, for example, supports describing widget layout, artifact
access, and basic browsing interactions in one script.

We argue that the most volatile part of source code in ex-
ploration tools deals with accessing software artifacts. Of-
ten, such tools consist of several adjacent list-based widgets,
which propagate user selections to exploit relationships be-
tween artifacts. Programmers should not bother reading
or skimming code that (re-)implements these recurring con-
cepts. Therefore, we propose a data-driven approach where
programmers can focus on the underlying software artifacts.
They can easily localize and modify code that deals with
reading and preparing artifacts such as classes, methods,
layers, and partial methods.

2.3 Reusing Exploration Tools
One key decision of a cop implementation is its meta-

model: The internal representation of layers and partial
methods have an impact on the applicability of existing tool
support. This means that tools can often not be reused
across different implementations. Thus even if the host lan-
guage is shared, existing exploration tools will not be func-
tional for the new artifacts. There are many languages with
multiple cop implementations:

Java ContextJ [2], ContextJ* [10], JCop [3]
JavaScript ContextJS [13], COP.js5

Lisp ContextL [7], Ambiance [8], Lambic [17]
Python ContextPy [11], PyContext [18]

Ruby ContextR [16], Phenomenal Gem [15]
Smalltalk ContextS [9], ContextS2 (see Appendix A)

This illustrates that it is not obvious how to best imple-
ment cop for a programming language. To demonstrate
the differences in the meta-model, we consider question Q1:
“Which layers refine class C?”. In ContextS, we can search
all subclasses CsComposition for partial methods whose se-
lectors conform to advice class C such as #advicePrintOn:

CsComposition allSubclasses select: [:class |
class methodDict keys anySatisfy: [:selector |
selector beginsWith: #advice, C name]].

In contrast, ContextS2 stores partial methods in method
dictionaries of layered classes sharing the base method’s se-
lector. The same question has to be answered by searching
directly through the method dictionary of the class and fil-
tering by method type:

(C methodDict values
select: [:method | method isContextSMethod])
gather: [:method | method partialMethods
gather: [:partial | partial layers].

Note, that the different interfaces reflect the different meta-
models of the implementations, even though in this case,
about the same amount of code is required. The ContextS2
implementers could port these changes if they were able to
localize the appropriate source code locations in the Con-
textS tools. Such tools, however, are often just replicas of
regular tools with some cop-specific features. For example,
the cop browser is a regular code browser with an addi-
tional view to distinguish layers. Such modified replicas will

5http://colmarius.net/cop

http://c2.com/cgi/wiki?JavaVsSmalltalk
http://colmarius.net/cop

get outdated if not maintained with the base system; so
they will arguably get outdated. Consequently, for a new
cop implementation, programmers are likely to start again
from the current version of the base system’s tools and figure
out extension points again instead of reusing and adapting
existing cop tools.

2.4 Integrating Exploration Tools
Today’s programming environments do not facilitate seam-

less integration of both data and graphics for new tools. Al-
though visual integration is common, there is often no inte-
gration of new software artifacts and relationships. Here, vi-
sual integration means Eclipse perspectives, Squeak system
windows, or Textmate buffer views. However, integration of
artifacts and relationships requires using shared communi-
cation channels between tools. For example, Eclipse is built
around the JDT Java Model, which is not easily extensible;
new tools cannot simply introduce new artifacts to existing
tools. Consequently, graphical tools are often self-contained
and integrate only visually. We think that there has to be
an equivalent of Unix’ pipes-and-filters or Emacs’ buffers-
and-processes for graphical environments.

As an effect, programmers tend to spend much time switch-
ing between different tools [12]. They cannot directly work
with their artifacts but have to manually transfer data and
input between various intermediate tool front-ends. There
is an interaction style that mitigates this switching problem:
context menus. They pop up over graphical representations
of software artifacts and support invoking other tools to fur-
ther work with those artifacts. But to reduce the number
of switches, tools tend to be feature-rich and standalone.
This impedes integration between tools meaning they can-
not be combined in an easy fashion to complete unforeseen
programming tasks.

The research project CodeBubbles [5] shows that there
can be a better metaphor for visual programming environ-
ments. The project focuses on the software artifacts and
provides small, self-contained tools, called bubbles. Having
very specific features, bubbles can be combined to work on
different aspects of the same artifact. In such an environ-
ment, a new cop implementation would integrate with the
programming environment by providing additional bubbles
that represent layers, partial methods, and other artifacts.

3. DATA-DRIVEN TOOL BUILDING
In this section, we present our new approach to build

all kinds of graphical exploration tools. We implemented
a framework for Squeak/Smalltalk and apply our approach
to build tools for ContextS2.

3.1 Our Data-driven Perspective
We see graphical programming tools as data processing

pipelines whose intermediate results are displayed on screen.
That is, software artifacts are repeatedly transformed when
users navigate relationships to other artifacts. On screen,
characteristic information is arranged in list-based widgets—
or other visualizations—to reveal an appropriate degree of
insight. The basic idea is illustrated in Figure 1.

By projecting this data-driven perspective onto program-
ming tools, we support programmers to focus on their domain-
specific software artifacts. In contrast to the state-of-the-
art, our data-driven programming tools are not about learn-
ing and using distracting intermediate interfaces, but rather

Figure 1: Our data-driven perspective where pro-
gramming tools process scripts on software artifacts
to exploit relationships.

Figure 2: Our perspective applied to traditional pro-
gramming environments. Software artifacts include
projects, files, classes, and methods.

about working with the underlying data itself. For example,
a user may reason about the rules of practice in an arbitrar-
ily complex user interface in the following way:

If I click the name of my project on the left-hand
side, that tool magically shows me my project’s
involved layers on the right-hand side.

In our data-driven perspective, we anticipate thoughts
that focus on artifacts like this:

If I choose my project in the left-hand list, this
very artifact will flow to the right-hand widget
and there it is transformed to its layers, which
will then be displayed.

Already, programmers are in control of choosing the ar-
tifacts of interest in list-based widgets to be processed by
tools. Having our perspective, we can also make the rules
of transforming software artifacts explicit and customizable
because there are clear boundaries in the user interface.
For example, Figure 2 applies our data-driven perspective
to the programming environments Eclipse and Smalltalk.
The whole environment consists of rectangular boxes that
exchange software artifacts and transform them before dis-
playing them. So, we can establish simple rules of modular-
ity in the graphical interface language.

We implemented a framework that employs our data-driven
perspective in Squeak/Smalltalk. We call the rectangular
boxes in tools panes, which manage queries and represent

Figure 3: A halo above panes provide access to
queries (bottom), incoming connections (left, blue),
and outgoing connections (right, green).

complete tool definitions. In combination with an interac-
tive halo6 (Figure 3), panes provide a direct link from a tool’s
graphical appearance to the underlying artifact transforma-
tion code. Our framework has the following components:

Pane A rectangular placeholder in the user interface. Dis-
patches between a configurable set of queries when new
objects arrive using type information. Exchanges ob-
jects with other panes via user-controlled selections in
views.

Query Encapsulates source code to (1) transform objects
and (2) extract properties such as labels or icons to
be rendered by views. Depending on the view, proper-
ties can range from primitive types such as strings or
bitmaps to more elaborate ones such as Morphs [14].

View Represents a widget or visualization of arbitrary com-
plexity. It is embedded into one pane and can be dis-
missed by that pane on data-driven updates. Propa-
gates user input such as selections back to the pane.

Interpreter Processes a query with some objects to pro-
duce an intermediate model structure, which should
be understood by views.

Queries are stored in a dedicated database to persist mod-
ifications and support managing several versions across tool
boundaries. Duplicating tools does not involve copying many
lines of Smalltalk code but only information about pane ge-
ometry, inter-pane connections, and references to queries.
Having this, a tool’s footprint is quite small.

3.2 Tool Support for ContextS2
In our implementation, queries are lists of Smalltalk block

closures. The interpreter processes such lists sequentially by
evaluating blocks in order, and passing Smalltalk objects be-
tween them. There are two processing modes for each block:
one-by-one or all-at-once. Having this, the interpreter pro-
vides no stream semantics but offers ways to process the par-
ticular object buffer, which resides between blocks. The one-
by-one mode saves the corresponding amount of Smalltalk
code for processing collections.

There are two kinds of blocks in a query: object transfor-
mation and property extraction. A query typically consists

6Halos provide overlay buttons and are invoked by a dedi-
cated user interaction on graphical elements. The halo con-
cept origins from the Morphic framework [14].

of some transformation blocks followed by some extraction
blocks. Here is an example for transforming classes one-by-
one7 into their methods and extracting the selector of each
method into the property #text. An #icon is provided, too:

[:class | class methodDict values].
[:method | {#icon -> (IconService for: method).

#text -> method selector}].

Blocks can extract multiple named properties of an object
but views have to know about those names to take advantage
of it. We implemented several standard views such as lists,
tables, and trees that can render, for example, #text, #icon,
#tooltip, or #color. Additionally, our framework stores an
object reference in the #object property.

We will now show all the code needed to build tools that
answer the questions from the beginning. For each tool,
a small screenshot should provide a first visual impression.
Due to space constraints, we avoid listing code blocks for
sorting objects. For each tool, there are two panes that
exchange selected artifacts from the left to the right. The
domain of our running example is a small Breakout game
(see Appendix B), which was implemented with cop layers
to control the scope of various in-game items.

Q1: Which layers refine class C?

This tool can be opened for one or more packages. It
lists all classes in this package and provides access to all
involved layers. Each of the two panes has one query. Note
the only slightly bigger footprint compared to the listing in
Section 2.3 due to block syntax:

”Query for left classes list.”
[:package | package classes].
[:class | {#text -> class name}].
”Query for right layers list.”
[:class | (class methodDict values
select: [:method | method isContextSMethod])
gather: [:method | method partialMethods
gather: [:partial | partial layers]]].

[:layer | {#text -> layer}].

Q2: Which methods are refined by layer L?

This tool can be opened for one or more layers. It lists all
partial methods that affect those layers and provides access
to the source code. Each of the two panes has one query:

7There are several meta information stored with each query
block such as processing mode, expected input type, view
class, and whether it is transformation or extraction. Due
to space constraints, we only show the blocks’ sources.

”Query for left method list.”
[:layer | Array streamContents: [:methods |
SystemNavigation default
allSelectorsAndMethodsDo: [:b :s :method |
method isContextSMethod ifTrue: [
method partialMethods do: [:pm |
(pm layers includes: layer)
ifTrue: [methods nextPut: pm]]]]]].

[:partial | {#text -> partial selector}].
[:partial | {#text -> partial methodClass}].
”Query for right code view.”
[:partial | {#text -> partial method getSource}].

Q3: In which methods can layer L be activated?

This tool can be opened for one or more layers. It lists
all methods that directly activate layers by sending the ap-
propriate messages. It also shows the code of the containing
method. Each of the two panes has one query:

”Query for left method list.”
[:layer | (#(withLayerDo: withLayersDo:

activateLayersInCurrentProcess
activateLayerInCurrentProcess)

gather: [:message | SystemNavigation default
allCallsOn: message])

select: [:ref | ref compiledMethod
literalStrings includes: layer]].

[:ref | {#text -> ref selector}].
[:ref | {#text -> ref actualClass}].
”Query for right code view.”
[:ref | {#text -> ref sourceCode}].

Q4: In which methods can layer L be deactivated?
This tool is similar to the one for layer activations above but
it looks for calls to #deactivateLayerInCurrentProcess and
#deactivateLayersInCurrentProcess.

Q5: Which layers are currently active in process P?

This tool can be opened for the environment. It lists all
processes that can be scheduled and provides access to cur-
rently active layers. Meta programming has to be employed
to access the waiting processes in the scheduler. Each of the
two panes has one query:

”Query for left process list.”
[((Processor instVarNamed: #quiescentProcessLists)
gather: [:ll | ll asOrderedCollection])
copyWith: Processor activeProcess].

[:process | {#text -> (process caseOf: {
[Project uiProcess]
-> [’ui process’].

[Processor backgroundProcess]
-> [’idle process’]}

otherwise: [process name ”cryptic id”])}].
[:process | {#text -> process priority}].

”Query for right active layers list.”
[:process | process csInfo].
[:csInfo | csInfo activeLayers].
[:layer | {#text -> layer}].

Q6: What is the current interface for object O consid-
ering active layers?

This tool can be opened for one or more objects. It lists all
methods of the objects’ class and filters them by active lay-
ers. It also shows the code of the method or partial method.
Each of the two panes has one query:

”Query for the left method list.”
[:object | object class].
[:class | class methodDict values,

class class methodDict values].
[:method | method isContextSMethod
ifFalse: [method]
ifTrue: [method methodChainFor: Processor
activeProcess csInfo activeLayers]].

[:method | {#text -> method selector}].
[:method | {#text -> method methodClass}].
”Query for the right code view.”
[:method | {#text -> (method getSource,

String cr)}].

3.3 Data-driven Tool Integration
We illustrated how our framework supports to build tools

for ContextS2 in a data-driven way. Each tool’s data trans-
formation and property extraction code, called query, is
prominent, compact, and accessible via the graphical inter-
face. This supports to create a toolset for various, if not
all, programming tasks. But how do programmers integrate
those tools, that is, switch from one tool to another?

A first possibility forms inter-tool pane connections. In
our framework, programmers can establish dataflow visu-
ally between panes in the same window (Figure 3). Such
dataflow can also be established between panes in differ-
ent tool windows. For example, programmers can open
a browser to list all layers for a selected class (Q1), and
another one to list all partial methods for a layer (Q2).
Dataflow between both tools can then be used to, effec-
tively, browse all partial methods in a class via its layers.
The concept of context menus is not needed.

A second possibility forms emergent tool construction via
artifact collections. We provide a special view called artifact
list. In this view, programmers can use drag-and-drop to col-
lect software artifacts, not just their visual representations,
from other views to evaluate queries with them as illustrated
in Figure 4. The compact editors for each artifact resemble
Code Bubbles’ bubbles [5]. Once collected, programmers
use the pane’s halo to switch to another query or write a
new one (Figure 3). Together with changing the view to an
appropriate visualization, programmers can explore those
collected artifacts. Having this, tools as such—being just

Figure 4: Programmers can collect artifacts across
tools via drag-and-drop in a special artifacts view to
evaluate queries on them.

windows with single panes—would have a shorter lifetime
and queries would be more prominent. Even the concept of
panes and views would fade into the background; it would
all be about software artifacts and their transformations.

We aim for expressing all kinds of programming tools with
queries. Regular code browsers are similar to the tools pre-
sented above and hence no challenge. Even more elaborate
tools such as debuggers map to our data-driven perspective:
the input object for a debugger is a suspended process ob-
ject; the first query can extract the stack and put it into
a list widget; the second query can show code for the cur-
rent selection in the stack; the third query can reveal more
context information such as the message receiver.

Being not restricted to the cop domain, we are still ex-
ploring the possibilities of our data-driven approach by re-
building all kinds of programming tools.

4. CONCLUSION
Programming systems like Squeak/Smalltalk provide short

edit-compile-run cycles, which support iterative application
building. Programmers can modify pieces of source code and
immediately observe changed behavior in running applica-
tions. Graphic frameworks such as Morphic leverage this
idea for visual applications. Programmers can interactively
explore and adapt graphical widgets and hence mold the de-
sired user experience. With our data-driven perspective, we
found an additional abstraction to further facilitate the idea
of modifying applications in use and applied it to build tools
for cop implementations and applications.

5. REFERENCES
[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,

and M. Perscheid. A Comparison of Context-oriented
Programming Languages. In Proceedings of the 1st
International Workshop on Context-Oriented
Programming, page 6. ACM, 2009.

[2] M. Appeltauer, R. Hirschfeld, and H. Masuhara.
Improving the Development of Context-dependent
Java Applications with ContextJ. In Proceedings of
the 1st International Workshop on Context-Oriented
Programming, page 5. ACM, 2009.

[3] M. Appeltauer, R. Hirschfeld, H. Masuhara,
M. Haupt, and K. Kawauchi. Event-specific Software
Composition in Context-oriented Programming. In
Software Composition, pages 50–65. Springer, 2010.

[4] A. Bergel, S. Ducasse, C. Putney, and R. Wuyts.
Creating Sophisticated Development Tools with
OmniBrowser. Computer Languages, Systems &
Structures, 34(2):109–129, 2008.

[5] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri,
W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. LaViola Jr. Code Bubbles: Rethinking the User
Interface Paradigm of Integrated Development
Environments. In Proceedings of the 32nd
International Conference on Software Engineering,
pages 455–464. ACM, 2010.

[6] P. Bunge. Scripting browsers with Glamour. Master’s
thesis, University of Bern, 2009.

[7] P. Costanza and R. Hirschfeld. Language Constructs
for Context-oriented Programming: An Overview of
ContextL. In Proceedings of the 2005 Symposium on
Dynamic Languages, pages 1–10. ACM, 2005.

[8] S. González, K. Mens, and A. Cádiz.
Context-Oriented Programming with the Ambient
Object System. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[9] R. Hirschfeld, P. Costanza, and M. Haupt. An
Introduction to Context-oriented Programming with
ContextS. In Generative and Transformational
Techniques in Software Engineering II, pages 396–407.
Springer, 2008.

[10] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, 2008.

[11] R. Hirschfeld, M. Perscheid, C. Schubert, and
M. Appeltauer. Dynamic Contract Layers. In
Proceedings of the 2010 Symposium on Applied
Computing, pages 2169–2175. ACM, 2010.

[12] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung. An Exploratory Study of How Developers Seek,
Relate, and Collect Relevant Information During
Software Maintenance Tasks. IEEE Transactions on
Software Engineering, 32(12):971–987, 2006.

[13] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Science of Computer Programming, 76(12):1194–1209,
2011.

[14] J. H. Maloney and R. B. Smith. Directness and
Liveness in the Morphic User Interface Construction
Environment. In Proceedings of the 8th Symposium on
User Interface and Software Technology, pages 21–28.
ACM, 1995.

[15] T. Poncelet. The Phenomenal Gem. Master’s thesis,
Louvain School of Engineering, 2012.

[16] G. Schmidt. ContextR & ContextWiki. Master’s
thesis, Hasso-Plattner-Institut, Potsdam, 2008.

[17] J. Vallejos, P. Costanza, T. Van Cutsem,
W. De Meuter, and T. D’Hondt. Reconciling Generic
Functions with Actors. In ACM SIGPLAN
International Lisp Conference, Cambridge,
Massachusetts, 2009.

[18] M. Von Löwis, M. Denker, and O. Nierstrasz.
Context-oriented Programming: Beyond Layers. In
Proceedings of the 2007 International Conference on
Dynamic languages, pages 143–156. ACM, 2007.

CSLayer

CSMethodObject

CSPartialMethod

valueWithReceiver:arguments:

CSLayeredMethod

CSProcessContextInformation

Process

ByteSymbol

BehaviorvalueWithReceiver:arguments:

CompiledMethod

1..*
baseMethod partialMethods
0..1

method
1

layers
0..*

csInfo
1

activeLayers
0..*

layerName
1

Figure 5: The architecture of ContextS2 (white) embedded into the Squeak environment (gray).

APPENDIX

In this appendix, we provide more information about Con-
textS2, a cop implementation for Squeak/Smalltalk. It was
implemented for Squeak 4.5 and can be downloaded here:
www.hpi.de/hirschfeld/squeaksource/ContextSTrunk

A. CONTEXTS2 ARCHITECTURE
Figure 5 shows the architecture of ContextS2. To illustrate
integration into the base system, the classes of ContextS2
are in white and classes in the Squeak core are in gray.
The static core of ContextS2 uses a facility of the Squeak
virtual machine (vm) where any object in the method dic-
tionary of a Behavior, which is a supertype of Class,
that is not a CompiledMethod is activated with the mes-
sage valueWithReceiver:arguments:. In contrast to Con-
textS [9], where partial methods are encapsulated in a layer
class, this allows ContextS2 to attach partial methods di-
rectly to the class’ layers. When a layered version for a
method is created, a CSLayeredMethod is inserted into the
method dictionary. This object references both the original
baseMethod and holds a list of CSPartialMethod objects.
At run-time, each Process, which is Squeak’s notion of
a thread, is created with CSProcessContextInformation.
This object holds a reference to a list of symbols that name
the currently active layers, and provides meta-level facilities
to compute the order of layered method activations. When
a CSLayeredMethod is activated, it uses the context infor-
mation object in the current Process to calculate the or-
der in which its partialMethods need to be activated. The
outer-most CSPartialMethod is then activated through the
valueWithReceiver:arguments: method. When a proceed

call is made in a CSPartialMethod, the next partial method
or the base method is activated. If no base method exists,
that is a method only defined in layers, and no further par-
tial method is active, a cannot proceed exception is raised.
Note, that the CSLayer class merely provides a meta-level
interface for ContextS2 and that it does not affect the im-
plementation of context-oriented programming itself. Its in-

stances can be used to find all methods and partial methods
belonging to a layer.

B. BREAKOUT
We used a Breakout game for our queries as shown in Fig-
ure 6. The player controls the paddle via the left and right
keyboard buttons, and tries to guide the ball to hit and re-
move the blocks. When blocks are removed, they randomly
drop buffs, which the player can collect with the paddle.
These buffs have different effects such as enlarging the pad-
dle, making the ball faster, or adding additional balls. These
effects are implemented as cop layers that are activated for
a given time frame, and later deactivated after the timeout.
Additionally, layers are used to implement platform-specific
keyboard handlers.

Figure 6: A Breakout game with relevant game
items highlighted

www.hpi.de/hirschfeld/squeaksource/ContextSTrunk

	Introduction
	Goals and Challenges
	Questions for Exploration Tools
	Building Exploration Tools
	Reusing Exploration Tools
	Integrating Exploration Tools

	Data-driven Tool Building
	Our Data-driven Perspective
	Tool Support for ContextS2
	Data-driven Tool Integration

	Conclusion
	References
	ContextS2 Architecture
	Breakout

